1
|
Marzioni M, Maroni L, Aabakken L, Carpino G, Groot Koerkamp B, Heimbach J, Khan S, Lamarca A, Saborowski A, Vilgrain V, Nault JC. EASL Clinical Practice Guidelines on the management of extrahepatic cholangiocarcinoma. J Hepatol 2025:S0168-8278(25)00162-X. [PMID: 40348685 DOI: 10.1016/j.jhep.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 05/14/2025]
Abstract
Recent years have witnessed significant advances in the imaging, molecular profiling, and systemic treatment of cholangiocarcinoma (CCA). Despite this progress, the early detection, precise classification, and effective management of CCA remain challenging. Owing to recent developments and the significant differences in CCA subtypes, EASL commissioned a panel of experts to draft evidence-based recommendations on the management of extrahepatic CCA, comprising distal and perihilar CCA. Particular attention is given to the need for accurate classification systems, the integration of emerging molecular insights, and practical strategies for diagnosis and treatment that reflect real-world clinical scenarios.
Collapse
|
2
|
Arechederra M, Bik E, Rojo C, Elurbide J, Elizalde M, Kruk B, Krasnodębski M, Pertkiewicz J, Kozieł S, Grąt M, Raszeja‐Wyszomirska J, Rullan M, Alkorta‐Aranburu G, Oyón D, Fernández‐Barrena MG, Candels LS, Białek A, Krupa Ł, Schneider KM, Urman J, Strnad P, Trautwein C, Milkiewicz P, Krawczyk M, Ávila MA, Berasain C. Mutational Analysis of Bile Cell-Free DNA in Primary Sclerosing Cholangitis: A Pilot Study. Liver Int 2025; 45:e70049. [PMID: 40029142 PMCID: PMC11874897 DOI: 10.1111/liv.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Primary sclerosing cholangitis (PSC) is a chronic liver disease characterised by inflammation and fibrosis of the bile ducts, conferring an increased risk of cholangiocarcinoma (CCA). However, detecting CCA early in PSC patients remains challenging due to the limited sensitivity of conventional diagnostic methods, including imaging or bile duct brush cytology during endoscopic retrograde cholangiopancreatography (ERCP). This study aims to evaluate the potential of bile cell-free DNA (cfDNA) mutational analysis, termed the Bilemut assay, as a tool for CCA detection in PSC patients. METHODS Sixty-three PSC patients undergoing ERCP due to biliary strictures were prospectively recruited. Bile samples were collected, and cfDNA was extracted and analysed using the Oncomine Pan-Cancer Cell-Free assay. Twenty healthy liver donors were included for comparison. Samples with a mutant allele frequency (MAF) ≥ 0.1% were considered positive. Correlations between mutational status and clinical characteristics were assessed. RESULTS cfDNA mutational analysis was successful in all bile samples. Mutations predominantly in KRAS, GNAS, and TP53 were detected in 36.5% (23/63) of PSC patients, compared to 10% (2/20) of healthy donors (p = 0.0269). The clinical characteristics of Bilemut-positive and -negative patients were comparable, though there was a trend towards a lower prevalence of inflammatory bowel disease in the Bilemut-positive group. Among PSC patients diagnosed with CCA during follow-up, 75% were Bilemut-positive, suggesting an association between mutational status and malignancy risk. CONCLUSIONS Mutational analysis of cfDNA obtained from bile collected from PSC patients undergoing ERCP is feasible. Implementing the Bilemut assay may help identify patients needing closer surveillance and further imaging studies.
Collapse
Affiliation(s)
- Maria Arechederra
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUNUniversity of NavarraPamplonaSpain
- IdiSNANavarra Institute for Health ResearchPamplonaSpain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute)MadridSpain
| | - Emil Bik
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver SurgeryMedical University of WarsawWarsawPoland
| | - Carla Rojo
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUNUniversity of NavarraPamplonaSpain
| | - Jasmin Elurbide
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUNUniversity of NavarraPamplonaSpain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute)MadridSpain
| | - María Elizalde
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUNUniversity of NavarraPamplonaSpain
| | - Beata Kruk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver SurgeryMedical University of WarsawWarsawPoland
| | - Maciej Krasnodębski
- Department of General Transplant and Liver SurgeryMedical University of WarsawWarsawPoland
| | - Jan Pertkiewicz
- Department of General Transplant and Liver SurgeryMedical University of WarsawWarsawPoland
| | - Sławomir Kozieł
- Department of General Transplant and Liver SurgeryMedical University of WarsawWarsawPoland
| | - Michał Grąt
- Department of General Transplant and Liver SurgeryMedical University of WarsawWarsawPoland
| | - Joanna Raszeja‐Wyszomirska
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver SurgeryMedical University of WarsawWarsawPoland
| | - Maria Rullan
- IdiSNANavarra Institute for Health ResearchPamplonaSpain
- Department of Gastroenterology and HepatologyNavarra University HospitalPamplonaSpain
| | | | - Daniel Oyón
- Department of Gastroenterology and HepatologyHospital General Universitario Gregorio MarañónMadridSpain
| | - Maite G. Fernández‐Barrena
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUNUniversity of NavarraPamplonaSpain
- IdiSNANavarra Institute for Health ResearchPamplonaSpain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute)MadridSpain
| | - Lena S. Candels
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER)AachenGermany
| | - Andrzej Białek
- Department of GastroenterologyPomeranian Medical UniversitySzczecinPoland
| | - Łukasz Krupa
- Department of Gastroenterology and Hepatology With Internal Disease UnitTeaching Hospital No 1 in RzeszówRzeszówPoland
- Medical DepartmentUniversity of RzeszówRzeszówPoland
| | - Kai M. Schneider
- Department of Medicine 1University Hospital Carl Gustav Carus Dresden, Technische Universität (TU)DresdenGermany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU)DresdenGermany
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, TUD Dresden University of TechnologyDresdenGermany
- Department of Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Jesús Urman
- IdiSNANavarra Institute for Health ResearchPamplonaSpain
- Department of Gastroenterology and HepatologyNavarra University HospitalPamplonaSpain
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER)AachenGermany
| | - Christian Trautwein
- Department of ToxicologyLeibniz Research Centre for Working Environment and Human Factors (IfADo)DortmundGermany
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver SurgeryMedical University of WarsawWarsawPoland
- Translational Medicine Group, Pomeranian Medical UniversitySzczecinPoland
| | - Marcin Krawczyk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver SurgeryMedical University of WarsawWarsawPoland
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical FacultyUniversity of Duisburg‐EssenEssenGermany
| | - Matías A. Ávila
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUNUniversity of NavarraPamplonaSpain
- IdiSNANavarra Institute for Health ResearchPamplonaSpain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute)MadridSpain
| | - Carmen Berasain
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUNUniversity of NavarraPamplonaSpain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute)MadridSpain
| |
Collapse
|
3
|
Putatunda V, Jusakul A, Roberts L, Wang XW. Genetic, Epigenetic, and Microenvironmental Drivers of Cholangiocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:362-377. [PMID: 39532242 PMCID: PMC11841490 DOI: 10.1016/j.ajpath.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Cholangiocarcinoma (CCA) is an aggressive and heterogeneous malignancy of the biliary tree that carries a poor prognosis. Multiple features at the genetic, epigenetic, and microenvironmental levels have been identified to better characterize CCA carcinogenesis. Genetic alterations, such as mutations in IDH1/2, BAP1, ARID1A, and FGFR2, play significant roles in CCA pathogenesis, with variations across different subtypes, races/ethnicities, and causes. Epigenetic dysregulation, characterized by DNA methylation and histone modifications, further contributes to the complexity of CCA, influencing gene expression and tumor behavior. Furthermore, CCA cells exchange autocrine and paracrine signals with other cancer cells and the infiltrating cell types that populate the microenvironment, including cancer-associated fibroblasts and tumor-associated macrophages, further contributing to an immunosuppressive niche that supports tumorigenesis. This review explores the multifaceted genetic, epigenetic, and microenvironmental drivers of CCA. Understanding these diverse mechanisms is essential for characterizing the complex pathways of CCA carcinogenesis and developing targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Vijay Putatunda
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand; Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Lewis Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Xin Wei Wang
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
4
|
Branchi V, Hosni R, Kiwitz L, Ng S, van der Voort G, Bambi N, Kleinfelder E, Esser LK, Dold L, Langhans B, Gonzalez-Carmona MA, Ting S, Kristiansen G, Kalff JC, Thurley K, Hölzel M, Matthaei H, Toma MI. Expression of the large amino acid transporter SLC7A5/LAT1 on immune cells is enhanced in primary sclerosing cholangitis-associated cholangiocarcinoma and correlates with poor prognosis in cholangiocarcinoma. Hum Pathol 2024; 153:105670. [PMID: 39406289 DOI: 10.1016/j.humpath.2024.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024]
Abstract
Biliary tract cancers (BTC) are rare lethal malignancies arising along the biliary tree. Unfortunately, effective therapeutics are lacking and the prognosis remains dismal even for patients eligible for surgical resection. Therefore, novel therapeutic approaches along with early detection strategies and prognostic markers are urgently needed. Primary sclerosing cholangitis (PSC) is a chronic disease of the bile ducts leading to fibrosis and ultimately cirrhosis. Patients with PSC have a 5-20% lifetime risk of developing BTC; yet the molecular mechanisms that underpin the development of PSC- associated biliary tract cancer (PSC-BTC) have not been fully elucidated. SLC7A5/LAT1, a large amino acid transporter, has been shown to modulate cell growth and proliferation as well as other intracellular processes in solid tumors. In this study, we evaluated SLC7A5 expression in PSC-BTC and in sporadic BTC (sBTC) and its role as a prognostic factor. Analysis of the TGCA cohort showed a significantly higher expression of SLC7A5 in tumor tissue compared with adjacent normal tissue (p = 0.0002) in BTC. In our cohort (comprised of 69 BTC patients including 16 PSC-BTC), SLC7A5/LAT1 expression was observed in both tumor and intratumoral immune cells. A significantly higher percentage of SLC7A5/LAT1 positive intratumoral immune cells was observed in PSC-BTC compared with sBTC (p = 0.004). Multiplex immunofluorescence co-detection by indexing (CODEX) analysis identified CD4+ regulatory T lymphocytes and CD68+ macrophages as the largest immune cell populations expressing LAT1. SLC7A5/LAT1 expression as well as a higher intratumoral infiltration of SLC7A5/LAT1-positive immune cells (≥2%) were associated with a shorter overall survival in our cohort (LogRank test, p = 0.04 and p = 0.008; respectively). SLC7A5/LAT1 expressing tumors are higher staged tumors (pT3/4 versus pT1/2, p = 0.048). These results underline the potential use of SLC7A5/LAT1 as a prognostic marker in BTC. Furthermore, the higher frequency of SLC7A5/LAT1 positive immune cells in PSC-BTC compared to sBTC may hint at the potential role of SLC7A5/LAT1 in inflammation-driven carcinogenesis.
Collapse
Affiliation(s)
- Vittorio Branchi
- Department of General, Abdominal, Thoracic and Vascular Surgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Racha Hosni
- Institute of Pathology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Lukas Kiwitz
- Institute of Experimental Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Susanna Ng
- Institute of Experimental Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Gemma van der Voort
- Institute of Experimental Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Neila Bambi
- Institute of Pathology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Eileen Kleinfelder
- Institute of Pathology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Laura K Esser
- Institute of Pathology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Leona Dold
- Department of Internal Medicine I, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Bettina Langhans
- Department of Internal Medicine I, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Maria A Gonzalez-Carmona
- Department of Internal Medicine I, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Saskia Ting
- Institute of Pathology, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Jörg C Kalff
- Department of General, Abdominal, Thoracic and Vascular Surgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Kevin Thurley
- Institute of Experimental Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Hanno Matthaei
- Department of General, Abdominal, Thoracic and Vascular Surgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Marieta I Toma
- Institute of Pathology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
5
|
Pirenne S, Manzano-Núñez F, Loriot A, Cordi S, Desmet L, Aydin S, Hubert C, Toffoli S, Limaye N, Sempoux C, Komuta M, Gatto L, Lemaigre FP. Spatial transcriptomics profiling of gallbladder adenocarcinoma: a detailed two-case study of progression from precursor lesions to cancer. BMC Cancer 2024; 24:1025. [PMID: 39164619 PMCID: PMC11334592 DOI: 10.1186/s12885-024-12770-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Most studies on tumour progression from precursor lesion toward gallbladder adenocarcinoma investigate lesions sampled from distinct patients, providing an overarching view of pathogenic cascades. Whether this reflects the tumourigenic process in individual patients remains insufficiently explored. Genomic and epigenomic studies suggest that a subset of gallbladder cancers originate from biliary intraepithelial neoplasia (BilIN) precursor lesions, whereas others form independently from BilINs. Spatial transcriptomic data supporting these conclusions are missing. Moreover, multiple areas with precursor or adenocarcinoma lesions can be detected within the same pathological sample. Yet, knowledge about intra-patient variability of such lesions is lacking. METHODS To characterise the spatial transcriptomics of gallbladder cancer tumourigenesis in individual patients, we selected two patients with distinct cancer aetiology and whose samples simultaneously displayed multiple areas of normal epithelium, BilINs and adenocarcinoma. Using GeoMx digital spatial profiling, we characterised the whole transcriptome of a high number of regions of interest (ROIs) per sample in the two patients (24 and 32 ROIs respectively), with each ROI covering approximately 200 cells of normal epithelium, low-grade BilIN, high-grade BilIN or adenocarcinoma. Human gallbladder organoids and cell line-derived tumours were used to investigate the tumour-promoting role of genes. RESULTS Spatial transcriptomics revealed that each type of lesion displayed limited intra-patient transcriptomic variability. Our data further suggest that adenocarcinoma derived from high-grade BilIN in one patient and from low-grade BilIN in the other patient, with co-existing high-grade BilIN evolving via a distinct process in the latter case. The two patients displayed distinct sequences of signalling pathway activation during tumour progression, but Semaphorin 4 A (SEMA4A) expression was repressed in both patients. Using human gallbladder-derived organoids and cell line-derived tumours, we provide evidence that repression of SEMA4A promotes pseudostratification of the epithelium and enhances cell migration and survival. CONCLUSION Gallbladder adenocarcinoma can develop according to patient-specific processes, and limited intra-patient variability of precursor and cancer lesions was noticed. Our data suggest that repression of SEMA4A can promote tumour progression. They also highlight the need to gain gene expression data in addition to histological information to avoid understimating the risk of low-grade preneoplastic lesions.
Collapse
Affiliation(s)
- Sophie Pirenne
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels, B1-7503, 1200, Belgium
- Department of Imaging & Pathology, UZ Herestraat 49, Leuven, 3000, Belgium
| | - Fátima Manzano-Núñez
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels, B1-7503, 1200, Belgium
| | - Axelle Loriot
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels, B1-7503, 1200, Belgium
| | - Sabine Cordi
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels, B1-7503, 1200, Belgium
| | - Lieven Desmet
- Support en Méthodologie et Calcul Statistique, Université catholique de Louvain, Voie du Roman Pays 20, Louvain-la-Neuve, 1348, Belgium
| | - Selda Aydin
- Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels, 1200, Belgium
- Department of Pathology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, Brussels, 1200, Belgium
| | - Catherine Hubert
- Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels, 1200, Belgium
- Department of Medical Oncology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, Brussels, 1200, Belgium
| | - Sébastien Toffoli
- Institut de Pathologie et de Génétique, Avenue Georges Lemaître 25, Charleroi, 6041, Belgium
| | - Nisha Limaye
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels, B1-7503, 1200, Belgium
| | - Christine Sempoux
- Institute of Pathology, Lausanne University Hospital CHUV, University of Lausanne, Rue du Bugnon 25, Lausanne, 1011, Switzerland
| | - Mina Komuta
- Department of Pathology, School of Medicine, International University of Health and Welfare, Narita Hospital, Narita, Japan
| | - Laurent Gatto
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels, B1-7503, 1200, Belgium
| | - Frédéric P Lemaigre
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels, B1-7503, 1200, Belgium.
| |
Collapse
|
6
|
Grimsrud MM, Forster M, Goeppert B, Hemmrich-Stanisak G, Sax I, Grzyb K, Braadland PR, Charbel A, Metzger C, Albrecht T, Steiert TA, Schlesner M, Manns MP, Vogel A, Yaqub S, Karlsen TH, Schirmacher P, Boberg KM, Franke A, Roessler S, Folseraas T. Whole-exome sequencing reveals novel cancer genes and actionable targets in biliary tract cancers in primary sclerosing cholangitis. Hepatol Commun 2024; 8:e0461. [PMID: 38967597 PMCID: PMC11227357 DOI: 10.1097/hc9.0000000000000461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/13/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND People with primary sclerosing cholangitis (PSC) have a 20% lifetime risk of biliary tract cancer (BTC). Using whole-exome sequencing, we characterized genomic alterations in tissue samples from BTC with underlying PSC. METHODS We extracted DNA from formalin-fixed, paraffin-embedded tumor and paired nontumor tissue from 52 resection or biopsy specimens from patients with PSC and BTC and performed whole-exome sequencing. Following copy number analysis, variant calling, and filtering, putative PSC-BTC-associated genes were assessed by pathway analyses and annotated to targeted cancer therapies. RESULTS We identified 53 candidate cancer genes with a total of 123 nonsynonymous alterations passing filtering thresholds in 2 or more samples. Of the identified genes, 19% had not previously been implicated in BTC, including CNGA3, KRT28, and EFCAB5. Another subset comprised genes previously implicated in hepato-pancreato-biliary cancer, such as ARID2, ELF3, and PTPRD. Finally, we identified a subset of genes implicated in a wide range of cancers such as the tumor suppressor genes TP53, CDKN2A, SMAD4, and RNF43 and the oncogenes KRAS, ERBB2, and BRAF. Focal copy number variations were found in 51.9% of the samples. Alterations in potential actionable genes, including ERBB2, MDM2, and FGFR3 were identified and alterations in the RTK/RAS (p = 0.036), TP53 (p = 0.04), and PI3K (p = 0.043) pathways were significantly associated with reduced overall survival. CONCLUSIONS In this exome-wide characterization of PSC-associated BTC, we delineated both PSC-specific and universal cancer genes. Our findings provide opportunities for a better understanding of the development of BTC in PSC and could be used as a platform to develop personalized treatment approaches.
Collapse
Affiliation(s)
- Marit M. Grimsrud
- Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Benjamin Goeppert
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
- Institute of Pathology, Hospital RKH Kliniken Ludwigsburg, Ludwigsburg, Germany
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | | | - Irmi Sax
- Biomedical Informatics, Data Mining and Data Analytics, University of Augsburg, Augsburg, Germany
| | - Krzysztof Grzyb
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Peder R. Braadland
- Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Alphonse Charbel
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Carmen Metzger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Thomas Albrecht
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Tim Alexander Steiert
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Matthias Schlesner
- Biomedical Informatics, Data Mining and Data Analytics, University of Augsburg, Augsburg, Germany
| | - Michael P. Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Sheraz Yaqub
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Hepatobiliary Surgery, Oslo University Hospital, Oslo, Norway
| | - Tom H. Karlsen
- Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section for Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Kirsten M. Boberg
- Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section for Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Trine Folseraas
- Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section for Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
7
|
Boyd S, Mustamäki T, Sjöblom N, Nordin A, Tenca A, Jokelainen K, Rantapero T, Liuksiala T, Lahtinen L, Kuopio T, Kytölä S, Mäkisalo H, Färkkilä M, Arola J. NGS of brush cytology samples improves the detection of high-grade dysplasia and cholangiocarcinoma in patients with primary sclerosing cholangitis: A retrospective and prospective study. Hepatol Commun 2024; 8:e0415. [PMID: 38551383 PMCID: PMC10984659 DOI: 10.1097/hc9.0000000000000415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Biliary dysplasia, a precursor of cholangiocarcinoma (CCA), is a common complication of primary sclerosing cholangitis. Patients with high-grade dysplasia (HGD) or early CCA who have received oncological treatment are candidates for liver transplantation. The preoperative diagnosis of CCA or HGD is challenging, and the sensitivity of biliary brush cytology (BC) is limited. METHODS By using next-generation sequencing (NGS), we retrospectively analyzed archived tissue samples (n=62) obtained from explanted liver tissue and CCA samples to identify oncogenic mutations that occur during primary sclerosing cholangitis carcinogenesis. BC samples were prospectively collected from patients with primary sclerosing cholangitis (n=97) referred for endoscopic retrograde cholangiography to measure the diagnostic utility of NGS combined with BC compared with traditional cytology alone. RESULTS Mutations in KRAS, GNAS, FLT3, RNF43, TP53, ATRX, and SMAD4 were detected in archived CCA or HGD samples. KRAS, GNAS, TP53, CDKN2A, FBXW7, BRAF, and ATM mutations were detected in prospectively collected brush samples from patients with histologically verified CCA or HGD. One patient with low-grade dysplasia in the explanted liver had KRAS and GNAS mutations in brush sample. No mutations were observed in brush samples or archived tissues in liver transplantation cases without biliary neoplasia. While KRAS mutations are common in biliary neoplasms, they were also observed in patients without biliary neoplasia during surveillance. CONCLUSIONS In summary, NGS of BC samples increased the sensitivity of detecting biliary neoplasia compared with traditional cytology. Performing NGS on BC samples may help diagnose HGD or early CCA, benefiting the timing of liver transplantation.
Collapse
Affiliation(s)
- Sonja Boyd
- Department of Pathology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Taru Mustamäki
- Department of Pathology, Hospital Nova of Central Finland University of Jyväskylä, Jyväskylä, Finland
| | - Nelli Sjöblom
- Department of Pathology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Arno Nordin
- Department of Liver and Transplantation Surgery, Helsinki University Hospital, University of Helsinki, Finland
| | - Andrea Tenca
- Department of Gastroenterology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Kalle Jokelainen
- Department of Gastroenterology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | | | | | - Laura Lahtinen
- Department of Pathology, Hospital Nova of Central Finland University of Jyväskylä, Jyväskylä, Finland
| | - Teijo Kuopio
- Department of Pathology, Hospital Nova of Central Finland University of Jyväskylä, Jyväskylä, Finland
| | - Soili Kytölä
- Department of Genetics, Helsinki University Hospital, University of Helsinki, Finland
| | - Heikki Mäkisalo
- Department of Liver and Transplantation Surgery, Helsinki University Hospital, University of Helsinki, Finland
| | - Martti Färkkilä
- Department of Gastroenterology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Johanna Arola
- Department of Pathology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Catanzaro E, Gringeri E, Burra P, Gambato M. Primary Sclerosing Cholangitis-Associated Cholangiocarcinoma: From Pathogenesis to Diagnostic and Surveillance Strategies. Cancers (Basel) 2023; 15:4947. [PMID: 37894314 PMCID: PMC10604939 DOI: 10.3390/cancers15204947] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the most common malignancy in patients with primary sclerosing cholangitis (PSC), accounting for 2-8% of cases and being the leading cause of death in these patients. The majority of PSC-associated CCAs (PSC-CCA) develop within the first few years after PSC diagnosis. Older age and male sex, as well as concomitant inflammatory bowel disease (IBD) or high-grade biliary stenosis, are some of the most relevant risk factors. A complex combination of molecular mechanisms involving inflammatory pathways, direct cytopathic damage, and epigenetic and genetic alterations are involved in cholangiocytes carcinogenesis. The insidious clinical presentation makes early detection difficult, and the integration of biochemical, radiological, and histological features does not always lead to a definitive diagnosis of PSC-CCA. Surveillance is mandatory, but current guideline strategies failed to improve early detection and consequently a higher patient survival rate. MicroRNAs (miRNAs), gene methylation, proteomic and metabolomic profile, and extracellular vesicle components are some of the novel biomarkers recently applied in PSC-CCA detection with promising results. The integration of these new molecular approaches in PSC diagnosis and monitoring could contribute to new diagnostic and surveillance strategies.
Collapse
Affiliation(s)
- Elisa Catanzaro
- Gastroenterology, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
- Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| | - Enrico Gringeri
- Hepatobiliary Surgery and Liver Transplantation Center, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| | - Patrizia Burra
- Gastroenterology, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
- Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| | - Martina Gambato
- Gastroenterology, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
- Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| |
Collapse
|
9
|
Assis DN, Bowlus CL. Recent Advances in the Management of Primary Sclerosing Cholangitis. Clin Gastroenterol Hepatol 2023; 21:2065-2075. [PMID: 37084929 DOI: 10.1016/j.cgh.2023.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by fibroinflammatory damage to the biliary tree, typically in the setting of inflammatory bowel disease, with an increased risk of liver failure and cholangiocarcinoma. A complex pathophysiology, heterogeneity in clinical features, and the rare nature of the disease have contributed to the lack of effective therapy to date. However, recent innovations in the characterization and prognostication of patients with PSC, in addition to new tools for medical management and emerging pharmacologic agents, give rise to the potential for meaningful progress in the next several years. This review summarizes current concepts in PSC and highlights particular areas in need of further study.
Collapse
|
10
|
Calvisi DF, Boulter L, Vaquero J, Saborowski A, Fabris L, Rodrigues PM, Coulouarn C, Castro RE, Segatto O, Raggi C, van der Laan LJW, Carpino G, Goeppert B, Roessler S, Kendall TJ, Evert M, Gonzalez-Sanchez E, Valle JW, Vogel A, Bridgewater J, Borad MJ, Gores GJ, Roberts LR, Marin JJG, Andersen JB, Alvaro D, Forner A, Banales JM, Cardinale V, Macias RIR, Vicent S, Chen X, Braconi C, Verstegen MMA, Fouassier L. Criteria for preclinical models of cholangiocarcinoma: scientific and medical relevance. Nat Rev Gastroenterol Hepatol 2023; 20:462-480. [PMID: 36755084 DOI: 10.1038/s41575-022-00739-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/10/2023]
Abstract
Cholangiocarcinoma (CCA) is a rare malignancy that develops at any point along the biliary tree. CCA has a poor prognosis, its clinical management remains challenging, and effective treatments are lacking. Therefore, preclinical research is of pivotal importance and necessary to acquire a deeper understanding of CCA and improve therapeutic outcomes. Preclinical research involves developing and managing complementary experimental models, from in vitro assays using primary cells or cell lines cultured in 2D or 3D to in vivo models with engrafted material, chemically induced CCA or genetically engineered models. All are valuable tools with well-defined advantages and limitations. The choice of a preclinical model is guided by the question(s) to be addressed; ideally, results should be recapitulated in independent approaches. In this Consensus Statement, a task force of 45 experts in CCA molecular and cellular biology and clinicians, including pathologists, from ten countries provides recommendations on the minimal criteria for preclinical models to provide a uniform approach. These recommendations are based on two rounds of questionnaires completed by 35 (first round) and 45 (second round) experts to reach a consensus with 13 statements. An agreement was defined when at least 90% of the participants voting anonymously agreed with a statement. The ultimate goal was to transfer basic laboratory research to the clinics through increased disease understanding and to develop clinical biomarkers and innovative therapies for patients with CCA.
Collapse
Affiliation(s)
- Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Scottish Centre, Institute of Genetics and Cancer, Edinburgh, UK
| | - Javier Vaquero
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Pedro M Rodrigues
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Cédric Coulouarn
- Inserm, Univ Rennes 1, OSS (Oncogenesis Stress Signalling), UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Oreste Segatto
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Benjamin Goeppert
- Institute of Pathology and Neuropathology, Ludwigsburg, Germany
- Institute of Pathology, Kantonsspital Baselland, Liestal, Switzerland
| | - Stephanie Roessler
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Timothy J Kendall
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Ester Gonzalez-Sanchez
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Mitesh J Borad
- Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, AZ, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jose J G Marin
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Alejandro Forner
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Liver Unit, Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Jesus M Banales
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Rocio I R Macias
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Silve Vicent
- University of Navarra, Centre for Applied Medical Research, Program in Solid Tumours, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, Instituto de Salud Carlos III), Madrid, Spain
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Chiara Braconi
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Laura Fouassier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France.
| |
Collapse
|
11
|
Chen H, Yang W, Ji Z. Machine learning-based identification of tumor-infiltrating immune cell-associated model with appealing implications in improving prognosis and immunotherapy response in bladder cancer patients. Front Immunol 2023; 14:1171420. [PMID: 37063886 PMCID: PMC10102422 DOI: 10.3389/fimmu.2023.1171420] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundImmune cells are crucial components of the tumor microenvironment (TME) and regulate cancer cell development. Nevertheless, the clinical implications of immune cell infiltration-related mRNAs for bladder cancer (BCa) are still unclear.MethodsA 10-fold cross-validation framework with 101 combinations of 10 machine-learning algorithms was employed to develop a consensus immune cell infiltration-related signature (IRS). The predictive performance of IRS in terms of prognosis and immunotherapy was comprehensively evaluated.ResultsThe IRS demonstrated high accuracy and stable performance in prognosis prediction across multiple datasets including TCGA-BLCA, eight independent GEO datasets, our in-house cohort (PUMCH_Uro), and thirteen immune checkpoint inhibitors (ICIs) cohorts. Additionally, IRS was superior to traditional clinicopathological features (e.g., stage and grade) and 94 published signatures. Furthermore, IRS was an independent risk factor for overall survival in TCGA-BLCA and several GEO datasets, and for recurrence-free survival in PUMCH_Uro. In the PUMCH_Uro cohort, patients in the high-IRS group were characterized by upregulated CD8A and PD-L1 and TME of inflamed and immunosuppressive phenotypes. As predicted, these patients should benefit from ICI therapy and chemotherapy. Furthermore, in the ICI cohorts, the high-IRS group was related to a favorable prognosis and responders have dramatically higher IRS compared to non-responders.ConclusionsGenerally, these indicators suggested the promising application of IRS in urological practices for the early identification of high-risk patients and potential candidates for ICI application to prolong the survival of individual BCa patients.
Collapse
|
12
|
Kamp EJCA, Dinjens WNM, van Velthuysen MLF, de Jonge PJF, Bruno MJ, Peppelenbosch MP, de Vries AC. Next-generation sequencing mutation analysis on biliary brush cytology for differentiation of benign and malignant strictures in primary sclerosing cholangitis. Gastrointest Endosc 2023; 97:456-465.e6. [PMID: 36252869 DOI: 10.1016/j.gie.2022.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND AIMS Differentiation of benign and malignant biliary tract strictures on brush material remains highly challenging but is essential for adequate clinical management of patients with primary sclerosing cholangitis (PSC). In this case-control study, biliary brush cytology samples from PSC patients with cholangiocarcinoma (PSC-CCA) were compared with samples from PSC patients without CCA (PSC-control subjects) using next-generation sequencing (NGS). METHODS Cells on archived slides were dissected for DNA extraction. NGS was performed using a gene panel containing 242 hotspots in 14 genes. Repeated brush samples from the same patient were analyzed to study the consistency of NGS results. In PSC-CCA cases that underwent surgical resection, molecular aberrations in brush samples were compared with NGS data from subsequent resection specimens. RESULTS Forty patients (20 PSC-CCA and 20 PSC-control subjects) were included. The gene panel detected 22 mutations in 15 of 20 PSC-CCA brush samples, including mutations in TP53 (8 brush samples), K-ras (5), G-nas (3), ERBB2 (1), APC (1), PIK3CA (1), and SMAD4 (1). One G-nas and 3 K-ras mutations were found in 3 of 20 PSC-control brush samples. The sensitivity of the NGS panel was 75% (95% confidence interval, 62%-80%) and specificity 85% (95% confidence interval, 64%-95%). Repeated brush samples showed identical mutations in 6 of 9 cases. Three repeated brush samples demonstrated additional mutations as compared with the first brush sample. In 6 of 7 patients, mutations in brush samples were identical to mutations in subsequent resection specimens. CONCLUSIONS NGS mutation analysis of PSC brush cytology detects oncogenic mutations with high sensitivity and specificity and seems to constitute a valuable adjunct to cytologic assessment of brush samples.
Collapse
Affiliation(s)
- Eline J C A Kamp
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Winand N M Dinjens
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Pieter Jan F de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marco J Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Annemarie C de Vries
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW This review focuses on recent developments of histopathology in the most common biliary disorders affecting adults. The reader is referred to other sources for the specialized topics on paediatric populations and post liver transplantation. RECENT FINDINGS Fibrosis stage at diagnosis is an independent predictor of liver transplant-free survival in patients with primary biliary cholangitis. Immunohistochemistry might have an important role in predicting response to treatment. New histological scoring systems with excellent correlation with long-term clinical outcomes are being developed in primary sclerosing cholangitis (PSC). Quantification of fibrosis with collagen proportionate area can improve risk stratification and could be particularly useful to assess treatment response in PSC.Gene sequencing on cytology and intrabiliary biopsy may improve risk stratification for cholangiocarcinoma. Genetic variants of ATP8B1, ABCB11 and ABCB4 are relatively common in adults with cholestatic liver disease. New causes of cholestatic liver injury have recently been described. SUMMARY Histology is often not necessary for the diagnosis of biliary disease, but can provide important information that may assist the clinician in patients' management. Histopathology remains crucial to confirm a diagnosis of cholangiocarcinoma, and to identify the pattern of biliary injury in immune-mediated cholangiopathies and rarer pathological entities.
Collapse
Affiliation(s)
- Francesca Saffioti
- Oxford University Hospitals NHS Foundation Trust, Oxford.,UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London
| | - Rodrigo Vieira Motta
- Nuffield Department of Medicine, Investigative Medicine, University of Oxford, Oxford
| | - Alberto Quaglia
- Royal Free London NHS Foundation Trust and UCL Cancer Institute, London, UK
| |
Collapse
|