1
|
Ucci A, Giacchi L, Rucci N. Primary Bone Tumors and Breast Cancer-Induced Bone Metastases: In Vivo Animal Models and New Alternative Approaches. Biomedicines 2024; 12:2451. [PMID: 39595017 PMCID: PMC11591690 DOI: 10.3390/biomedicines12112451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Bone is the preferential site of metastasis for the most common tumors, including breast cancer. On the other hand, osteosarcoma is the primary bone cancer that most commonly occurs and causes bone cancer-related deaths in children. Several treatment strategies have been developed so far, with little or no efficacy for patient survival and with the development of side effects. Therefore, there is an urgent need to develop more effective therapies for bone primary tumors and bone metastatic disease. This almost necessarily requires the use of in vivo animal models that better mimic human pathology and at the same time follow the ethical principles for the humane use of animal testing. In this review we aim to illustrate the main and more suitable in vivo strategies employed to model bone metastases and osteosarcoma. We will also take a look at the recent technologies implemented for a partial replacement of animal testing.
Collapse
Affiliation(s)
| | | | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.U.); (L.G.)
| |
Collapse
|
2
|
Lascelles BDX, Brown DC, Conzemius MG, Gill M, Oshinsky ML, Sharkey M. The beneficial role of companion animals in translational pain research. FRONTIERS IN PAIN RESEARCH 2022; 3:1002204. [PMID: 36133153 PMCID: PMC9483146 DOI: 10.3389/fpain.2022.1002204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
The use of spontaneous painful disease in companion pet animals has been highlighted as one of the changes that could be made to help improve translation of basic science to new therapeutics, acting as a bridge between preclinical and clinical studies, with the goal of accelerating the approval of new therapeutics. This review focuses on the utility of companion pet dogs for translational research by reviewing what outcome measures can be measured, and importantly, the relevance of these outcome measures to human translational research. It also details the practical considerations involved in incorporating companion dogs into human therapeutic development.
Collapse
Affiliation(s)
- B. Duncan X. Lascelles
- Translational Research in Pain, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Pain Research and Education Center, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Thurston Arthritis Centre, UNC School of Medicine, Chapel Hill, NC, United States
- Center for Translational Pain Research, Department of Anesthesiology, Duke University, Durham, NC, United States
- Correspondence: B. Duncan X. Lascelles
| | - Dottie C. Brown
- Global Efficacy & Model Development, Elanco Animal Health, Greenfield, IN, United States
| | - Michael G. Conzemius
- Clinical Investigation Center, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Marie Gill
- National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD, United States
| | - Michael L. Oshinsky
- National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD, United States
| | - Michelle Sharkey
- Center for Veterinary Medicine Food and Drug Administration, Rockville, MD, United States
| |
Collapse
|
3
|
Ambrosio N, Voci S, Gagliardi A, Palma E, Fresta M, Cosco D. Application of Biocompatible Drug Delivery Nanosystems for the Treatment of Naturally Occurring Cancer in Dogs. J Funct Biomater 2022; 13:jfb13030116. [PMID: 35997454 PMCID: PMC9397006 DOI: 10.3390/jfb13030116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Cancer is a common disease in dogs, with a growing incidence related to the age of the animal. Nanotechnology is being employed in the veterinary field in the same manner as in human therapy. Aim: This review focuses on the application of biocompatible nanocarriers for the treatment of canine cancer, paying attention to the experimental studies performed on dogs with spontaneously occurring cancer. Methods: The most important experimental investigations based on the use of lipid and non-lipid nanosystems proposed for the treatment of canine cancer, such as liposomes and polymeric nanoparticles containing doxorubicin, paclitaxel and cisplatin, are described and their in vivo fate and antitumor features discussed. Conclusions: Dogs affected by spontaneous cancers are useful models for evaluating the efficacy of drug delivery systems containing antitumor compounds.
Collapse
|
4
|
Hendricks-Wenger A, Arnold L, Gannon J, Simon A, Singh N, Sheppard H, Nagai-Singer MA, Imran KM, Lee K, Clark-Deener S, Byron C, Edwards MR, Larson MM, Rossmeisl JH, Coutermarsh-Ott SL, Eden K, Dervisis N, Klahn S, Tuohy J, Allen IC, Vlaisavljevich E. Histotripsy Ablation in Preclinical Animal Models of Cancer and Spontaneous Tumors in Veterinary Patients: A Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:5-26. [PMID: 34478363 PMCID: PMC9284566 DOI: 10.1109/tuffc.2021.3110083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
New therapeutic strategies are direly needed in the fight against cancer. Over the last decade, several tumor ablation strategies have emerged as stand-alone or combination therapies. Histotripsy is the first completely noninvasive, nonthermal, and nonionizing tumor ablation method. Histotripsy can produce consistent and rapid ablations, even near critical structures. Additional benefits include real-time image guidance, high precision, and the ability to treat tumors of any predetermined size and shape. Unfortunately, the lack of clinically and physiologically relevant preclinical cancer models is often a significant limitation with all focal tumor ablation strategies. The majority of studies testing histotripsy for cancer treatment have focused on small animal models, which have been critical in moving this field forward and will continue to be essential for providing mechanistic insight. While these small animal models have notable translational value, there are significant limitations in terms of scale and anatomical relevance. To address these limitations, a diverse range of large animal models and spontaneous tumor studies in veterinary patients have emerged to complement existing rodent models. These models and veterinary patients are excellent at providing realistic avenues for developing and testing histotripsy devices and techniques designed for future use in human patients. Here, we provide a review of animal models used in preclinical histotripsy studies and compare histotripsy ablation in these models using a series of original case reports across a broad spectrum of preclinical animal models and spontaneous tumors in veterinary patients.
Collapse
|
5
|
Fleyshman DI, Wakshlag JJ, Huson HJ, Loftus JP, Olby NJ, Brodsky L, Gudkov AV, Andrianova EL. Development of infrastructure for a systemic multidisciplinary approach to study aging in retired sled dogs. Aging (Albany NY) 2021; 13:21814-21837. [PMID: 34587118 PMCID: PMC8507265 DOI: 10.18632/aging.203600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022]
Abstract
Canines represent a valuable model for mammalian aging studies as large animals with short lifespans, allowing longitudinal analyses within a reasonable time frame. Moreover, they develop a spectrum of aging-related diseases resembling that of humans, are exposed to similar environments, and have been reasonably well studied in terms of physiology and genetics. To overcome substantial variables that complicate studies of privately-owned household dogs, we have focused on a more uniform population composed of retired Alaskan sled dogs that shared similar lifestyles, including exposure to natural stresses, and are less prone to breed-specific biases than a pure breed population. To reduce variability even further, we have collected a population of 103 retired (8-11 years-old) sled dogs from multiple North American kennels in a specialized research facility named Vaika. Vaika dogs are maintained under standardized conditions with professional veterinary care and participate in a multidisciplinary program to assess the longitudinal dynamics of aging. The established Vaika infrastructure enables periodic gathering of quantitative data reflecting physical, physiological, immunological, neurological, and cognitive decline, as well as monitoring of aging-associated genetic and epigenetic alterations occurring in somatic cells. In addition, we assess the development of age-related diseases such as arthritis and cancer. In-depth data analysis, including artificial intelligence-based approaches, will build a comprehensive, integrated model of canine aging and potentially identify aging biomarkers that will allow use of this model for future testing of antiaging therapies.
Collapse
Affiliation(s)
| | - Joseph J Wakshlag
- Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Heather J Huson
- Cornell University College of Agriculture and Life Sciences, Ithaca, NY 14853, USA
| | - John P Loftus
- Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Natasha J Olby
- North Carolina State University College of Veterinary Medicine, Raleigh, NC 27606, USA
| | - Leonid Brodsky
- Tauber Bioinformatic Research Center, University of Haifa, Haifa, Israel
| | - Andrei V Gudkov
- Vaika, Inc., East Aurora, NY 14052, USA.,Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | | |
Collapse
|
6
|
Yu X, Yustein JT, Xu J. Research models and mesenchymal/epithelial plasticity of osteosarcoma. Cell Biosci 2021; 11:94. [PMID: 34022967 PMCID: PMC8141200 DOI: 10.1186/s13578-021-00600-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
Most osteosarcomas (OSs) develop from mesenchymal cells at the bone with abnormal growth in young patients. OS has an annual incidence of 3.4 per million people and a 60-70% 5-year surviving rate. About 20% of OS patients have metastasis at diagnosis, and only 27% of patients with metastatic OS survive longer than 5 years. Mutation of tumor suppressors RB1, TP53, REQL4 and INK4a and/or deregulation of PI3K/mTOR, TGFβ, RANKL/NF-κB and IGF pathways have been linked to OS development. However, the agents targeting these pathways have yielded disappointing clinical outcomes. Surgery and chemotherapy remain the main treatments of OS. Recurrent and metastatic OSs are commonly resistant to these therapies. Spontaneous canine models, carcinogen-induced rodent models, transgenic mouse models, human patient-derived xenograft models, and cell lines from animal and human OSs have been developed for studying the initiation, growth and progression of OS and testing candidate drugs of OS. The cell plasticity regulated by epithelial-to-mesenchymal transition transcription factors (EMT-TFs) such as TWIST1, SNAIL, SLUG, ZEB1 and ZEB2 plays an important role in maintenance of the mesenchymal status and promotion of cell invasion and metastasis of OS cells. Multiple microRNAs including miR-30/9/23b/29c/194/200, proteins including SYT-SSX1/2 fusion proteins and OVOL2, and other factors that inhibit AMF/PGI and LRP5 can suppress either the expression or activity of EMT-TFs to increase epithelial features and inhibit OS metastasis. Further understanding of the molecular mechanisms that regulate OS cell plasticity should provide potential targets and therapeutic strategies for improving OS treatment.
Collapse
Affiliation(s)
- Xiaobin Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jason T Yustein
- Department of Pediatrics, Texas Children's Cancer and Hematology Center, and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Surgical Advances in Osteosarcoma. Cancers (Basel) 2021; 13:cancers13030388. [PMID: 33494243 PMCID: PMC7864509 DOI: 10.3390/cancers13030388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Osteosarcoma (OS) is the most common bone cancer in children. OS most commonly arises in the legs, but can arise in any bone, including the spine, head or neck. Along with chemotherapy, surgery is a mainstay of OS treatment and in the 1990s, surgeons began to shift from amputation to limb-preserving surgery. Since then, improvements in imaging, surgical techniques and implant design have led to improvements in functional outcomes without compromising on the cancer outcomes for these patients. This paper summarises these advances, along with a brief discussion of future technologies currently in development. Abstract Osteosarcoma (OS) is the most common primary bone cancer in children and, unfortunately, is associated with poor survival rates. OS most commonly arises around the knee joint, and was traditionally treated with amputation until surgeons began to favour limb-preserving surgery in the 1990s. Whilst improving functional outcomes, this was not without problems, such as implant failure and limb length discrepancies. OS can also arise in areas such as the pelvis, spine, head, and neck, which creates additional technical difficulty given the anatomical complexity of the areas. We reviewed the literature and summarised the recent advances in OS surgery. Improvements have been made in many areas; developments in pre-operative imaging technology have allowed improved planning, whilst the ongoing development of intraoperative imaging techniques, such as fluorescent dyes, offer the possibility of improved surgical margins. Technological developments, such as computer navigation, patient specific instruments, and improved implant design similarly provide the opportunity to improve patient outcomes. Going forward, there are a number of promising avenues currently being pursued, such as targeted fluorescent dyes, robotics, and augmented reality, which bring the prospect of improving these outcomes further.
Collapse
|
8
|
Dewhurst RM, Scalzone A, Buckley J, Mattu C, Rankin KS, Gentile P, Ferreira AM. Development of Natural-Based Bone Cement for a Controlled Doxorubicin-Drug Release. Front Bioeng Biotechnol 2020; 8:754. [PMID: 32733869 PMCID: PMC7363953 DOI: 10.3389/fbioe.2020.00754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma (OS) accounts for 60% of all global bone cancer diagnoses. Intravenous administration of Doxorubicin Hydrochloride (DOXO) is the current form of OS treatment, however, systemic delivery has been linked to the onset of DOXO induced cardiomyopathy. Biomaterials including calcium phosphate cements (CPCs) and nanoparticles (NPs) have been tested as localized drug delivery scaffolds for OS cells. However, the tumor microenvironment is critical in cancer progression, with mesenchymal stem cells (MSCs) thought to promote OS metastasis and drug resistance. The extent of MSC assisted survival of OS cells in response to DOXO delivered by CPCs is unknown. In this study, we aimed at investigating the effect of DOXO release from a new formulation of calcium phosphate-based bone cement on the viability of OS cells cocultured with hMSC in vitro. NPs made of PLGA were loaded with DOXO and incorporated in the formulated bone cement to achieve local drug release. The inclusion of PLGA-DOXO NPs into CPCs was also proven to increase the levels of cytotoxicity of U2OS cells in mono- and coculture after 24 and 72 h. Our results demonstrate that a more effective localized DOXO delivery can be achieved via the use of CPCs loaded with PLGA-DOXO NPs compared to CPCs loaded with DOXO, by an observed reduction in metabolic activity of U2OS cells in indirect coculture with hMSCs. The presence of hMSCs offer a degree of DOXO resistance in U2OS cells cultured on PLGA-DOXO NP bone cements. The consideration of the tumor microenvironment via the indirect inclusion of hMSCs in this study can act as a starting point for future direct coculture and in vivo investigations.
Collapse
Affiliation(s)
- Rebecca Marie Dewhurst
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Annachiara Scalzone
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph Buckley
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Clara Mattu
- Department of Mechanical and Aerospace, Politecnico di Torino, Turin, Italy
| | - Kenneth S Rankin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
9
|
De Vico G, Martano M, Maiolino P, Carella F, Leonardi L. Expression of transferrin receptor-1 (TFR-1) in canine osteosarcomas. Vet Med Sci 2020; 6:272-276. [PMID: 32239803 PMCID: PMC7397888 DOI: 10.1002/vms3.258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/22/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Due to high rates of proliferation and DNA synthesis, neoplastic cells have higher requirements of iron than normal cells. For that reason, neoplastic cells have remodelled iron metabolism pathways, over‐expressing genes encoding for iron uptake proteins, among which Transferrin Receptor‐1 (TFR‐1). Accumulating evidence has proven that overexpression of TFR‐1 and high Iron concentration, are both widespread condition of cancer cells, both essential to tumour onset and progression. We studied TFR‐1 and PCNA immunohistochemical expression in fifteen (15) Canine osteoblastic osteosarcomas (COS). After immunohistochemical staining, counting of TFR‐1 positive cells by two independent observers showed that 85%–95% of neoplastic cells were strongly labelled at cytoplasmic level by anti‐TFR‐1 antibody in all examined COS. Furthermore, 70%–80% of neoplastic cells were positively labelled at the nuclear level by PCNA. Surprisingly, about 100% of intratumour vascular endothelial cells were also positive, whereas extratumour vascular endothelial cells were negative. The latter is an interesting finding, as TFR‐1 is usually not expressed in normal vasculature, with the exception of normal brain vascular endothelium, where it allows transport of transferrin, and thus iron, into tissues, suggesting a similar function here to support cancer growth. The early results presented highlight the relevance of TFR‐1 expression in canine OS, suggesting therapies involving both TFR‐1 and Iron metabolisms in dogs with osteosarcoma should be developed.
Collapse
Affiliation(s)
- Gionata De Vico
- Department of Biology, University of Naples Federico II, Complesso universitario di Monte S. Angelo, Naples, Italy
| | - Manuela Martano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Paola Maiolino
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Francesca Carella
- Department of Biology, University of Naples Federico II, Complesso universitario di Monte S. Angelo, Naples, Italy
| | - Leonardo Leonardi
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
10
|
Fan TM, Roberts RD, Lizardo MM. Understanding and Modeling Metastasis Biology to Improve Therapeutic Strategies for Combating Osteosarcoma Progression. Front Oncol 2020; 10:13. [PMID: 32082995 PMCID: PMC7006476 DOI: 10.3389/fonc.2020.00013] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is a malignant primary tumor of bone, arising from transformed progenitor cells with osteoblastic differentiation and osteoid production. While categorized as a rare tumor, most patients diagnosed with osteosarcoma are adolescents in their second decade of life and underscores the potential for life changing consequences in this vulnerable population. In the setting of localized disease, conventional treatment for osteosarcoma affords a cure rate approaching 70%; however, survival for patients suffering from metastatic disease remain disappointing with only 20% of individuals being alive past 5 years post-diagnosis. In patients with incurable disease, pulmonary metastases remain the leading cause for osteosarcoma-associated mortality; yet identifying new strategies for combating metastatic progression remains at a scientific and clinical impasse, with no significant advancements for the past four decades. While there is resonating clinical urgency for newer and more effective treatment options for managing osteosarcoma metastases, the discovery of druggable targets and development of innovative therapies for inhibiting metastatic progression will require a deeper and more detailed understanding of osteosarcoma metastasis biology. Toward the goal of illuminating the processes involved in cancer metastasis, a convergent science approach inclusive of diverse disciplines spanning the biology and physical science domains can offer novel and synergistic perspectives, inventive, and sophisticated model systems, and disruptive experimental approaches that can accelerate the discovery and characterization of key processes operative during metastatic progression. Through the lens of trans-disciplinary research, the field of comparative oncology is uniquely positioned to advance new discoveries in metastasis biology toward impactful clinical translation through the inclusion of pet dogs diagnosed with metastatic osteosarcoma. Given the spontaneous course of osteosarcoma development in the context of real-time tumor microenvironmental cues and immune mechanisms, pet dogs are distinctively valuable in translational modeling given their faithful recapitulation of metastatic disease progression as occurs in humans. Pet dogs can be leveraged for the exploration of novel therapies that exploit tumor cell vulnerabilities, perturb local microenvironmental cues, and amplify immunologic recognition. In this capacity, pet dogs can serve as valuable corroborative models for realizing the science and best clinical practices necessary for understanding and combating osteosarcoma metastases.
Collapse
Affiliation(s)
- Timothy M Fan
- Comparative Oncology Research Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ryan D Roberts
- Center for Childhood Cancer and Blood Disorders, Abigail Wexner Research Institute at Nationwide Children's Hospital, The James Comprehensive Cancer Center at The Ohio State University, Columbus, OH, United States
| | - Michael M Lizardo
- Poul Sorensen Laboratory, Department of Molecular Oncology, BC Cancer, Part of the Provincial Health Services Authority in British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Duckett MM, Phung SK, Nguyen L, Khammanivong A, Dickerson E, Dusenbery K, Lawrence J. The adrenergic receptor antagonists propranolol and carvedilol decrease bone sarcoma cell viability and sustained carvedilol reduces clonogenic survival and increases radiosensitivity in canine osteosarcoma cells. Vet Comp Oncol 2019; 18:128-140. [PMID: 31778284 DOI: 10.1111/vco.12560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/28/2019] [Accepted: 11/19/2019] [Indexed: 11/30/2022]
Abstract
Adrenergic receptor (AR) expression has been demonstrated at several sites of primary and metastatic tumour growth and may influence proliferation, survival, metastasis and angiogenesis. AR antagonists like propranolol and carvedilol inhibit proliferation, induce apoptosis and synergize with chemotherapy agents in some cancers. Radiation resistance is mediated in many cells by upregulation of pro-survival pathways, which may be influenced by ARs. Studies evaluating AR antagonists combined with radiation are limited. The purpose of this study was to determine the effect of propranolol and carvedilol on viability and radiosensitivity in sarcoma cell lines. The hypothesis was that propranolol and carvedilol would increase radiosensitivity in four primary bone sarcoma cell lines. Single agent propranolol or carvedilol inhibited cell viability in all cell lines in a concentration-dependent manner. The mean inhibitory concentrations (IC50 ) for carvedilol were approximately 4-fold lower than propranolol and may be clinically relevant in vivo. Immunoblot analysis confirmed AR expression in both human and canine sarcoma cell lines; however, there was no correlation between baseline AR protein expression and radiosensitivity. Short duration treatment with carvedilol and propranolol did not significantly affect clonogenic survival. Prolonged exposure to propranolol and carvedilol significantly decreased the surviving fraction of canine osteosarcoma cells after 3Gy radiation. Based on our results and possible in vivo activity in dogs, further studies investigating the effects of carvedilol on sarcoma are warranted.
Collapse
Affiliation(s)
- Megan M Duckett
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
| | - Shee Kwan Phung
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
| | - Linh Nguyen
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
| | - Ali Khammanivong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota.,Masonic Cancer Center, Masonic Cancer Research Building, University of Minnesota, Minneapolis, Minnesota
| | - Erin Dickerson
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota.,Masonic Cancer Center, Masonic Cancer Research Building, University of Minnesota, Minneapolis, Minnesota
| | - Kathryn Dusenbery
- Department of Radiation Oncology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Jessica Lawrence
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota.,Masonic Cancer Center, Masonic Cancer Research Building, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
12
|
Wilson-Robles H, Franks K, Pool R, Miller T. Characterization of five newly derived canine osteosarcoma cell lines. BMC Vet Res 2019; 15:357. [PMID: 31640712 PMCID: PMC6805340 DOI: 10.1186/s12917-019-2099-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/20/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Canine and human osteosarcomas (OS) are notably similar and have a high rate of metastasis. There is a poor understanding of the tumor development process, predisposing causes, and varying levels of aggression among different cell lines. By characterizing newly developed canine osteosarcoma cell lines, treatments for people and pets can be developed. Of the seven subtypes of OS, three are represented in this group: osteoblastic (the most common), fibroblastic, and giant cell variant. To our knowledge, there are no other giant cell variant canine OS cell lines in the published literature and only one canine fibroblastic osteosarcoma cell line. Understanding the differences between the histologic subtypes in dogs will help to guide comparative research. RESULTS Alkaline phosphatase expression was ubiquitous in all cell lines tested and invasiveness was variable between the cell lines tested. Invasiveness and oxidative damage were not correlated with in vivo growth rates, where TOT grew the fastest and had the higher percentage of mice with metastatic lesions. TOL was determined to be the most chemo-resistant during cisplatin chemotherapy while TOM was the most chemo-sensitive. CONCLUSIONS Further comparisons and studies using these cell lines may identify a variety of characteristics valuable for understanding the disease process and developing treatments for osteosarcoma in both species. Some of this data was presented as a poster by KMF at the August 5th, 2017 National Veterinary Scholars Program in Bethesda, MA. Characterization of 5 newly generated canine osteosarcoma cell lines. Kelli Franks, Tasha Miller, Heather Wilson-Robles.
Collapse
Affiliation(s)
| | - Kelli Franks
- 660 Raymond Stotzer Pkwy, College Station, TX 77845 USA
| | - Roy Pool
- 660 Raymond Stotzer Pkwy, College Station, TX 77845 USA
| | - Tasha Miller
- 660 Raymond Stotzer Pkwy, College Station, TX 77845 USA
| |
Collapse
|
13
|
Ostrander EA, Wang GD, Larson G, vonHoldt BM, Davis BW, Jagannathan V, Hitte C, Wayne RK, Zhang YP. Dog10K: an international sequencing effort to advance studies of canine domestication, phenotypes and health. Natl Sci Rev 2019; 6:810-824. [PMID: 31598383 PMCID: PMC6776107 DOI: 10.1093/nsr/nwz049] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/14/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
Dogs are the most phenotypically diverse mammalian species, and they possess more known heritable disorders than any other non-human mammal. Efforts to catalog and characterize genetic variation across well-chosen populations of canines are necessary to advance our understanding of their evolutionary history and genetic architecture. To date, no organized effort has been undertaken to sequence the world's canid populations. The Dog10K Consortium (http://www.dog10kgenomes.org) is an international collaboration of researchers from across the globe who will generate 20× whole genomes from 10 000 canids in 5 years. This effort will capture the genetic diversity that underlies the phenotypic and geographical variability of modern canids worldwide. Breeds, village dogs, niche populations and extended pedigrees are currently being sequenced, and de novo assemblies of multiple canids are being constructed. This unprecedented dataset will address the genetic underpinnings of domestication, breed formation, aging, behavior and morphological variation. More generally, this effort will advance our understanding of human and canine health.
Collapse
Affiliation(s)
- Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford OX1 3TG, UK
| | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Brian W Davis
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77840, USA
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern CH-3001, Switzerland
| | | | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
14
|
Singe nucleotide polymorphisms in osteosarcoma: Pathogenic effect and prognostic significance. Exp Mol Pathol 2019; 106:63-77. [PMID: 30528563 DOI: 10.1016/j.yexmp.2018.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/14/2018] [Accepted: 12/05/2018] [Indexed: 12/26/2022]
|
15
|
Heishima K, Meuten T, Yoshida K, Mori T, Thamm DH. Prognostic significance of circulating microRNA-214 and -126 in dogs with appendicular osteosarcoma receiving amputation and chemotherapy. BMC Vet Res 2019; 15:39. [PMID: 30683101 PMCID: PMC6347759 DOI: 10.1186/s12917-019-1776-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dogs with appendicular osteosarcoma (OSA) receiving standard amputation and adjuvant chemotherapy demonstrate variable outcome with treatment; however, additional biomarkers would be helpful for predicting their outcome. In the present study, we assessed the potential of circulating microRNA-214 (miR-214) and - 126 (miR-126) to predict time to metastasis and death in dogs with OSA treated with amputation and chemotherapy. RESULTS Seventy-six dogs that fully met inclusion criteria were included in the analysis. The criteria included (1) a diagnosis of appendicular OSA without metastases at diagnosis, (2) treatment by amputation and chemotherapy using carboplatin, doxorubicin, cisplatin, or a combination of these agents. Circulating miR-214 and -126 levels at the time before treatment were measured by using RT-qPCR. High circulating miR-214 and serum alkaline phosphatase (ALP) significantly predicted short disease-free survival (DFS) and overall survival (OS). Conversely, high circulating miR-126 significantly predicted prolonged DFS and OS. An integrated approach using circulating miR-214, - 126, and serum ALP showed better accuracy in the prediction of DFS and OS and identification of long-term survivors than prediction using only ALP. Other variables (age, weight, sex, monocyte counts, and primary tumor site) were associated with neither DFS nor OS. miRNA levels did not strongly correlate with histopathological indices. CONCLUSIONS Circulating miR-214, - 126, and an integrated prognostic score have strong potential to predict the outcome of canine appendicular OSA patients receiving amputation and chemotherapy.
Collapse
Affiliation(s)
- Kazuki Heishima
- Laboratory of Veterinary Clinical Oncology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Travis Meuten
- Flint Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Kyoko Yoshida
- Laboratory of Veterinary Clinical Oncology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Takashi Mori
- Laboratory of Veterinary Clinical Oncology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Douglas H. Thamm
- Flint Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| |
Collapse
|
16
|
Fan TM, Selting KA. Exploring the Potential Utility of Pet Dogs With Cancer for Studying Radiation-Induced Immunogenic Cell Death Strategies. Front Oncol 2019; 8:680. [PMID: 30697532 PMCID: PMC6340932 DOI: 10.3389/fonc.2018.00680] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/27/2018] [Indexed: 01/21/2023] Open
Abstract
Radiotherapy serves as a foundational pillar for the therapeutic management of diverse solid tumors through the generation of lethal DNA damage and induction of cell death. While the direct cytotoxic effects of radiation therapy remain a cornerstone for cancer management, in the era of immunooncology there is renewed and focused interest in exploiting the indirect bystander activities of radiation, termed abscopal effects. In radioimmunobiologic terms, abscopal effects describe the radiotherapy-induced regression of cancerous lesions distant from the primary site of radiation delivery and rely upon the induction of immunogenic cell death and consequent systemic anticancer immune activation. Despite the promise of radiation therapy for awaking potent anticancer immune responses, the purposeful harnessing of abscopal effects with radiotherapy remain clinically elusive. In part, failure to fully leverage and clinically implement the promise of radiation-induced abscopal effects stems from limitations associated with existing conventional tumor models which inadequately recapitulate the complexity of malignant transformation and the dynamic nature of tumor immune surveillance. To supplement this existing gap in modeling systems, pet dogs diagnosed with solid tumors including melanoma and osteosarcoma, which are both metastatic and immunogenic in nature, could potentially serve as unique resources for exploring the fundamental underpinnings required for maximizing radiation-induced abscopal effects. Given the spontaneous course of cancer development in the context of operative immune mechanisms, pet dogs treated with radiotherapy for metastatic solid tumors might be leveraged as valuable model systems for realizing the science and best clinical practices necessary to generate potent abscopal effects with anti-metastatic immune activities.
Collapse
Affiliation(s)
- Timothy M Fan
- Comparative Oncology Research Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign Urbana, IL, United States
| | - Kimberly A Selting
- Comparative Oncology Research Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign Urbana, IL, United States
| |
Collapse
|
17
|
Meadows KL. Experimental models of focal and multifocal cerebral ischemia: a review. Rev Neurosci 2018; 29:661-674. [PMID: 29397392 DOI: 10.1515/revneuro-2017-0076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/26/2017] [Indexed: 02/07/2023]
Abstract
Rodent and rabbit stroke models have been instrumental in our current understanding of stroke pathophysiology; however, translational failure is a significant problem in preclinical ischemic stroke research today. There are a number of different focal cerebral ischemia models that vary in their utility, pathophysiology of causing disease, and their response to treatments. Unfortunately, despite active preclinical research using these models, treatment options for ischemic stroke have not significantly advanced since the food and drug administration approval of tissue plasminogen activator in 1996. This review aims to summarize current stroke therapies, the preclinical experimental models used to help develop stroke therapies, as well as their advantages and limitations. In addition, this review discusses the potential for naturally occurring canine ischemic stroke models to compliment current preclinical models and to help bridge the translational gap between small mammal models and human clinical trials.
Collapse
Affiliation(s)
- Kristy L Meadows
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, Grafton, MA 01536, USA
| |
Collapse
|
18
|
Garden OA, Volk SW, Mason NJ, Perry JA. Companion animals in comparative oncology: One Medicine in action. Vet J 2018; 240:6-13. [PMID: 30268334 DOI: 10.1016/j.tvjl.2018.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/19/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022]
Abstract
Comparative oncology is poised to have a far-reaching impact on both animals and human beings with cancer. The field is gaining momentum and has repeatedly proven its utility in various aspects of oncology, including study of the genetics, development, progression, immunology and therapy of cancer. Companion animals provide many advantages over both traditional rodent models and human beings for studying cancer biology and accelerating the development of novel anti-cancer therapies. In this review, several examples of the ability of companion animals with spontaneous cancers to fill a unique niche in the field of oncology are discussed. In addition, potential caveats of the use of companion animals in research are reviewed, as well as ethical considerations and efforts to standardize veterinary clinical trials.
Collapse
Affiliation(s)
- O A Garden
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - S W Volk
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - N J Mason
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J A Perry
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Rici REG, Will SEAL, Luna ACL, Melo LF, Santos AC, Rodrigues RF, Leandro RM, Maria DA. Combination therapy of canine osteosarcoma with canine bone marrow stem cells, bone morphogenetic protein and carboplatin in an in vivo model. Vet Comp Oncol 2018; 16:478-488. [DOI: 10.1111/vco.12404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 12/11/2022]
Affiliation(s)
- R. E. G. Rici
- School of Veterinary Medicine and Animal Science; Cidade Universitária, University of São Paulo; São Paulo Brazil
| | - S. E. A. L. Will
- Laboratory of Biochemistry and Biophysics; Butantan Institute; São Paulo Brazil
| | - A. C. L. Luna
- Laboratory of Biochemistry and Biophysics; Butantan Institute; São Paulo Brazil
| | - L. F. Melo
- School of Veterinary Medicine and Animal Science; Cidade Universitária, University of São Paulo; São Paulo Brazil
| | - A. C. Santos
- School of Veterinary Medicine and Animal Science; Cidade Universitária, University of São Paulo; São Paulo Brazil
| | - R. F. Rodrigues
- School of Veterinary Medicine and Animal Science; Cidade Universitária, University of São Paulo; São Paulo Brazil
| | - R. M. Leandro
- School of Veterinary Medicine and Animal Science; Cidade Universitária, University of São Paulo; São Paulo Brazil
| | - D. A. Maria
- Laboratory of Biochemistry and Biophysics; Butantan Institute; São Paulo Brazil
| |
Collapse
|
20
|
Albuquerque TAF, Drummond do Val L, Doherty A, de Magalhães JP. From humans to hydra: patterns of cancer across the tree of life. Biol Rev Camb Philos Soc 2018; 93:1715-1734. [PMID: 29663630 PMCID: PMC6055669 DOI: 10.1111/brv.12415] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 03/18/2018] [Accepted: 03/21/2018] [Indexed: 12/25/2022]
Abstract
Cancer is a disease of multicellularity; it originates when cells become dysregulated due to mutations and grow out of control, invading other tissues and provoking discomfort, disability, and eventually death. Human life expectancy has greatly increased in the last two centuries, and consequently so has the incidence of cancer. However, how cancer patterns in humans compare to those of other species remains largely unknown. In this review, we search for clues about cancer and its evolutionary underpinnings across the tree of life. We discuss data from a wide range of species, drawing comparisons with humans when adequate, and interpret our findings from an evolutionary perspective. We conclude that certain cancers are uniquely common in humans, such as lung, prostate, and testicular cancer; while others are common across many species. Lymphomas appear in almost every animal analysed, including in young animals, which may be related to pathogens imposing selection on the immune system. Cancers unique to humans may be due to our modern environment or may be evolutionary accidents: random events in the evolution of our species. Finally, we find that cancer‐resistant animals such as whales and mole‐rats have evolved cellular mechanisms that help them avoid neoplasia, and we argue that there are multiple natural routes to cancer resistance.
Collapse
Affiliation(s)
- Thales A F Albuquerque
- Escola Superior de Ciências da Saúde, SMHN Quadra 03 conjunto A, Bloco 1 Edifício Fepecs CEP 70, 710-907, Brasilia, Brazil
| | - Luisa Drummond do Val
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, Room 281, 6 West Derby Street, Liverpool, L7 8TX, U.K
| | - Aoife Doherty
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, Room 281, 6 West Derby Street, Liverpool, L7 8TX, U.K
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, Room 281, 6 West Derby Street, Liverpool, L7 8TX, U.K
| |
Collapse
|
21
|
Liu G, Zhang H, Sun G, Zhao C, Shang S, Gao X, Xia T, Yang X. Characterization of the peripheral blood transcriptome and adaptive evolution of the MHC I and TLR gene families in the wolf (Canis lupus). BMC Genomics 2017; 18:584. [PMID: 28784091 PMCID: PMC5545864 DOI: 10.1186/s12864-017-3983-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/01/2017] [Indexed: 01/25/2023] Open
Abstract
Background The wolf (Canis lupus) is one of the most widely distributed terrestrial mammals, because it is well adapted to various ecological niches and their corresponding pathogen environments. Immunological competence is a crucial factor involved in adapting to a changing environment and fighting pathogen infection in animals. In this study, the peripheral blood transcriptome of wolves was generated via RNA-seq to advance understanding of the wolf immunome, with a special focus on the major histocompatibility complex class I (MHC I) and toll-like receptor (TLR) gene families, which are involved in pathogen recognition and defense. Results The blood transcriptomic libraries of eight wolves originating from Tibet and Inner Mongolia were sequenced, and approximately 383 million reads were generated. Using a genome-guided assembly strategy, we obtained 123,851 unigenes, with a mean length of 845 bp and an N50 length of 1121 bp. On the basis of BLAST searches against the NCBI non-redundant protein database (Nr), a total of 36,192 (29.22%) unigenes were annotated. For functional classification, 24,663 unigenes were assigned to 13,016 Gene Ontology (GO) terms belonging to 51 sub-categories of the three main GO categories. Additionally, 7682 unigenes were classified into 6 Kyoto Encyclopedia of Genes and Genomes (KEGG) categories, in which the most represented functional sub-categories were signal transduction and the immune system, and 16,238 unigenes were functionally classified into 25 Eukaryotic Orthologous Groups (KOG) categories. We observed an overall higher ω (dN/dS) value at antigen-binding sites (ABSs) than at non-ABS regions as well as clear evidence of intergenic/intragenic recombination events at wolf MHC I loci. Additionally, our analysis revealed that carnivorous TLRs were dominated by purifying selection, with mean ω values at each TLR locus ranging from 0.173 to 0.527. However, we also found significant instances of positive selection that acted on several codons in pathogen recognition domains and were linked to species-specific differences in pathogen recognition. Conclusions This study represents the first attempt to characterize the blood transcriptome of the wolf and to highlight the value of investigating the immune system. Balancing selection and recombination have contributed to the historical evolution of wolf MHC I genes. Moreover, TLRs in carnivores have undergone adaptive evolution against the background of purifying selection, and a high level of adaptive evolution was detected in the wolf TLR system. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3983-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangshuai Liu
- Qufu Normal University, Jingxuan Street No. 57, Qufu, Shandong province, China
| | - Honghai Zhang
- Qufu Normal University, Jingxuan Street No. 57, Qufu, Shandong province, China.
| | - Guolei Sun
- Qufu Normal University, Jingxuan Street No. 57, Qufu, Shandong province, China
| | - Chao Zhao
- Qufu Normal University, Jingxuan Street No. 57, Qufu, Shandong province, China
| | - Shuai Shang
- Qufu Normal University, Jingxuan Street No. 57, Qufu, Shandong province, China
| | - Xiaodong Gao
- Qufu Normal University, Jingxuan Street No. 57, Qufu, Shandong province, China
| | - Tian Xia
- Qufu Normal University, Jingxuan Street No. 57, Qufu, Shandong province, China
| | - Xiufeng Yang
- Qufu Normal University, Jingxuan Street No. 57, Qufu, Shandong province, China
| |
Collapse
|
22
|
Ceciliani F, Roccabianca P, Giudice C, Lecchi C. Application of post-genomic techniques in dog cancer research. MOLECULAR BIOSYSTEMS 2017; 12:2665-79. [PMID: 27345606 DOI: 10.1039/c6mb00227g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Omics techniques have been widely applied to veterinary science, although mostly on farm animal productions and infectious diseases. In canine oncology, on the contrary, the use of omics methodologies is still far behind. This review presents the most recent achievement in the application of postgenomic techniques, such as transcriptomics, proteomics, and metabolomics, to canine cancer research. The protocols to recover material suitable for omics analyses from formalin-fixed, paraffin-embedded tissues are presented, and omics applications for biomarker discovery and their potential for cancer diagnostics in veterinary medicine are highlighted.
Collapse
Affiliation(s)
- F Ceciliani
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| | - P Roccabianca
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| | - C Giudice
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| | - C Lecchi
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| |
Collapse
|
23
|
Milovancev M, Russell DS. Surgical margins in the veterinary cancer patient. Vet Comp Oncol 2017; 15:1136-1157. [PMID: 28194921 DOI: 10.1111/vco.12284] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022]
Abstract
In veterinary oncologic specimens, histopathology is the gold standard for determining adequacy of excision. Despite limitations of this technique, the pathologist's interpretation of margin status significantly impacts patient management, including indications for adjuvant therapy. This article aims to summarize peer-reviewed literature as it relates to histologic margin evaluation in veterinary cancer patients. The value of histologic tumour-free margins and technical factors influencing histopathologic margin outcomes are also discussed. We review alternative strategies for determining excisional status, and discuss how an evolving understanding of tumour biology might inform clinical and research perspectives on surgical margins. In doing so, we aim to provide context and a stimulus for future investigations into this important yet incompletely understood topic.
Collapse
Affiliation(s)
- M Milovancev
- Department of Veterinary Clinical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - D S Russell
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
24
|
Wei BR, Michael HT, Halsey CHC, Peer CJ, Adhikari A, Dwyer JE, Hoover SB, El Meskini R, Kozlov S, Weaver Ohler Z, Figg WD, Merlino G, Simpson RM. Synergistic targeted inhibition of MEK and dual PI3K/mTOR diminishes viability and inhibits tumor growth of canine melanoma underscoring its utility as a preclinical model for human mucosal melanoma. Pigment Cell Melanoma Res 2016; 29:643-655. [PMID: 27463366 PMCID: PMC5132162 DOI: 10.1111/pcmr.12512] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/17/2016] [Indexed: 12/12/2022]
Abstract
Human mucosal melanoma (MM), an uncommon, aggressive and diverse subtype, shares characteristics with spontaneous MM in dogs. Although BRAF and N-RAS mutations are uncommon in MM in both species, the majority of human and canine MM evaluated exhibited RAS/ERK and/or PI3K/mTOR signaling pathway activation. Canine MM cell lines, with varying ERK and AKT/mTOR activation levels reflective of naturally occurring differences in dogs, were sensitive to the MEK inhibitor GSK1120212 and dual PI3K/mTOR inhibitor NVP-BEZ235. The two-drug combination synergistically decreased cell survival in association with caspase 3/7 activation, as well as altered expression of cell cycle regulatory proteins and Bcl-2 family proteins. In combination, the two drugs targeted their respective signaling pathways, potentiating reduction of pathway mediators p-ERK, p-AKT, p-S6, and 4E-BP1 in vitro, and in association with significantly inhibited solid tumor growth in MM xenografts in mice. These findings provide evidence of synergistic therapeutic efficacy when simultaneously targeting multiple mediators in melanoma with Ras/ERK and PI3K/mTOR pathway activation.
Collapse
Affiliation(s)
- Bih-Rong Wei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.,Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Helen T Michael
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Charles H C Halsey
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Cody J Peer
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Amit Adhikari
- Leidos Biomedical Research, Inc., Frederick, MD, USA.,Frederick National Laboratory for Cancer Research, Center for Advanced Preclinical Research, Frederick, MD, USA
| | - Jennifer E Dwyer
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Shelley B Hoover
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Rajaa El Meskini
- Leidos Biomedical Research, Inc., Frederick, MD, USA.,Frederick National Laboratory for Cancer Research, Center for Advanced Preclinical Research, Frederick, MD, USA
| | - Serguei Kozlov
- Leidos Biomedical Research, Inc., Frederick, MD, USA.,Frederick National Laboratory for Cancer Research, Center for Advanced Preclinical Research, Frederick, MD, USA
| | - Zoe Weaver Ohler
- Leidos Biomedical Research, Inc., Frederick, MD, USA.,Frederick National Laboratory for Cancer Research, Center for Advanced Preclinical Research, Frederick, MD, USA
| | - William D Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - R Mark Simpson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
25
|
Pamidronate functionalized nanoconjugates for targeted therapy of focal skeletal malignant osteolysis. Proc Natl Acad Sci U S A 2016; 113:E4601-9. [PMID: 27457945 DOI: 10.1073/pnas.1603316113] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Malignant osteolysis associated with inoperable primary bone tumors and multifocal skeletal metastases remains a challenging clinical problem in cancer patients. Nanomedicine that is able to target and deliver therapeutic agents to diseased bone sites could potentially provide an effective treatment option for different types of skeletal cancers. Here, we report the development of polylactide nanoparticles (NPs) loaded with doxorubicin (Doxo) and coated with bone-seeking pamidronate (Pam) for the targeted treatment of malignant skeletal tumors. In vivo biodistribution of radiolabeled targeted Pam-NPs demonstrated enhanced bone tumor accumulation and prolonged retention compared with nontargeted NPs. In a murine model of focal malignant osteolysis, Pam-functionalized, Doxo-loaded NPs (Pam-Doxo-NPs) significantly attenuated localized osteosarcoma (OS) progression compared with nontargeted Doxo-NPs. Importantly, we report on the first evaluation to our knowlege of Pam-Doxo-NPs in dogs with OS, which possess tumors of anatomic size and physiology comparable to those in humans. The repeat dosing of Pam-Doxo-NPs in dogs with naturally occurring OS indicated the therapeutic was well tolerated without hematologic, nonhematologic, and cardiac toxicities. By nuclear scintigraphy, the biodistribution of Pam-Doxo-NPs demonstrated malignant bone-targeting capability and exerted measurable anticancer activities as confirmed with percent tumor necrosis histopathology assessment.
Collapse
|
26
|
Gebhard C, Gabriel C, Walter I. Morphological and Immunohistochemical Characterization of Canine Osteosarcoma Spheroid Cell Cultures. Anat Histol Embryol 2016; 45:219-30. [PMID: 26287450 PMCID: PMC4949528 DOI: 10.1111/ahe.12190] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/28/2015] [Indexed: 12/15/2022]
Abstract
Spheroid cell culture emerges as powerful in vitro tool for experimental tumour research. In this study, we established a scaffold-free three-dimensional spheroid system built from canine osteosarcoma (OS) cells (D17). Spheroids (7, 14 and 19 days of cultivation) and monolayer cultures (2 and 7 days of cultivation) were evaluated and compared on light and electron microscopy. Monolayer and spheroid cultures were tested for vimentin, cytokeratin, alkaline phosphatase, osteocalcin and collagen I by means of immunohistochemistry. The spheroid cell culture exhibited a distinct network of collagen I in particular after 19-day cultivation, whereas in monolayer cultures, collagen I was arranged as a lamellar basal structure. Necrotic centres of large spheroids, as observed in 14- and 19-day cultures, were characterized by significant amounts of osteocalcin. Proliferative activity as determined by Ki-67 immunoreactivity showed an even distribution in two-dimensional cultures. In spheroids, proliferation was predominating in the peripheral areas. Metastasis-associated markers ezrin and S100A4 were shown to be continuously expressed in monolayer and spheroid cultures. We conclude that the scaffold-free spheroid system from canine OS cells has the ability to mimic the architecture of the in vivo tumour, in particular cell-cell and cell-matrix interactions.
Collapse
Affiliation(s)
- C Gebhard
- Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine, Vienna, Austria
| | - C Gabriel
- Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine, Vienna, Austria
| | - I Walter
- Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine, Vienna, Austria
- Vienna VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
27
|
Schiffman JD, Breen M. Comparative oncology: what dogs and other species can teach us about humans with cancer. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0231. [PMID: 26056372 DOI: 10.1098/rstb.2014.0231] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Over 1.66 million humans (approx. 500/100,000 population rate) and over 4.2 million dogs (approx. 5300/100,000 population rate) are diagnosed with cancer annually in the USA. The interdisciplinary field of comparative oncology offers a unique and strong opportunity to learn more about universal cancer risk and development through epidemiology, genetic and genomic investigations. Working across species, researchers from human and veterinary medicine can combine scientific findings to understand more quickly the origins of cancer and translate these findings to novel therapies to benefit both human and animals. This review begins with the genetic origins of canines and their advantage in cancer research. We next focus on recent findings in comparative oncology related to inherited, or genetic, risk for tumour development. We then detail the somatic, or genomic, changes within tumours and the similarities between species. The shared cancers between humans and dogs that we discuss include sarcoma (osteosarcoma, soft tissue sarcoma, histiocytic sarcoma, hemangiosarcoma), haematological malignancies (lymphoma, leukaemia), bladder cancer, intracranial neoplasms (meningioma, glioma) and melanoma. Tumour risk in other animal species is also briefly discussed. As the field of genomics advances, we predict that comparative oncology will continue to benefit both humans and the animals that live among us.
Collapse
Affiliation(s)
- Joshua D Schiffman
- Department of Pediatrics and Oncological Sciences, Primary Children's Hospital, Intermountain Healthcare, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, Center for Comparative Medicine and Translational Research, Center for Human Health and the Environment, Cancer Genetics, UNC Lineberger Comprehensive Cancer Center, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
28
|
Lawrence J, Cameron D, Argyle D. Species differences in tumour responses to cancer chemotherapy. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0233. [PMID: 26056373 DOI: 10.1098/rstb.2014.0233] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Despite advances in chemotherapy, radiotherapy and targeted drug development, cancer remains a disease of high morbidity and mortality. The treatment of human cancer patients with chemotherapy has become commonplace and accepted over the past 100 years. In recent years, and with a similar incidence of cancer to people, the use of cancer chemotherapy drugs in veterinary patients such as the dog has also become accepted clinical practice. The poor predictability of tumour responses to cancer chemotherapy drugs in rodent models means that the standard drug development pathway is costly, both in terms of money and time, leading to many drugs failing in Phase I and II clinical trials. This has led to the suggestion that naturally occurring cancers in pet dogs may offer an alternative model system to inform rational drug development in human oncology. In this review, we will explore the species variation in tumour responses to conventional chemotherapy and highlight our understanding of the differences in pharmacodynamics, pharmacokinetics and pharmacogenomics between humans and dogs. Finally, we explore the potential hurdles that need to be overcome to gain the greatest value from comparative oncology studies.
Collapse
Affiliation(s)
- Jessica Lawrence
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush EH25 9RG, UK
| | - David Cameron
- University of Edinburgh Cancer Research Centre, Western General Hospital, Edinburgh EH4 2LF, UK
| | - David Argyle
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush EH25 9RG, UK
| |
Collapse
|
29
|
Nunney L, Maley CC, Breen M, Hochberg ME, Schiffman JD. Peto's paradox and the promise of comparative oncology. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140177. [PMID: 26056361 PMCID: PMC4581022 DOI: 10.1098/rstb.2014.0177] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2015] [Indexed: 02/06/2023] Open
Abstract
The past several decades have seen a paradigm shift with the integration of evolutionary thinking into studying cancer. The evolutionary lens is most commonly employed in understanding cancer emergence, tumour growth and metastasis, but there is an increasing realization that cancer defences both between tissues within the individual and between species have been influenced by natural selection. This special issue focuses on discoveries of these deeper evolutionary phenomena in the emerging area of 'comparative oncology'. Comparing cancer dynamics in different tissues or species can lead to insights into how biology and ecology have led to differences in carcinogenesis, and the diversity, incidence and lethality of cancers. In this introduction to the special issue, we review the history of the field and outline how the contributions use empirical, comparative and theoretical approaches to address the processes and patterns associated with 'Peto's paradox', the lack of a statistical relationship of cancer incidence with body size and longevity. This burgeoning area of research can help us understand that cancer is not only a disease but is also a driving force in biological systems and species life histories. Comparative oncology will be key to understanding globally important health issues, including cancer epidemiology, prevention and improved therapies.
Collapse
Affiliation(s)
- Leonard Nunney
- Department of Biology, University of California Riverside, CA 92521, USA
| | - Carlo C Maley
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA Center for Evolution and Cancer, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA Centre for Evolution and Cancer, Institute for Cancer Research, London, UK
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695, USA Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC 27695, USA Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA Genetics Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Michael E Hochberg
- Institut des Sciences de l'Evolution, Université Montpellier, UMR5554 du CNRS, Montpellier 34095, France Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Joshua D Schiffman
- Primary Children's Hospital (Intermountain Healthcare) and Huntsman Cancer Institute, Departments of Pediatrics and Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
30
|
Abstract
Domestic dogs are unique from other animal models of cancer in that they generally experience spontaneous disease. In addition, most types of cancer observed in humans are found in dogs, suggesting that canines may be an informative system for the study of cancer genetics. Domestic dogs are divided into over 175 breeds, with members of each breed sharing significant phenotypes. The breed barrier enhances the utility of the model, especially for genetic studies where small numbers of genes are hypothesized to account for the breed cancer susceptibility. These facts, combined with recent advances in high-throughput sequencing technologies allows for an unrivaled ability to use pet dog populations to find often subtle mutations that promote cancer susceptibility and progression in dogs as a whole. The meticulous record keeping associated with dog breeding makes the model still more powerful, as it facilitates both association analysis and family-based linkage studies. Key to the success of these studies is their cooperative nature, with owners, scientists, veterinarians and breed clubs working together to avoid the cost and unpopularity of developing captive populations. In this article we explore these principals and advocate for colony-free, genetic studies that will enhance our ability to diagnose and treat cancer in dogs and humans alike.
Collapse
|
31
|
Riccardo F, Aurisicchio L, Impellizeri JA, Cavallo F. The importance of comparative oncology in translational medicine. Cancer Immunol Immunother 2015; 64:137-48. [PMID: 25548094 PMCID: PMC11029667 DOI: 10.1007/s00262-014-1645-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 12/15/2014] [Indexed: 12/20/2022]
Abstract
Human cancer is so complex that in vivo preclinical models are needed if effective therapies are to be developed. Naturally occurring cancers in companion animals are therefore a great resource, as shown by the remarkable growth that comparative oncology has seen over the last 30 years. Cancer has become a leading cause of death in companion animals now that more pets are living long enough to develop the disease. Furthermore, more owners are seeking advanced and novel therapies for their pets as they are very much considered family members. Living in the same environments, pets and humans are often afflicted by the same types of cancer which show similar behavior and, in some species, express the same antigen molecules. The treatment of pet tumors using novel therapies is of compelling translational significance.
Collapse
Affiliation(s)
- Federica Riccardo
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza, 52, 10126 Turin, Italy
| | | | | | - Federica Cavallo
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza, 52, 10126 Turin, Italy
| |
Collapse
|
32
|
Lairmore MD, Ilkiw J. Animals Used in Research and Education, 1966-2016: Evolving Attitudes, Policies, and Relationships. JOURNAL OF VETERINARY MEDICAL EDUCATION 2015; 42:425-440. [PMID: 26673210 DOI: 10.3138/jvme.0615-087r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Since the inception of the Association of American Veterinary Medical Colleges (AAVMC), the use of animals in research and education has been a central element of the programs of member institutions. As veterinary education and research programs have evolved over the past 50 years, so too have societal views and regulatory policies. AAVMC member institutions have continually responded to these events by exchanging best practices in training their students in the framework of comparative medicine and the needs of society. Animals provide students and faculty with the tools to learn the fundamental knowledge and skills of veterinary medicine and scientific discovery. The study of animal models has contributed extensively to medicine, veterinary medicine, and basic sciences as these disciplines seek to understand life processes. Changing societal views over the past 50 years have provided active examination and continued refinement of the use of animals in veterinary medical education and research. The future use of animals to educate and train veterinarians will likely continue to evolve as technological advances are applied to experimental design and educational systems. Natural animal models of both human and animal health will undoubtedly continue to serve a significant role in the education of veterinarians and in the development of new treatments of animal and human disease. As it looks to the future, the AAVMC as an organization will need to continue to support and promote best practices in the humane care and appropriate use of animals in both education and research.
Collapse
MESH Headings
- Animal Experimentation/history
- Animal Experimentation/legislation & jurisprudence
- Animal Use Alternatives/history
- Animal Use Alternatives/legislation & jurisprudence
- Animal Use Alternatives/trends
- Animal Welfare/history
- Animal Welfare/legislation & jurisprudence
- Animals
- Animals, Laboratory
- Education, Veterinary/history
- Education, Veterinary/methods
- Education, Veterinary/trends
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- History, Ancient
- Human-Animal Bond
- Humans
- Models, Animal
- United States
Collapse
|
33
|
Comparative pathology of canine soft tissue sarcomas: possible models of human non-rhabdomyosarcoma soft tissue sarcomas. J Comp Pathol 2014; 152:22-7. [PMID: 25435513 DOI: 10.1016/j.jcpa.2014.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/30/2014] [Indexed: 01/06/2023]
Abstract
Comparative analyses of canine and human soft tissue sarcomas (STSs) are lacking. This study compared the histological and immunohistochemical (labelling for desmin, smooth muscle actin [SMA], CD31, pancytokeratin, S100 and CD34) appearance of 32 archived, formalin-fixed, paraffin wax-embedded canine STS tumour specimens by board-certified veterinary and medical pathologists, both blinded to the other's interpretations. Comparison between the veterinary and human diagnoses revealed a generally consistent pattern of interpretation with few notable variations. Most tumours (13/32) were judged to display similar histomorphological appearance to human low-grade spindle cell sarcomas, appearing non-distinctive and morphologically of a fibroblastic/myofibroblastic type. Five canine cases resembled human liposarcoma, but with atypical desmin-positive epithelioid cells present. Five canine cases resembled human spindle cell sarcoma with myxoid features and two additional cases resembled human myxofibrosarcoma. Seven canine cases were noted to resemble human undifferentiated sarcoma. Findings in the present study demonstrate that canine STSs display histological and immunohistochemical features similar to their human equivalents. Because of these cross-species similarities, a particular opportunity exists to understand the biology and treatment of human STS by potentially including dogs as clinical models.
Collapse
|
34
|
Maniscalco L, Iussich S, Morello E, Martano M, Gattino F, Miretti S, Biolatti B, Accornero P, Martignani E, Sánchez-Céspedes R, Buracco P, De Maria R. Increased expression of insulin-like growth factor-1 receptor is correlated with worse survival in canine appendicular osteosarcoma. Vet J 2014; 205:272-80. [PMID: 25257352 DOI: 10.1016/j.tvjl.2014.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 12/24/2022]
Abstract
Insulin-like growth factor 1 receptor (IGF-1R) is a cell membrane receptor widely expressed in tissues and involved in different cancers in humans. IGF-1R expression in human osteosarcoma has been associated with the development of tumour metastasis and with prognosis, and represents an attractive therapeutic target. The goal of this study was to investigate the expression of IGF-1R in canine osteosarcoma tissues and cell lines and assess its role and prognostic value. Samples from 34 dogs were examined by immunohistochemistry for IGF-1R expression. IGF-1R/AKT/MAPK signalling was evaluated by western blot and quantitative polymerase chain reaction in the cell lines. In addition, the in vitro inhibition of IGF-1R with pycropodophillin (PPP) was used to evaluate molecular and biological effects. Immunohistochemical data showed that IGF-1R was expressed in 71% of the analysed osteosarcoma samples and that dogs with higher levels of IGF-IR expression (47% of cases) had decreased survival (P < 0.05) when compared to dogs with lower IGF-IR expression. Molecular studies demonstrated that in canine osteosarcoma IGF-IR is activated by IGF-1 mostly in a paracrine or endocrine (rather than autocrine) manner, leading to activation of AKT/MAPK signalling. PPP caused p-IGF-1R dephosphorylation with partial blocking of p-MAPK and p-AKT, as well as apoptosis. It was concluded that IGF-1R is expressed and plays a role in canine osteosarcoma and that its expression is correlated with a poor prognosis. As in humans, IGF-1R may represent a good therapeutic target and a prognostic factor for canine osteosarcoma.
Collapse
Affiliation(s)
- Lorella Maniscalco
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy.
| | - Selina Iussich
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Emanuela Morello
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Marina Martano
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Francesca Gattino
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Silvia Miretti
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Bartolomeo Biolatti
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Paolo Accornero
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Eugenio Martignani
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Raquel Sánchez-Céspedes
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| | - Raffaella De Maria
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, TO, Italy
| |
Collapse
|
35
|
Guijarro MV, Ghivizzani SC, Gibbs CP. Animal models in osteosarcoma. Front Oncol 2014; 4:189. [PMID: 25101245 PMCID: PMC4102850 DOI: 10.3389/fonc.2014.00189] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/07/2014] [Indexed: 11/13/2022] Open
Abstract
Osteosarcoma (OS) is the most common non-hematologic primary tumor of bone in children and adults. High-dose cytotoxic chemotherapy and surgical resection have improved prognosis, with long-term survival for non-metastatic disease approaching 70%. However, most OS tumors are high grade and tend to rapidly develop pulmonary metastases. Despite clinical advances, patients with metastatic disease or relapse have a poor prognosis. Toward a better understanding of the molecular pathogenesis of human OS, several genetically modified OS mouse models have been developed and will be reviewed here. However, better animal models that more accurately recapitulate the natural progression of the disease are needed for the development of improved prognostic and diagnostic markers as well as targeted therapies for both primary and metastatic OS.
Collapse
Affiliation(s)
- Maria V Guijarro
- Department of Orthopaedics and Rehabilitation, University of Florida , Gainesville, FL , USA
| | - Steven C Ghivizzani
- Department of Orthopaedics and Rehabilitation, University of Florida , Gainesville, FL , USA
| | - C Parker Gibbs
- Department of Orthopaedics and Rehabilitation, University of Florida , Gainesville, FL , USA
| |
Collapse
|
36
|
Alvarez CE. Naturally Occurring Cancers in Dogs: Insights for Translational Genetics and Medicine. ILAR J 2014; 55:16-45. [DOI: 10.1093/ilar/ilu010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Shahi MH, Holt R, Rebhun RB. Blocking signaling at the level of GLI regulates downstream gene expression and inhibits proliferation of canine osteosarcoma cells. PLoS One 2014; 9:e96593. [PMID: 24810746 PMCID: PMC4014515 DOI: 10.1371/journal.pone.0096593] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 04/09/2014] [Indexed: 01/26/2023] Open
Abstract
The Hedgehog-GLI signaling pathway is active in a variety of human malignancies and is known to contribute to the growth and survival of human osteosarcoma cells. In this study, we examined the expression and regulation of GLI transcription factors in multiple canine osteosarcoma cell lines and analyzed the effects of inhibiting GLI with GANT61, a GLI-specific inhibitor. Compared with normal canine osteoblasts, real-time PCR showed that GLI1 and GLI2 were highly expressed in two out of three cell lines and correlated with downstream target gene expression of PTCH1and PAX6. Treatment of canine osteosarcoma cells with GANT61 resulted in decreased expression of GLI1, GLI2, PTCH1, and PAX6. Furthermore, GANT61 inhibited proliferation and colony formation in all three canine osteosarcoma cell lines. The finding that GLI signaling activity is present and active in canine osteosarcoma cells suggests that spontaneously arising osteosarcoma in dogs might serve as a good model for future preclinical testing of GLI inhibitors.
Collapse
Affiliation(s)
- Mehdi Hayat Shahi
- The Department of Surgical and Radiological Sciences, University of California Davis School of Veterinary Medicine, Davis, California, United States of America
| | - Roseline Holt
- The Department of Surgical and Radiological Sciences, University of California Davis School of Veterinary Medicine, Davis, California, United States of America
| | - Robert B. Rebhun
- The Department of Surgical and Radiological Sciences, University of California Davis School of Veterinary Medicine, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Botter SM, Neri D, Fuchs B. Recent advances in osteosarcoma. Curr Opin Pharmacol 2014; 16:15-23. [PMID: 24632219 DOI: 10.1016/j.coph.2014.02.002] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 01/09/2023]
Abstract
Although osteosarcoma (OS) is a rare malignancy, it is ranked among the leading causes of cancer-related death in the pediatric age group. The cancer's low prevalence and its large tumor heterogeneity make it difficult to obtain meaningful progress in patient survival. In this review we present an overview of current clinical trials which largely focus on stimulation of the immune system or rely on the inhibition of kinases such as Src and mTOR. The potential efficacy of tumor-targeted TNFalpha is discussed, as well as the importance of preclinical validation of new targets. To improve the success of future clinical trials, clinicians and basic researchers need to intensify their exchange. Finally, a case is made for individualized treatment of OS patients, based on interdisciplinary cooperation in dedicated Sarcoma Centers.
Collapse
Affiliation(s)
- Sander M Botter
- Sarcoma Center & Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland
| | - Bruno Fuchs
- Sarcoma Center & Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland.
| |
Collapse
|
39
|
Sampson VB, Kamara DF, Kolb EA. Xenograft and genetically engineered mouse model systems of osteosarcoma and Ewing's sarcoma: tumor models for cancer drug discovery. Expert Opin Drug Discov 2013; 8:1181-9. [PMID: 23844615 DOI: 10.1517/17460441.2013.817988] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION There are > 75 histological types of solid tumors that are classified into two major groups: bone and soft-tissue sarcomas. These diseases are more prevalent in children, and pediatric sarcomas tend to be highly aggressive and rapidly progressive. Sarcomas in adults may follow a more indolent course, but aggressive tumors are also common. Sarcomas that are metastatic at diagnosis, or recurrent following therapy, remain refractory to current treatment options with dismal overall survival rates. A major focus of clinical trials, for patients with sarcoma, is to identify novel and more effective therapeutic strategies targeted to genomic or proteomic aberrations specific to the malignant cells. Critical to the understanding of the potential for targeted therapies are models of disease that are representative of clinical disease and predictive of relevant clinical responses. AREAS COVERED In this article, the authors discuss the use of mouse xenograft models and genetically engineered mice in cancer drug discovery. The authors provide a special focus on models for the two most common bone sarcomas: osteosarcoma (OS) and Ewing's sarcoma (ES). EXPERT OPINION Predicting whether a new anticancer agent will have a positive therapeutic index in patients with OS and ES remains a challenge. The use of mouse sarcoma models for understanding the mechanisms involved in the response of tumors to new treatments is an important step in the process of drug discovery and the development of clinically relevant therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Valerie B Sampson
- A.I. duPont Hospital for Children, Cancer Therapeutics Laboratory , 1701 Rockland Rd, Wilmington DE, 19803 , USA
| | | | | |
Collapse
|
40
|
Monks NR, Cherba DM, Kamerling SG, Simpson H, Rusk AW, Carter D, Eugster E, Mooney M, Sigler R, Steensma M, Grabinski T, Marotti KR, Webb CP. A multi-site feasibility study for personalized medicine in canines with osteosarcoma. J Transl Med 2013; 11:158. [PMID: 23815880 PMCID: PMC3702405 DOI: 10.1186/1479-5876-11-158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/28/2013] [Indexed: 01/06/2023] Open
Abstract
Background A successful therapeutic strategy, specifically tailored to the molecular constitution of an individual and their disease, is an ambitious objective of modern medicine. In this report, we highlight a feasibility study in canine osteosarcoma focused on refining the infrastructure and processes required for prospective clinical trials using a series of gene expression-based Personalized Medicine (PMed) algorithms to predict suitable therapies within 5 days of sample receipt. Methods Tumor tissue samples were collected immediately following limb amputation and shipped overnight from veterinary practices. Upon receipt (day 1), RNA was extracted from snap-frozen tissue, with an adjacent H&E section for pathological diagnosis. Samples passing RNA and pathology QC were shipped to a CLIA-certified laboratory for genomic profiling. After mapping of canine probe sets to human genes and normalization against a (normal) reference set, gene level Z-scores were submitted to the PMed algorithms. The resulting PMed report was immediately forwarded to the veterinarians. Upon receipt and review of the PMed report, feedback from the practicing veterinarians was captured. Results 20 subjects were enrolled over a 5 month period. Tissue from 13 subjects passed both histological and RNA QC and were submitted for genomic analysis and subsequent PMed analysis and report generation. 11 of the 13 samples for which PMed reports were produced were communicated to the veterinarian within the target 5 business days. Of the 7 samples that failed QC, 4 were due to poor RNA quality, whereas 2 were failed following pathological review. Comments from the practicing veterinarians were generally positive and constructive, highlighting a number of areas for improvement, including enhanced education regarding PMed report interpretation, drug availability, affordable pricing and suitable canine dosing. Conclusions This feasibility trial demonstrated that with the appropriate infrastructure and processes it is possible to perform an in-depth molecular analysis of a patient’s tumor in support of real time therapeutic decision making within 5 days of sample receipt. A number of areas for improvement have been identified that should reduce the level of sample attrition and support clinical decision making.
Collapse
|
41
|
Crisp MJ, Beckett J, Coates JR, Miller TM. Canine degenerative myelopathy: biochemical characterization of superoxide dismutase 1 in the first naturally occurring non-human amyotrophic lateral sclerosis model. Exp Neurol 2013; 248:1-9. [PMID: 23707216 DOI: 10.1016/j.expneurol.2013.05.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/08/2013] [Accepted: 05/14/2013] [Indexed: 11/19/2022]
Abstract
Mutations in canine superoxide dismutase 1 (SOD1) have recently been shown to cause canine degenerative myelopathy, a disabling neurodegenerative disorder affecting specific breeds of dogs characterized by progressive motor neuron loss and paralysis until death, or more common, euthanasia. This discovery makes canine degenerative myelopathy the first and only naturally occurring non-human model of amyotrophic lateral sclerosis (ALS), closely paralleling the clinical, pathological, and genetic presentation of its human counterpart, SOD1-mediated familial ALS. To further understand the biochemical role that canine SOD1 plays in this disease and how it may be similar to human SOD1, we characterized the only two SOD1 mutations described in affected dogs to date, E40K and T18S. We show that a detergent-insoluble species of mutant SOD1 is present in spinal cords of affected dogs that increases with disease progression. Our in vitro results indicate that both canine SOD1 mutants form enzymatically active dimers, arguing against a loss of function in affected homozygous animals. Further studies show that these mutants, like most human SOD1 mutants, have an increased propensity to form aggregates in cell culture, with 10-20% of cells possessing visible aggregates. Creation of the E40K mutation in human SOD1 recapitulates the normal enzymatic activity but not the aggregation propensity seen with the canine mutant. Our findings lend strong biochemical support to the toxic role of SOD1 in canine degenerative myelopathy and establish close parallels for the role mutant SOD1 plays in both canine and human disorders.
Collapse
Affiliation(s)
- Matthew J Crisp
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
42
|
Denies S, Sanders NN. Recent progress in canine tumor vaccination: potential applications for human tumor vaccines. Expert Rev Vaccines 2013; 11:1375-86. [PMID: 23249236 DOI: 10.1586/erv.12.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor vaccination holds great promise for the treatment of cancer and research concerning tumor vaccination in dogs is of great interest for veterinary as well as human medicine. Indeed, cancer is the leading cause of death in adult dogs and companion animals are acknowledged as excellent preclinical models for human oncology. The license of the veterinary melanoma vaccine (Oncept™) and Provenge® for the treatment of prostate cancer in men established tumor vaccination as a valid treatment modality for cancer. Although the results with this and other vaccines are promising, there are still some hurdles to overcome. In this article, preclinical and clinical trials with tumor vaccines in dogs are discussed, as well as the surplus value of canine cancer patients for human medicine.
Collapse
Affiliation(s)
- Sofie Denies
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820 Merelbeke, Belgium
| | | |
Collapse
|
43
|
Tripaldi R, Stuppia L, Alberti S. Human height genes and cancer. Biochim Biophys Acta Rev Cancer 2013; 1836:27-41. [PMID: 23428607 DOI: 10.1016/j.bbcan.2013.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 02/05/2013] [Accepted: 02/08/2013] [Indexed: 12/30/2022]
Abstract
Body development requires the ability to control cell proliferation and metabolism, together with selective 'invasive' cell migration for organogenesis. These requirements are shared with cancer. Human height-associated loci have been recently identified by genome-wide SNP-association studies. Strikingly, most of the more than 100 genes found associated to height appear linked to neoplastic growth, and impose a higher risk for cancer. Height-associated genes drive the HH/PTCH and BMP/TGFβ pathways, with p53, c-Myc, ERα, HNF4A and SMADs as central network nodes. Genetic analysis of body-size-affecting diseases and evidence from genetically-modified animals support this model. The finding that cancer is deeply linked to normal, body-plan master genes may profoundly affect current paradigms on tumor development.
Collapse
Affiliation(s)
- Romina Tripaldi
- Unit of Cancer Pathology, Department of Neuroscience and Imaging and CeSI, Foundation University G. d'Annunzio, Chieti, Italy
| | | | | |
Collapse
|
44
|
Selyanchyn R, Nozoe T, Matsui H, Kadosawa T, Lee SW. TD-GC-MS Investigation of the VOCs Released from Blood Plasma of Dogs with Cancer. Diagnostics (Basel) 2013; 3:68-83. [PMID: 26835668 PMCID: PMC4665586 DOI: 10.3390/diagnostics3010068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 12/31/2012] [Accepted: 01/15/2013] [Indexed: 11/16/2022] Open
Abstract
An analytical TD-GC-MS method was developed and used for the assessment of volatile organic compounds (VOCs) released from the blood plasma of dogs with/without cancer. VOCs released from 40 samples of diseased blood and 10 control samples were compared in order to examine the difference between both sample groups that were showing qualitatively similar results independent from the disease's presence. However, mild disturbances in the spectra of dogs with cancer in comparison with the control group were observed, and six peaks (tentatively identified by comparison with mass spectral library as hexanal, octanal, toluene, 2-butanone, 1-octen-3-ol and pyrrole) revealed statistically significant differences between both sample groups, thereby suggesting that these compounds are potential biomarkers that can be used for cancer diagnosis based on the blood plasma TD-GC-MS analysis. Statistical comparison with the application of principal component analysis (PCA) provided accurate discrimination between the cancer and control groups, thus demonstrating stronger biochemical perturbations in blood plasma when cancer is present.
Collapse
Affiliation(s)
- Roman Selyanchyn
- Graduate School of Environmental Engineering, the University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan.
| | - Takuma Nozoe
- Graduate School of Environmental Engineering, the University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan.
| | - Hidetaka Matsui
- Shinkou Seiki Co. Ltd., 1-18-3, Maidashi, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Tsuyoshi Kadosawa
- Department of Veterinary Pathology, School of Veterinary Medicine, Rakuno Gakuen University, 582, Midorimachi, Bunkyodai, Ebetsu 069-8501, Japan.
| | - Seung-Woo Lee
- Graduate School of Environmental Engineering, the University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan.
| |
Collapse
|
45
|
Biologic activity of the novel small molecule STAT3 inhibitor LLL12 against canine osteosarcoma cell lines. BMC Vet Res 2012; 8:244. [PMID: 23244668 PMCID: PMC3585923 DOI: 10.1186/1746-6148-8-244] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/28/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND STAT3 [1] has been shown to be dysregulated in nearly every major cancer, including osteosarcoma (OS). Constitutive activation of STAT3, via aberrant phosphorylation, leads to proliferation, cell survival and resistance to apoptosis. The present study sought to characterize the biologic activity of a novel allosteric STAT3 inhibitor, LLL12, in canine OS cell lines. RESULTS We evaluated the effects of LLL12 treatment on 4 canine OS cell lines and found that LLL12 inhibited proliferation, induced apoptosis, reduced STAT3 phosphorylation, and decreased the expression of several transcriptional targets of STAT3 in these cells. Lastly, LLL12 exhibited synergistic anti-proliferative activity with the chemotherapeutic doxorubicin in the OS lines. CONCLUSION LLL12 exhibits biologic activity against canine OS cell lines through inhibition of STAT3 related cellular functions supporting its potential use as a novel therapy for OS.
Collapse
|
46
|
Cho SM, Park SW, Kim NH, Park JA, Yi H, Cho HJ, Park KH, Hwang I, Shin HC. Expression of intestinal transporter genes in beagle dogs. Exp Ther Med 2012; 5:308-314. [PMID: 23251289 PMCID: PMC3524273 DOI: 10.3892/etm.2012.777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/12/2012] [Indexed: 11/06/2022] Open
Abstract
This study was performed to produce a transcriptional database of the intestinal transporters of beagle dogs. Total RNA was isolated from the duodenum and the expression of various mRNAs was measured using GeneChip(®) oligonucleotide arrays. A total of 124 transporter genes were detected. Genes for fatty acid, peptide, amino acid and glucose and multidrug resistance/multidrug resistance-associated protein (MDR/MRP) transport were expressed at relatively higher levels than the other transporter types. The dogs exhibited abundant mRNA expression of the fatty acid transporters (fatty acid binding proteins, FABPs) FABP1 and FABP2, the ATP-binding cassettes (ABCs) ABCB1A and ABCC2, the amino acid/peptide transporters SLC3A1 and SLC15A1, the glucose transporters SLC5A1, SLC2A2 and SLC2A5, the organic anion transporter SLC22A9 and the phosphate transporters SLC20A1 and SLC37A4. In mice, a similar profile was observed with high expression of the glucose transporters SLC5A1 and SLC2As, the fatty acid transporters FABP1 and FABP2, the MDR/MRP transporters ABCB1A and ABCC2 and the phosphate transporter SLC37A4. However, the overall data reveal diverse transcriptomic profiles of the intestinal transporters of dogs and mice. Therefore, the current database may be useful for comparing the intestinal transport systems of dogs with those of mice to better evaluate xenobiotics.
Collapse
Affiliation(s)
- Soo-Min Cho
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul 143-701
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kumar S, Mokhtari RB, Yeger H, Baruchel S. Preclinical models for pediatric solid tumor drug discovery: current trends, challenges and the scopes for improvement. Expert Opin Drug Discov 2012; 7:1093-106. [DOI: 10.1517/17460441.2012.722077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Lab reports and cat scans: can veterinary oncology guide our way to new treatments for human cancers? Future Med Chem 2012; 4:1391-4. [DOI: 10.4155/fmc.12.81] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|