1
|
Li R, Wang M, Li J, Zhu L, Xie X, Wang H, Zhang X, Tian W, Zhang Y, Dong Y, Zan J, Li H, Zhang Y, Zhou X, Shi S, Shu C, Liu L, Jin J, Lv J, Zhang H. Lactobacillus casei Cell Wall Extract and Production of Galactose-Deficient IgA1 in a Humanized IGHA1 Mouse Model. J Am Soc Nephrol 2025; 36:60-72. [PMID: 39172518 PMCID: PMC11706567 DOI: 10.1681/asn.0000000000000465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
Key Points We generated a transgenic mouse model expressing the human IgA1 heavy chain, which has a hinge region with rich O -linked glycosylation. After inflammatory stimulation, the mouse model showed elevated galactose-deficient IgA1 levels in the serum. Coupled with complement H factor mutant, the mice model exhibited glomerular lesions, associated with hematuria and albuminuria like IgA nephropathy. Background IgA nephropathy is the most common primary glomerulonephritis worldwide, and there is emerging evidence linking galactose-deficient IgA1 (Gd-IgA1) to the pathogenesis of the disease. However, mouse models that can be used to study Gd-IgA1's origin of production, biochemical characteristics, and immune reactivity are lacking. Methods We generated a humanized IgA1 mouse model with transgenic expression of the human IGHA1 gene from the mouse chromosomal locus of IgA heavy chain. The IGHA1 +/+ mice were crossed with complement factor H heterozygous mutant (FHW/R) to generate IGHA1 +/+FHW/R mice. IGHA1 +/+ mice were exposed to different levels of environmental pathogens in the first 4 months, as housed in germ-free, specific pathogen–free, or conventional environments. In addition, wild-type C57BL/6J mice, IGHA1 +/+ mice, and IGHA1 +/+FHW/R mice were inoculated with Lactobacillus casei cell wall extract (LCWE) mixed with complete Freund's adjuvant (CFA) at 2 months of age to develop a mouse model of IgA nephropathy. Results Elevated levels of human IgA1 in blood circulation and mucosal sites were observed in IGHA1 +/+ mice from exposure to pathogens. Compared with buffer-treated control mice, LCWE plus CFA-treated mice had moderately elevated levels of circulating human IgA1 (by one-fold) and human IgA1 immune complexes (by two-fold). Serum Gd-IgA1 levels increased four-fold after LCWE treatments. Analyses of the O -glycopeptides of the IgA1 hinge region confirmed hypogalactosylation of IgA1, with the variety of the glycoforms matching those seen in clinical samples. Furthermore, LCWE induced persistent IgA1 and C3 deposition in the glomerular mesangial areas in association with mesangial expansion and hypercellularity, which are frequently observed in IgA nephropathy biopsies. The IGHA1+/+FHW/R mice stimulated with LCWE and CFA developed albuminuria and hematuria. Conclusions We observed elevated plasma Gd-IgA1 levels with kidney deposition of IgA1 in the IGHA1 +/+ mice after LCWE and CFA. In conjunction with factor H mutation, the mice exhibited severe glomerular alterations, associated with hematuria and albuminuria in resemblance of clinical IgA nephropathy.
Collapse
Affiliation(s)
- Run Li
- Renal Division, Key Laboratory of Renal Disease, Ministry of Health of China, Peking University Institute of Nephrology, Peking University First Hospital, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Manliu Wang
- Renal Division, Key Laboratory of Renal Disease, Ministry of Health of China, Peking University Institute of Nephrology, Peking University First Hospital, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jingyi Li
- Renal Division, Key Laboratory of Renal Disease, Ministry of Health of China, Peking University Institute of Nephrology, Peking University First Hospital, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Li Zhu
- Renal Division, Key Laboratory of Renal Disease, Ministry of Health of China, Peking University Institute of Nephrology, Peking University First Hospital, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediate Kidney Disease, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Xinfang Xie
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui Wang
- Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, China
| | - Xu Zhang
- Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, China
| | - Wenmin Tian
- Department of Biochemistry and Biophysics, Center for Precision Medicine Multi-Omics Research, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yong Zhang
- Department of Nephrology, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Yaping Dong
- Renal Division, Key Laboratory of Renal Disease, Ministry of Health of China, Peking University Institute of Nephrology, Peking University First Hospital, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Jincan Zan
- Renal Division, Key Laboratory of Renal Disease, Ministry of Health of China, Peking University Institute of Nephrology, Peking University First Hospital, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Hongyu Li
- Renal Division, Key Laboratory of Renal Disease, Ministry of Health of China, Peking University Institute of Nephrology, Peking University First Hospital, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Yuemiao Zhang
- Renal Division, Key Laboratory of Renal Disease, Ministry of Health of China, Peking University Institute of Nephrology, Peking University First Hospital, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediate Kidney Disease, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Xujie Zhou
- Renal Division, Key Laboratory of Renal Disease, Ministry of Health of China, Peking University Institute of Nephrology, Peking University First Hospital, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediate Kidney Disease, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Sufang Shi
- Renal Division, Key Laboratory of Renal Disease, Ministry of Health of China, Peking University Institute of Nephrology, Peking University First Hospital, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediate Kidney Disease, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Chutian Shu
- Shanghai Alezyme Pharmaceuticals Ltd., Shanghai, China
| | - Lijun Liu
- Renal Division, Key Laboratory of Renal Disease, Ministry of Health of China, Peking University Institute of Nephrology, Peking University First Hospital, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediate Kidney Disease, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Jing Jin
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jicheng Lv
- Renal Division, Key Laboratory of Renal Disease, Ministry of Health of China, Peking University Institute of Nephrology, Peking University First Hospital, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediate Kidney Disease, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Hong Zhang
- Renal Division, Key Laboratory of Renal Disease, Ministry of Health of China, Peking University Institute of Nephrology, Peking University First Hospital, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediate Kidney Disease, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
2
|
Liu Z, Zhang F, Jia F, Li S, Jiang C, Ruan B, Long R. Lactobacillus Protects Against Chronic Suppurative Otitis Media via Modulating RFTN1/ Lipid Raft /TLR4-Mediated Inflammation. Biologics 2024; 18:453-468. [PMID: 39742136 PMCID: PMC11687115 DOI: 10.2147/btt.s484410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/10/2024] [Indexed: 01/03/2025]
Abstract
Purpose Chronic suppurative otitis media (CSOM) is a prominent contributor to preventable hearing loss globally. Probiotic therapy has attracted research interest in human infectious and inflammatory disease. As the most prevalent probiotic, the role of Lactobacillus in CSOM remains poorly defined. This study aimed to investigate the antipathogenic effects and underlying mechanism of Lactobacillus on CSOM. Methods RNA sequencing of granulation of middle ear cavity from CSOM patients and lavage fluid of middle ear from normal volunteer was conducted. Human middle ear epithelial cells (HMEEC) and rats infected with Bacillus cereus (B. cereus) and Staphylococcus aureus (S. aureus) were used for CSOM constructing. Western blot, qPCR and Vybrant™ Alexa Fluor™ 488 lipid raft labeling were performed to explore the possible molecular mechanism by which lipid raft linker (RFTN1) regulates lipid raft/toll-like receptor 4 (TLR4). ELISA and HE staining was utilized to evaluate the effect of Lactobacillus on the progression of CSOM in vivo. Results Based on RNA Sequence analysis, a total of 3646 differentially expressed genes (1620 up-regulated and 2026 down-regulated) were identified in CSOM. RFTN1 was highly expressed in CSOM. Inhibition of RFTN1 not only reduced the inflammatory response of CSOM but also suppressed the formation of lipid rafts. Further investigation revealed that RFTN1 inhibition could reduce the expression of TLR4, which also localizes to the lipid rafts. TLR4 responds to RFTN1-mediated inflammatory responses in CSOM. We treated the CSOM model with Lactobacillus, which has great potential for alleviating the inflammatory response, and found that Lactobacillus attenuated the development of CSOM by reducing RFTN1 and TLR4 expression. Conclusion In conclusion, these findings suggest a crucial role for Lactobacillus in alleviating CSOM progression and uncovered the molecular mechanism involving Lactobacillus-regulated inhibition of the RFTN1-lipid raft-TLR4 signaling pathway under CSOM conditions.
Collapse
Affiliation(s)
- Zhuohui Liu
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Fan Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Fengfeng Jia
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Shuling Li
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Chaowu Jiang
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Biao Ruan
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| | - Ruiqing Long
- Department of Otolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| |
Collapse
|
3
|
Yu S, Li X, Wang T, Li J, Li H, Xu Y, Hu Y, Zhu F, Wang J, Wang T, Zhu B, Zhou XJ, Zhang H, Lv J, Barratt J, Zhao B. B-Cell Epigenetic Modulation of IgA Response by 5-Azacytidine and IgA Nephropathy. J Am Soc Nephrol 2024; 35:1686-1701. [PMID: 39137052 PMCID: PMC11617474 DOI: 10.1681/asn.0000000000000441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Key Points Dysregulated IgA production plays a key role in the pathogenesis of IgA nephropathy. Increased 5-methylcytosine modification, an epigenetic regulatory mechanism, exaggerated IgA nephropathy phenotype in mice. Conversely, inhibition of 5-methylcytosine modification ameliorated progression of IgA nephropathy–like kidney disease in mice. Background IgA nephropathy is an important global cause of kidney failure. Dysregulation of IgA production is believed to play a key role in IgA nephropathy pathogenesis; however, little is known about the epigenetic mechanisms, such as RNA 5-methylcytosine (5mC) modification, in regulating IgA synthesis. Methods To decipher the role of RNA 5mC in regulation of IgA class switch, the microRNA (miR)-23b−/− and Lactobacillus casei (Chinese Industrial Microbial Culture Collection Center) cell wall extract–induced Kawasaki disease mice were treated with 5-azacytidine. Trdmt1 −/− and double Trdmt1 −/−/miR-23b −/− mice and Aid −/− mice or Aid −/−/miR-23b −/− mice were also used. Results We showed that miR-23b downregulated expression of Transfer RNA Aspartic Acid Methyltransferase 1 and consequently reduced 5mC (m5C) RNA modification and IgA synthesis in B cells. Inhibition of m5C RNA modification normalized serum IgA levels and ameliorated progression of the IgA nephropathy–like kidney disease in miR-23b −/− and Kawasaki disease mice, while mesangial IgA and C3 deposition failed to develop in Trdmt1 −/−miR-23b −/− mice. By contrast, increased m5C RNA modification resulted in an exaggerated IgA nephropathy phenotype. miR-23b regulation of serum IgA levels and the development of an IgA nephropathy–like kidney disease in miR-23b −/− and Kawasaki disease mice is likely mediated through TRDMT1-driven 5mC RNA modification in B cells, resulting in impaired activation-induced cytidine deaminase activity and IgA class switch recombination. Conclusions This study revealed TRDMT1-induced RNA 5mC methylation regulated IgA class switch, and inhibition of RNA 5mC by 5-azacytidine ameliorated progression of IgA nephropathy.
Collapse
Affiliation(s)
- Shanshan Yu
- Nephrosis Precision Medicine Innovation Center, University of Beihua School of Medicine, Beihua University, Jilin, China
- Department of Nephrology, Zhejiang Provincial People's Hospital, the Affiliated People's Hospital, School of Basic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xiang Li
- Nephrosis Precision Medicine Innovation Center, University of Beihua School of Medicine, Beihua University, Jilin, China
- Department of Nephrology, Zhejiang Provincial People's Hospital, the Affiliated People's Hospital, School of Basic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Ting Wang
- Nephrosis Precision Medicine Innovation Center, University of Beihua School of Medicine, Beihua University, Jilin, China
| | - Jingyi Li
- Renal Division, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Hongzhi Li
- Nephrosis Precision Medicine Innovation Center, University of Beihua School of Medicine, Beihua University, Jilin, China
| | - Ying Xu
- Renal Division, Jilin University First Hospital, Institute of Nephrology, Jilin University, Changchun, China
| | - Yanling Hu
- Department of Pathology, Liaocheng People's Hospital, Liaocheng, China
| | - Fubin Zhu
- Department of Nephrology, Zhejiang Provincial People's Hospital, the Affiliated People's Hospital, School of Basic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jinwei Wang
- Renal Division, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Tianhe Wang
- Department of Nephrology, Zhejiang Provincial People's Hospital, the Affiliated People's Hospital, School of Basic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Bin Zhu
- Department of Nephrology, Zhejiang Provincial People's Hospital, the Affiliated People's Hospital, School of Basic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xu-jie Zhou
- Renal Division, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Jicheng Lv
- Renal Division, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Binghai Zhao
- Nephrosis Precision Medicine Innovation Center, University of Beihua School of Medicine, Beihua University, Jilin, China
- Department of Nephrology, Zhejiang Provincial People's Hospital, the Affiliated People's Hospital, School of Basic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
4
|
Li J, Dong Y, Chen F, Yang H, Chen P, Li H, Shi S, Zhou X, Zhu L, Zhang Y, Liu L, Xie X, Yu F, Jin J, Lv J, Zhang H. Heterozygous mutations in factor H aggravate pathological damage in a stable IgA deposition model induced by Lactobacillus casei cell wall extract. Front Immunol 2024; 15:1368322. [PMID: 38558821 PMCID: PMC10978756 DOI: 10.3389/fimmu.2024.1368322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Activation of complement through the alternative pathway (AP) has a key role in the pathogenesis of IgA nephropathy (IgAN). We previously showed, by intraperitoneal injection of Lactobacillus casei cell wall extract (LCWE), C57BL/6 mice develop mild kidney damage in association with glomerular IgA deposition. To further address complement activity in causing glomerular histological alterations as suggested in the pathogenesis of IgAN, here we used mice with factor H mutation (FHW/R) to render AP overactivation in conjunction with LCWE injection to stimulate intestinal production of IgA. Methods Dose response to LCWE were examined between two groups of FHW/R mice. Wild type (FHW/W) mice stimulated with LCWE were used as model control. Results The FHW/R mice primed with high dose LCWE showed elevated IgA and IgA-IgG complex levels in serum. In addition to 100% positive rate of IgA and C3, they display elevated biomarkers of kidney dysfunction, coincided with severe pathological lesions, resembling those of IgAN. As compared to wild type controls stimulated by the same high dose LCWE, these FHW/R mice exhibited stronger complement activation in the kidney and in circulation. Discussion The new mouse model shares many disease features with IgAN. The severity of glomerular lesions and the decline of kidney functions are further aggravated through complement overactivation. The model may be a useful tool for preclinical evaluation of treatment response to complement-inhibitors.
Collapse
Affiliation(s)
- Jingyi Li
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yaping Dong
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Feifei Chen
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Hongyu Yang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Pei Chen
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Hongyu Li
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Sufang Shi
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Xujie Zhou
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Li Zhu
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yuemiao Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Lijun Liu
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Xinfang Xie
- Department of Nephrology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an, China
| | - Feng Yu
- Department of Nephrology, Peking University International Hospital, Beijing, China
| | - Jing Jin
- Northwestern University Feinberg School of Medicine, Division of Nephrology, Chicago, IL, United States
| | - Jicheng Lv
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
5
|
Li Q, Yuan X, Shi S, Liu L, Lv J, Zhu L, Zhang H. Zonulin, as a marker of intestinal permeability, is elevated in IgA nephropathy and IgA vasculitis with nephritis. Clin Kidney J 2022; 16:184-191. [PMID: 36726446 PMCID: PMC9871857 DOI: 10.1093/ckj/sfac214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Background Immunoglobulin A nephropathy (IgAN) and IgA vasculitis with nephritis (IgAV-N) are considered related diseases and share some similar clinicopathologic phenotypes. Elevated circulating galactose-deficient IgA1 (Gd-IgA1)-containing immune complexes and mucosal immunity were associated with the pathogenesis of IgAN and IgAV-N. Recently, studies have identified that the zonulin level, as a modulator of intestinal permeability, is significantly elevated in several inflammatory and autoimmune-related diseases. However, whether zonulin also plays a role in IgAN and IgAV-N is not clear. Methods A total of 73 IgAV-N patients, 68 IgAN patients and 54 healthy controls were assessed for circulating zonulin and Gd-IgA1 levels by enzyme-linked immunosorbent assay. The diagnostic efficiency of the combination of zonulin with Gd-IgA1 was evaluated by the area under the receiver operating characteristic curve (AUC) and integrated discrimination improvement (IDI) analysis. Results Compared with healthy controls, we found that both IgAV-N and IgAN patients had elevated zonulin and Gd-IgA1 levels (P < .001). Additionally, patients with IgAV-N presented with even higher circulating zonulin levels than patients with IgAN (P = .020). The addition of zonulin to Gd-IgA1 showed better predictive performance than Gd-IgA1 alone in the diagnosis of both IgAN and IgAV-N, as illustrated by a significantly increased AUC (IgAN: 0.805 versus 0.708, P = .0021; IgAV-N: 0.886 versus 0.673, P < .001) and significant IDI (IgAN: IDI 0.136, P < .001; IgAV-N: IDI 0.281, P < .001). Conclusion Elevated circulating zonulin levels were detected in both patients with IgAV-N and those with IgAN. Combined detection of circulating zonulin and Gd-IgA1 is recommended as a noninvasive diagnostic biomarker for IgAV-N and IgAN.
Collapse
Affiliation(s)
| | | | - Sufang Shi
- Renal Division, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China; Research Units of Diagnosis and Treatment of lmmune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Lijun Liu
- Renal Division, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China; Research Units of Diagnosis and Treatment of lmmune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jicheng Lv
- Renal Division, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China; Research Units of Diagnosis and Treatment of lmmune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Zhu
- Correspondence to: Li Zhu; E-mail:
| | - Hong Zhang
- Renal Division, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China; Research Units of Diagnosis and Treatment of lmmune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Gorreja F, Walker WA. The potential role of adherence factors in probiotic function in the gastrointestinal tract of adults and pediatrics: a narrative review of experimental and human studies. Gut Microbes 2022; 14:2149214. [PMID: 36469568 PMCID: PMC9728474 DOI: 10.1080/19490976.2022.2149214] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Numerous studies point to the important role of probiotic bacteria in gastrointestinal health. Probiotics act through mechanisms affecting enteric pathogens, epithelial barrier function, immune signaling, and conditioning of indigenous microbiota. Once administered, probiotics reach the gastrointestinal tract and interact with the host through bacterial surface molecules, here called adhesion factors, which are either strain- or specie-specific. Probiotic adhesion, through structural adhesion factors, is a mechanism that facilitates persistence within the gastrointestinal tract and triggers the initial host responses. Thus, an understanding of specific probiotic adhesion mechanisms could predict how specific probiotic strains elicit benefits and the potential of adherence factors as a proxy to predict probiotic function. This review summarizes the present understanding of probiotic adherence in the gastrointestinal tract. It highlights the bacterial adhesion structure types, their molecular communication with the host and the consequent impact on intestinal diseases in both adult and pediatric populations. Finally, we discuss knockout/isolation studies as direct evidence for adhesion factors conferring anti-inflammatory and pathogen inhibition properties to a probiotic.What is known: Probiotics can be used to treat clinical conditions.Probiotics improve dysbiosis and symptoms.Clinical trials may not confirm in vitro and animal studies.What is new: Adhesion structures may be important for probiotic function.Need to systematically determine physical characteristics of probiotics before selecting for clinical trials.Probiotics may be genetically engineered to add to clinical efficacy.
Collapse
Affiliation(s)
- Frida Gorreja
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - W. Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|