1
|
Maya-González C, Delgado-Vega AM, Taylan F, Lagerstedt Robinson K, Hansson L, Pal N, Fagman H, Puls F, Wessman S, Stenman J, Georgantzi K, Fransson S, Díaz De Ståhl T, Ek T, Palmer R, Tesi B, Kogner P, Martinsson T, Nordgren A. Occurrence of cancer in Marfan syndrome: Report of two patients with neuroblastoma and review of the literature. Am J Med Genet A 2024; 194:e63812. [PMID: 38990105 DOI: 10.1002/ajmg.a.63812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder caused by pathogenic variants in FBN1, with a hitherto unknown association with cancer. Here, we present two females with MFS who developed pediatric neuroblastoma. Patient 1 presented with neonatal MFS and developed an adrenal neuroblastoma with unfavorable tumor genetics at 10 months of age. Whole genome sequencing revealed a germline de novo missense FBN1 variant (NP_000129.3:p.(Asp1322Asn)), resulting in intron 32 inclusion and exon 32 retention. Patient 2 was diagnosed with classic MFS, caused by a germline de novo frameshift variant in FBN1 (NP_000129.3:p.(Cys805Ter)). At 18 years, she developed high-risk neuroblastoma with a somatic ALK pathogenic variant (NP_004295.2:p.(Arg1275Gln)). We identified 32 reported cases of MFS with cancer in PubMed, yet none with neuroblastoma. Among patients, we observed an early cancer onset and high frequency of MFS complications. We also queried cancer databases for somatic FBN1 variants, finding 49 alterations reported in PeCan, and variants in 2% of patients in cBioPortal. In conclusion, we report the first two patients with MFS and neuroblastoma and highlight an early age at cancer diagnosis in reported patients with MFS. Further epidemiological and functional studies are needed to clarify the growing evidence linking MFS and cancer.
Collapse
Affiliation(s)
- Carolina Maya-González
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Angelica Maria Delgado-Vega
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Kristina Lagerstedt Robinson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Lina Hansson
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Niklas Pal
- Department of Pediatric Oncology, Astrid Lindgren Children's Hospital, Stockholm, Sweden
| | - Henrik Fagman
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Florian Puls
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sandra Wessman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Jakob Stenman
- Department of Pediatric Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Kleopatra Georgantzi
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Teresita Díaz De Ståhl
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Torben Ek
- Children Cancer Center, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Ruth Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bianca Tesi
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Tommy Martinsson
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
2
|
Camacho-Arias M, Villa M, Álvarez de Andres S, Rivera B, Vázquez P, Letón P, Martín-López L, Osuna-Marco MP, López-Ibor B. Cancer Predisposition Syndromes in Children: Who, How, and When Should Genetic Studies Be Considered? J Pediatr Hematol Oncol 2024; 46:409-414. [PMID: 39262393 DOI: 10.1097/mph.0000000000002932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/05/2024] [Indexed: 09/13/2024]
Abstract
Early detection of cancer predisposition syndromes (CPS) is crucial to determine optimal treatments and follow-up, and to provide appropriate genetic counseling. This study outlines an approach in a pediatric oncology unit, where 50 randomly selected patients underwent clinical assessment, leading to 44 eligible for genetic testing. We identified 2 pathogenic or likely pathogenic variants in genes associated with CPS and 6 variants of uncertain significance (VUS) potentially associated with cancer development. We emphasize the importance of a thorough and accurate collection of family history and physical examination data and the full coordination between pediatric oncologists and geneticists.
Collapse
Affiliation(s)
- Mónica Camacho-Arias
- Pediatric Oncology Unit, Health Research Institute HM Hospitals, HM Montepríncipe University Hospital/CIOCC
| | - Marta Villa
- Pediatric Oncology Unit, Health Research Institute HM Hospitals, HM Montepríncipe University Hospital/CIOCC
| | | | | | - Paula Vázquez
- Pediatric Oncology Unit, Health Research Institute HM Hospitals, HM Montepríncipe University Hospital/CIOCC
| | - Patricia Letón
- Pediatric Oncology Unit, Health Research Institute HM Hospitals, HM Montepríncipe University Hospital/CIOCC
| | - Laura Martín-López
- Pediatric Oncology Unit, Health Research Institute HM Hospitals, HM Montepríncipe University Hospital/CIOCC
| | - Marta Pilar Osuna-Marco
- Pediatric Oncology Unit, Health Research Institute HM Hospitals, HM Montepríncipe University Hospital/CIOCC
| | - Blanca López-Ibor
- Pediatric Oncology Unit, Health Research Institute HM Hospitals, HM Montepríncipe University Hospital/CIOCC
| |
Collapse
|
3
|
Bakhuizen JJ, Hopman SMJ, Bosscha MI, Dommering CJ, van den Heuvel-Eibrink MM, Hol JA, Kester LA, Koudijs MJ, Langenberg KPS, Loeffen JLC, van der Lugt J, Moll AC, van Noesel MM, Smetsers SE, de Vos-Kerkhof E, Merks JHM, Kuiper RP, Jongmans MCJ. Assessment of Cancer Predisposition Syndromes in a National Cohort of Children With a Neoplasm. JAMA Netw Open 2023; 6:e2254157. [PMID: 36735256 PMCID: PMC9898819 DOI: 10.1001/jamanetworkopen.2022.54157] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
IMPORTANCE To improve diagnostics of cancer predisposition syndromes (CPSs) in children with cancer, it is essential to evaluate the effect of CPS gene sequencing among all children with cancer and compare it with genetic testing based on clinical selection. However, a reliable comparison is difficult because recent reports on a phenotype-first approach in large, unselected childhood cancer cohorts are lacking. OBJECTIVE To describe a national children's cancer center's experience in diagnosing CPSs before introducing routine next-generation sequencing. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study was conducted at the National Retinoblastoma Treatment Center (Amsterdam, the Netherlands) and the Princess Máxima Center for Pediatric Oncology (Utrecht, Netherlands) and included Dutch pediatric patients with a new diagnosis of neoplasm between June 1, 2018, and December 31, 2019. Follow-up was at least 18 months after neoplasm diagnosis. Data analysis was conducted from July 2021 to February 2022. EXPOSURES As part of routine diagnostics, pediatric oncologists and ophthalmologists checked for characteristics of CPSs and selected children for referral to clinical geneticists and genetic testing. MAIN OUTCOMES AND MEASURES Detected cancer predisposition syndromes. RESULTS A total of 824 patients (median [range] age at diagnosis 7.5 [0-18.9] years; 361 girls [44%]) were assessed, including 335 children with a hematological neoplasm (41%) and 489 (59%) with a solid tumor. In 71 of 824 children (8.6%), a CPS was identified, of which most (96%) were identified by a phenotype-driven approach. Down syndrome and neurofibromatosis type 1 were the most common CPSs diagnosed. In 42 of 71 patients (59%), a CPS was identified after these children developed a neoplasm. The specific type of neoplasm was the most frequent indicator for genetic testing, whereas family history played a minor role. CONCLUSIONS AND RELEVANCE In this cohort study of children with a neoplasm, the prevalence of CPSs identified by a phenotype-driven approach was 8.6%. The diagnostic approach for identifying CPSs is currently shifting toward a genotype-first approach. Future studies are needed to determine the diagnostic value, as well as possible disadvantages of CPS gene sequencing among all children with cancer compared with the phenotype-driven approach.
Collapse
Affiliation(s)
- Jette J. Bakhuizen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Saskia M. J. Hopman
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Machteld I. Bosscha
- Department of Ophthalmology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Charlotte J. Dommering
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Marry M. van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- University Medical Center-Wilhelmina Children’s Hospital, Utrecht, the Netherlands
| | - Janna A. Hol
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Lennart A. Kester
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marco J. Koudijs
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Jan L. C. Loeffen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Annette C. Moll
- Department of Ophthalmology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Max M. van Noesel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | - Johannes H. M. Merks
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Roland P. Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marjolijn C. J. Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
4
|
Li KA, Sloat LM, Kung J, Jung J, Li A, Smith CH, Schratz KE, Cooper SL, Pratilas CA, Frankenfield P, Bodurtha J. Considerations in Methods and Timing for Delivery of Genetic Counseling Information to Pediatric Oncology Patients and Families. J Pediatr Hematol Oncol 2022; 44:313-317. [PMID: 34966100 DOI: 10.1097/mph.0000000000002376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/01/2021] [Indexed: 11/26/2022]
Abstract
Many pediatric oncology patients and their families may benefit from genetic counseling and testing; however, identifying the best timing and delivery method for these referrals is sometimes a challenge. The goal of this study was to understand how and when caregivers prefer to receive information about genetic counseling and testing. A total of 56 surveys completed by caregivers at The Johns Hopkins Hospital Pediatric Oncology unit in Baltimore, Maryland were analyzed. A sizeable subset of respondents was interested in receiving information about the availability of genetic counseling from an oncology doctor or nurse, but not a genetic counselor (n=13/55, 24%). Most respondents preferred to be informed about genetic services at diagnosis (n=28/54, 52%) or within 1 to 2 months of diagnosis (n=14/54, 26%). In conclusion, patients and their families may benefit from prompt and early recognition of the risk of cancer predisposition syndromes, preferably within the first 2 months following diagnosis. Oncology professionals are an important source of information, and can introduce the availability of genetic counseling services and motivate families to undergo genetic testing, though alternative communication methods such as brochures may also be useful.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kristen E Schratz
- Pediatrics
- Oncology, The Johns Hopkins University School of Medicine
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Stacy L Cooper
- Pediatrics
- Oncology, The Johns Hopkins University School of Medicine
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Christine A Pratilas
- Pediatrics
- Oncology, The Johns Hopkins University School of Medicine
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | | | - Joann Bodurtha
- Departments of Genetic Medicine
- Pediatrics
- Oncology, The Johns Hopkins University School of Medicine
| |
Collapse
|
5
|
The need for tumor surveillance of children and adolescents with cancer predisposition syndromes: a retrospective cohort study in a tertiary-care children's hospital. Eur J Pediatr 2022; 181:1585-1596. [PMID: 34950979 PMCID: PMC8964590 DOI: 10.1007/s00431-021-04347-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022]
Abstract
UNLABELLED Expert recommendations for the management of tumor surveillance in children with a variety of cancer predisposition syndromes (CPS) are available. We aimed (1) at identifying and characterizing children who are affected by a CPS and (2) at comparing current practice and consensus recommendations of the American Association for Cancer Research workshop in 2016. We performed a database search in the hospital information system of the University Children's Hospital for CPS in children, adolescents, and young adults and complemented this by review of electronic patients' charts. Between January 1, 2017, and December 3, 2019, 272 patients with 41 different CPS entities were identified in 20 departments (144 [52.9%] male, 128 [47.1%] female, median age 9.1 years, range, 0.4-27.8). Three (1.1%) patients died of non-malignancy-associated complications of the CPS; 49 (18.0%) patients were diagnosed with malignancy and received regular follow-up. For 209 (95.0%) of the remaining 220 patients, surveillance recommendations were available: 30/220 (13.6%) patients received CPS consultations according to existing consensus recommendations, 22/220 (10.0%) institutional surveillance approaches were not complying with recommendations, 84/220 (38.2%) patients were seen for other reasons, and 84/220 (38.2%) were not routinely cared for. Adherence to recommendations differed extensively among CPS entities. CONCLUSION The spectrum of CPS patients at our tertiary-care children's hospital is manifold. For most patients, awareness of cancer risk has to be enhanced and current practice needs to be adapted to consensus recommendations. Offering specialized CPS consultations and establishing education programs for patients, relatives, and physicians may increase adherence to recommendations. WHAT IS KNOWN • A wide spectrum of rare syndromes manifesting in childhood is associated with an increased cancer risk. • For many of these syndromes, expert recommendations for management and tumor surveillance are available, although based on limited evidence. WHAT IS NEW • Evaluating current practice, our data attest significant shortcomings in tumor surveillance of children and adolescents with CPS even in a tertiary-care children's hospital. • We clearly advocate a systematic and consistent integration of tumor surveillance into daily practice.
Collapse
|
6
|
Knoll J, Li A, Smith CH, Schratz K, Cooper SL, Meah T, Helmke E, Pratilas CA, Bodurtha J. Improving Detection of Cancer Predisposition Syndromes in Pediatric Oncology. J Pediatr Hematol Oncol 2021; 43:e891-e896. [PMID: 33370000 DOI: 10.1097/mph.0000000000001987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/28/2020] [Indexed: 11/27/2022]
Abstract
Implementation and adherence to consensus statement criteria for referral of pediatric cancer patients for genetic evaluation are critical to identify the 5% to 10% with a genetic cancer predisposition syndrome. The authors implemented a Plan-Do-Study-Act quality improvement initiative aimed at increasing referrals of at-risk patients. Retrospective chart review was followed by educational intervention-with impact assessed over a 9-month prospective chart review. Referral rate improved >2-fold and there was an improvement in documented oncologic history to at least a third-degree relative. The integration of quality improvement can be an effective tool to improve the referral of patients with an elevated risk for a cancer predisposition syndrome.
Collapse
Affiliation(s)
- Jasmine Knoll
- Department of Pediatrics
- Department of Genetic Medicine, The Johns Hopkins University School of Medicine
| | | | - Christy H Smith
- Department of Genetic Medicine, The Johns Hopkins University School of Medicine
| | - Kristen Schratz
- Department of Pediatrics
- Department of Oncology, The Johns Hopkins University School of Medicine
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Stacy L Cooper
- Department of Pediatrics
- Department of Oncology, The Johns Hopkins University School of Medicine
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | | | | | - Christine A Pratilas
- Department of Pediatrics
- Department of Oncology, The Johns Hopkins University School of Medicine
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Joann Bodurtha
- Department of Pediatrics
- Department of Genetic Medicine, The Johns Hopkins University School of Medicine
- Department of Oncology, The Johns Hopkins University School of Medicine
| |
Collapse
|
7
|
Postema FAM, Hopman SMJ, de Borgie CAJM, Aalfs CM, Anninga JK, Berger LPV, Bleeker FE, Dommering CJ, van Eijkelenburg NKA, Hammond P, van den Heuvel-Eibrink MM, Hol JA, Kors WA, Letteboer TGW, Loeffen JLCM, Meijer L, Olderode-Berends MJW, Wagner A, Hennekam RC, Merks JHM. Clinical value of a screening tool for tumor predisposition syndromes in childhood cancer patients (TuPS): a prospective, observational, multi-center study. Fam Cancer 2021; 20:263-271. [PMID: 33686467 PMCID: PMC8484098 DOI: 10.1007/s10689-021-00237-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/17/2021] [Indexed: 11/26/2022]
Abstract
Recognizing a tumor predisposition syndrome (TPS) in a child with cancer is of clinical relevance. Earlier we developed a screening tool to increase diagnostic accuracy and clinical efficiency of identifying TPSs in children with cancer. Here we report on the value of this tool in clinical practice. TuPS is a prospective, observational, multi-center study including children newly diagnosed with cancer from 2016 to 2019 in the Netherlands. Children in whom a TPS had been diagnosed before the cancer diagnosis were excluded. The screening tool consists of a checklist, 2D and 3D photographic series and digital assessment of these by a clinical geneticist. If a TPS was suspected, the patient was assessed positive and referred for routine genetic consultation. Primary aim was to assess the clinical value of this new screening tool. Of the 363 included patients, 57% (208/363) were assessed positive. In 15% of patients (32/208), the 2D photographic series with (n = 12) or without (n = 20) 3D photographs were decisive in the positive assessment. In 2% (4/208) of positive assessed patients, a TPS was diagnosed, and in an additional 2% (4/208) a germline variant of uncertain significance was found. Thirty-five negatively assessed patients were evaluated through routine genetic consultation as controls, in none a TPS was detected. Using the screening tool, 57% of the patients were assessed as suspected for having a TPS. No false negative results were identified in the negative control group in the clinical care setting. The observed prevalence of TPS was lower than expected, due to selection bias in the cohort.
Collapse
Affiliation(s)
- Floor A M Postema
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Saskia M J Hopman
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Cora M Aalfs
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jakob K Anninga
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Lieke P V Berger
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Fonnet E Bleeker
- Department of Clinical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Charlotte J Dommering
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Peter Hammond
- Nuffield Department of Obstetrics and Gynecology, University of Oxford, Oxford, UK
| | | | - Janna A Hol
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Wijnanda A Kors
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Tom G W Letteboer
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan L C M Loeffen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Lisethe Meijer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Maran J W Olderode-Berends
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anja Wagner
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Raoul C Hennekam
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Johannes H M Merks
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Capasso M, Montella A, Tirelli M, Maiorino T, Cantalupo S, Iolascon A. Genetic Predisposition to Solid Pediatric Cancers. Front Oncol 2020; 10:590033. [PMID: 33194750 PMCID: PMC7656777 DOI: 10.3389/fonc.2020.590033] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
Progresses over the past years have extensively improved our capacity to use genome-scale analyses—including high-density genotyping and exome and genome sequencing—to identify the genetic basis of pediatric tumors. In particular, exome sequencing has contributed to the evidence that about 10% of children and adolescents with tumors have germline genetic variants associated with cancer predisposition. In this review, we provide an overview of genetic variations predisposing to solid pediatric tumors (medulloblastoma, ependymoma, astrocytoma, neuroblastoma, retinoblastoma, Wilms tumor, osteosarcoma, rhabdomyosarcoma, and Ewing sarcoma) and outline the biological processes affected by the involved mutated genes. A careful description of the genetic basis underlying a large number of syndromes associated with an increased risk of pediatric cancer is also reported. We place particular emphasis on the emerging view that interactions between germline and somatic alterations are a key determinant of cancer development. We propose future research directions, which focus on the biological function of pediatric risk alleles and on the potential links between the germline genome and somatic changes. Finally, the importance of developing new molecular diagnostic tests including all the identified risk germline mutations and of considering the genetic predisposition in screening tests and novel therapies is emphasized.
Collapse
Affiliation(s)
- Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | | | - Matilde Tirelli
- CEINGE Biotecnologie Avanzate, Naples, Italy.,European School of Molecular Medicine, Università Degli Studi di Milano, Milan, Italy
| | - Teresa Maiorino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Sueva Cantalupo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
9
|
Genetic Testing for Cancer Predisposition Syndromes in Adolescents and Young Adults (AYAs). CURRENT GENETIC MEDICINE REPORTS 2020. [DOI: 10.1007/s40142-020-00187-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Abstract
Developments over the past five years have significantly advanced our ability to use genome-scale analyses—including high-density genotyping, transcriptome sequencing, exome sequencing, and genome sequencing—to identify the genetic basis of childhood cancer. This article reviews several key results from an expanding number of genomic studies of pediatric cancer: ( a) Histopathologic subtypes of cancers can be associated with a high incidence of germline predisposition, ( b) neurodevelopmental disorders or highly penetrant cancer predisposition syndromes can result from specific patterns of variation in genes encoding the SMARC family of chromatin remodelers, ( c) genome-wide association studies with relatively small pediatric cancer cohorts have successfully identified single-nucleotide polymorphisms with large effect sizes and provided insight into population differences in cancer risk, and ( d) multiple exome or genome analyses of unselected childhood cancer cohorts have yielded a 7–10% incidence of pathogenic variants in cancer predisposition genes. This work supports the increasing use of genomic sequencing in the care of pediatric cancer patients and at-risk family members.
Collapse
Affiliation(s)
- Sharon E. Plon
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, USA
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Philip J. Lupo
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas 77030, USA
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
11
|
Goudie C, Cullinan N, Villani A, Mathews N, van Engelen K, Malkin D, Irwin MS, Foulkes WD. Retrospective evaluation of a decision-support algorithm (MIPOGG) for genetic referrals for children with neuroblastic tumors. Pediatr Blood Cancer 2018; 65:e27390. [PMID: 30117275 DOI: 10.1002/pbc.27390] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/06/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neuroblastoma is the most common pediatric extracranial solid tumor. Germline pathogenic variants in ALK and PHOX2B, as well as other cancer predisposition genes, are increasingly implicated in the pathogenesis of neuroblastic tumors. A challenge for clinicians is the identification of children with neuroblastoma who require genetics evaluation for underlying cancer predisposition syndromes (CPS). PROCEDURE We developed a decisional algorithm (MIPOGG) to identify which patients with neuroblastic tumors have an increased likelihood of an underlying CPS. This algorithm, comprising 11 Yes/No questions, evaluates features in the tumor, personal and family history that are suggestive of an underlying CPS. We assessed the algorithm's performance in a retrospective cohort. RESULTS Two hundred and nine of 278 consecutive patients with neuroblastic tumors at The Hospital for Sick Children (2007-2016) had sufficient clinical data for retrospective application of the decisional algorithm. Fifty-one of 209 patients had been referred to genetics for CPS evaluation; 6/51 had a genetic or clinical confirmation of a CPS. The algorithm correctly identified all six children (Beckwith-Wiedemann (n = 2), Fanconi anemia, RB1, PHOX2B, chromosome duplication involving ALK) as requiring a genetic evaluation by using clinical features present at diagnosis. The level of agreement between the algorithm and physicians was 83.9%, with 15 more patients identified by the algorithm than by physicians as requiring a genetics referral. CONCLUSIONS This decisional algorithm appropriately detected all patients who, following genetic evaluation, were confirmed to have a CPS and may improve the detection of CPS in patients with neuroblastic tumors compared with current practice.
Collapse
Affiliation(s)
- Catherine Goudie
- Division of Haematology-Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Noelle Cullinan
- Division of Haematology-Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Anita Villani
- Division of Haematology-Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Natalie Mathews
- Department of Pediatrics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Kalene van Engelen
- Department of Clinical and Metabolic Genetics, The Hospital for Sick Children, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - David Malkin
- Division of Haematology-Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Meredith S Irwin
- Division of Haematology-Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Canada
| | - William D Foulkes
- Department of Medical Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Chan SH, Chew W, Ishak NDB, Lim WK, Li ST, Tan SH, Teo JX, Shaw T, Chang K, Chen Y, Iyer P, Tan EEK, Seng MSF, Chan MY, Tan AM, Low SYY, Soh SY, Loh AHP, Ngeow J. Clinical relevance of screening checklists for detecting cancer predisposition syndromes in Asian childhood tumours. NPJ Genom Med 2018; 3:30. [PMID: 30455982 PMCID: PMC6237849 DOI: 10.1038/s41525-018-0070-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/19/2018] [Indexed: 01/12/2023] Open
Abstract
Assessment of cancer predisposition syndromes (CPS) in childhood tumours is challenging to paediatric oncologists due to inconsistent recognizable clinical phenotypes and family histories, especially in cohorts with unknown prevalence of germline mutations. Screening checklists were developed to facilitate CPS detection in paediatric patients; however, their clinical value have yet been validated. Our study aims to assess the utility of clinical screening checklists validated by genetic sequencing in an Asian cohort of childhood tumours. We evaluated 102 patients under age 18 years recruited over a period of 31 months. Patient records were reviewed against two published checklists and germline mutations in 100 cancer-associated genes were profiled through a combination of whole-exome sequencing and multiplex ligation-dependent probe amplification on blood-derived genomic DNA. Pathogenic germline mutations were identified in ten (10%) patients across six known cancer predisposition genes: TP53, DICER1, NF1, FH, SDHD and VHL. Fifty-four (53%) patients screened positive on both checklists, including all ten pathogenic germline carriers. TP53 was most frequently mutated, affecting five children with adrenocortical carcinoma, sarcomas and diffuse astrocytoma. Disparity in prevalence of germline mutations across tumour types suggested variable genetic susceptibility and implied potential contribution of novel susceptibility genes. Only five (50%) children with pathogenic germline mutations had a family history of cancer. We conclude that CPS screening checklists are adequately sensitive to detect at-risk children and are relevant for clinical application. In addition, our study showed that 10% of Asian paediatric solid tumours have a heritable component, consistent with other populations.
Collapse
Affiliation(s)
- Sock Hoai Chan
- 1Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610 Singapore
| | - Winston Chew
- 1Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610 Singapore
| | - Nur Diana Binte Ishak
- 1Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610 Singapore
| | - Weng Khong Lim
- 2SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore, 169856 Singapore
| | - Shao-Tzu Li
- 1Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610 Singapore
| | - Sheng Hui Tan
- 3VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, 229899 Singapore
| | - Jing Xian Teo
- 2SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore, 169856 Singapore
| | - Tarryn Shaw
- 1Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610 Singapore
| | - Kenneth Chang
- 4Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899 Singapore
| | - Yong Chen
- 5Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, 229899 Singapore
| | - Prasad Iyer
- 6Paediatric Hematology/Oncology Service, KK Women's and Children's Hospital, Singapore, 229899 Singapore
| | - Enrica Ee Kar Tan
- 6Paediatric Hematology/Oncology Service, KK Women's and Children's Hospital, Singapore, 229899 Singapore
| | - Michaela Su-Fern Seng
- 6Paediatric Hematology/Oncology Service, KK Women's and Children's Hospital, Singapore, 229899 Singapore
| | - Mei Yoke Chan
- 6Paediatric Hematology/Oncology Service, KK Women's and Children's Hospital, Singapore, 229899 Singapore
| | - Ah Moy Tan
- 6Paediatric Hematology/Oncology Service, KK Women's and Children's Hospital, Singapore, 229899 Singapore
| | - Sharon Yin Yee Low
- 7Department of Neurosurgery, National Neuroscience Institute, Singapore, 308433 Singapore.,8SingHealth Duke-NUS Neuroscience Academic Clinical Program, Singapore, 308433 Singapore
| | - Shui Yen Soh
- 6Paediatric Hematology/Oncology Service, KK Women's and Children's Hospital, Singapore, 229899 Singapore
| | - Amos Hong Pheng Loh
- 3VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, 229899 Singapore.,5Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, 229899 Singapore
| | - Joanne Ngeow
- 1Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610 Singapore.,9Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857 Singapore.,10Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232 Singapore.,11Institute of Molecular and Cellular Biology, ASTAR, Singapore, 138673 Singapore
| |
Collapse
|
13
|
Family history of cancer and the risk of childhood solid tumours: a Norwegian nationwide register-based cohort study. Br J Cancer 2018; 118:905-912. [PMID: 29462129 PMCID: PMC5886124 DOI: 10.1038/bjc.2017.493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/12/2017] [Accepted: 12/19/2017] [Indexed: 11/15/2022] Open
Abstract
Background: It is not clear if family history of cancer increases risk of cancer in children. Methods: We followed-up a total of 2 610 937 children born between 1960 and 2001 for cancer risk, and their parents and siblings. In this period, 2477 primary childhood solid tumours (except lymphoma) were diagnosed. The data from the Norwegian Family and Life Course Study and from the Norwegian Cancer Register were used. Classification of hereditary cancer syndromes was based on tumour histology, pedigrees and Chompret’s criteria. Results: An association between risk of childhood tumours and first-degree family history of early onset of solid tumours was observed for central nervous system tumours (2.3-fold), neuroblastoma (2.3-fold), retinoblastoma (6.1-fold), hepatic tumours (4.0-fold), and melanomas (8.3-fold). Elevated risk was also seen for osteosarcomas (1.5-fold) when considering first-degree family history of cancer diagnosed at any age. The risk of hepatic tumours, neuroblastomas and melanomas remained elevated even after controlling for probable hereditary cancer syndromes. Conclusions: The increased risk for several childhood solid site cancers among those with first-degree relatives diagnosed with solid cancer suggests that genetic or environmental factors are involved. The fact that these associations remained after controlling for hereditary cancer syndromes indicates other genetic mechanisms might be involved.
Collapse
|
14
|
Nakhaei-Rad S, Haghighi F, Nouri P, Rezaei Adariani S, Lissy J, Kazemein Jasemi NS, Dvorsky R, Ahmadian MR. Structural fingerprints, interactions, and signaling networks of RAS family proteins beyond RAS isoforms. Crit Rev Biochem Mol Biol 2018; 53:130-156. [PMID: 29457927 DOI: 10.1080/10409238.2018.1431605] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Saeideh Nakhaei-Rad
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Fereshteh Haghighi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Parivash Nouri
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Soheila Rezaei Adariani
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Jana Lissy
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Neda S Kazemein Jasemi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Radovan Dvorsky
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Mohammad Reza Ahmadian
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| |
Collapse
|