1
|
Gheibi SA, Alirezalu A, Shirzad H, Iaccarino N, Romano F, Amato J, Alipour H. Phytochemical profiling, antioxidant potential, and UHPLC-HRMS analysis of Phlomis genus aerial parts for therapeutic applications. Sci Rep 2025; 15:6732. [PMID: 40000650 PMCID: PMC11861611 DOI: 10.1038/s41598-025-89055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
In recent years, there has been growing interest in exploring the therapeutic potential of Phlomis species, prompting numerous scientific studies on their pharmacological properties. However, the specific therapeutic applications of Phlomis remain underexplored, warranting further investigation. Iran, as one of the primary centers of diversity for the Phlomis genus in Asia, is home to 20 species, 9 of which are endemic to the region. This study aimed to conduct a comprehensive investigation and comparison of aerial part extracts from 56 Phlomis samples across 6 distinct Iranian species, focusing on their unique phenolic composition, antioxidant properties, and therapeutic potential. The analysis included a detailed assessment of total phenolics, flavonoids, tannin, phenylalanine ammonia-lyase activity, photosynthetic pigments, and ascorbic acid levels, along with measurements of their antioxidant activity. UHPLC-HRMS was also employed to identify unique chemical fingerprints. To interpret the extensive dataset, multivariate data analysis was applied, revealing correlations and distinctions among the different Phlomis species. Results showed that each species contains distinct polyphenols with known bioactivities, anti-inflammatory, antitumor, antimicrobial, cardiovascular, and neuroprotective properties, suggesting the potential for targeted therapeutic applications of specific Phlomis species. In addition, the study found that variations in polyphenol profiles and antioxidant capabilities among Phlomis species are primarily driven by genetic factors rather than environmental conditions, highlighting the critical role of species selection in advancing plant-derived nutraceutical research and applications.
Collapse
Affiliation(s)
- Seyyed Ali Gheibi
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Abolfazl Alirezalu
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Habib Shirzad
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Francesca Romano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy.
| | - Hadi Alipour
- Department of Plant Production and Genetics, Urmia University, Urmia, Iran
| |
Collapse
|
2
|
Mssillou I, Amrati FEZ, Saghrouchni H, El Abdali Y, Lefrioui Y, Batiha GES, Giesy JP, Aboul-Soud MAM, Hassani R, Khalid A, Bousta D. Recent advances in the use of essential oils and their nanoformulations for wound treatment. Burns 2025; 51:107260. [PMID: 39522139 DOI: 10.1016/j.burns.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/14/2024] [Accepted: 08/31/2024] [Indexed: 11/16/2024]
Abstract
Despite progress in medical and surgical treatments of wounds, bioactive compounds still offer an effective and safe approach to accelerate wound healing (WH). In this review, recent results of studies on WH by essential oils (EOs) and their terpenoids are reported. Mechanisms of action of these substances and their possible use in drug delivery systems (DDSs) for WH are discussed. EOs of 38 species from 16 families have been evaluated for their potential to treat wounds. Lamiaceae was the most representative family with 10 species, followed by Myrtaceae and Asteraceae. EOs improve WH by acting as anti-inflammatory, antioxidant, and antimicrobial agents. Some other EOs were involved by increasing expression of transforming growth factor (TGF), inhibition of several factors, including plasminogen activator inhibitor-1 (PAI-1), substitution of type III collagen by type I collagen, and up-regulation of insulin-like growth factor-1 (IGF-1), fibroblast growth factor 2 (FGF-2), and vascular endothelial growth factor (VEGF). These mechanisms improved repair of cells and increased proliferation. Alternatively, DDSs based on nanomaterials (NMs) used to carry EOs for WH are mainly based on nanoparticles (NPs), microparticles (MPs) and scaffolds. There is much evidence that EOs can promote WH. Advancement of nanotechnology in recent years has contributed to improving use of EO with DDSs in WH management. However, some limitations need to be addressed to achieve the translation of this technology into clinical applications for wound treatment.
Collapse
Affiliation(s)
- Ibrahim Mssillou
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| | - Fatima Ez-Zahra Amrati
- Laboratory of Cell Biology and Molecular Genetics (LBCGM), Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir, Souss Massa, Morocco
| | - Hamza Saghrouchni
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, 01330 Balcalı/Sarıçam, Adana, Turkey
| | - Youness El Abdali
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Youssra Lefrioui
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511 Albeheira, Egypt
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA; Department of Environmental Sciences, Baylor University, Waco 76706, USA
| | - Mourad A M Aboul-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Rym Hassani
- Environment and Nature Research Centre, Jazan University, P. O. Box 114, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Health Research Center, Jazan University, P.O. Box, 114, Jazan 45142, Saudi Arabia.
| | - Dalila Bousta
- National Agency of Medicinal and Aromatic Plants, 34025 Taounate, Morocco
| |
Collapse
|
3
|
Yin H, Li Y, Feng Y, Tian L, Li Y. The Extraction, Biosynthesis, Health-Promoting and Therapeutic Properties of Natural Flavanone Eriodictyol. Nutrients 2024; 16:4237. [PMID: 39683630 DOI: 10.3390/nu16234237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Eriodictyol is a flavanone compound commonly found in several edible plants. Ultrasound-assisted extraction and high-performance liquid chromatography (HPLC) are commonly used methods for the separation and analysis of eriodictyol. Many studies show that some micro-organisms can produce eriodictyol as a host. What is more, eriodictyol has a wide range of health benefits, including skincare, neuroprotective, hypoglycemic, anti-inflammatory, and antioxidant activities. In addition, the therapeutic properties of eriodictyol are cardioprotective, hepatoprotective, anticancer, with protective effects on the lungs and kidneys, and so on. This review examines the extraction, biosynthesis, and health and therapeutic properties of the natural compound eriodictyol and its value in medicine and food.
Collapse
Affiliation(s)
- Haiaolong Yin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yaxian Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yi Feng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Lei Tian
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ye Li
- School of Medicine, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
4
|
El Sohafy SM, Shams Eldin SM, Sallam SM, Bakry R, Nassra RA, Dawood HM. Exploring the ethnopharmacological significance of Cynara scolymus bracts: Integrating metabolomics, in-Vitro cytotoxic studies and network pharmacology for liver and breast anticancer activity assessment. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118583. [PMID: 39013541 DOI: 10.1016/j.jep.2024.118583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver and breast cancers are the most dominant cancer types with high occurrence rates. Artichoke (Cynara scolymus L.) has been reputed for its traditional use in alleviating many liver and gallbladder ailments beside its anticancer activity against various types of cancer cells. AIM OF THE STUDY To demonstrate detailed chemical matrices of the different plant parts and evaluate their cytotoxic activities aiming to unveil the relationship between these activities and the intrinsic metabolites using metabolomic studies, in-vitro experiments and network pharmacology. MATERIALS AND METHODS Chemical profiling of extracts from the different plant parts (stems, leaves, bracts and receptacles) was performed using HPLC/QqQ/MS followed by unsupervised chemometric studies. In-vitro cytotoxic potentials of the extracts were evaluated on breast and liver cancer cell line then an OPLS study using linear regression was conducted. Consequently, a network pharmacology analysis on the most bioactive plant organ was applied. RESULTS Unsupervised chemometric analysis revealed that kaempferol-3-O-α-L-rhamnopyranoside-7-O-β-D-galacturonopyranoside, chrysoeriol-7-rutinoside and 1-caffeoylquinic acid were responsible for the segregation of the bract (CSB) segregated from the rest of the plant organs. Interestingly, CSB extract possessed the highest potential in-vitro cytotoxic activity against both liver and breast cancer cells (IC50 = 1.65 and 1.77 μg/mL). As expected, the aforementioned biomarkers were observed to be the discriminatory cytotoxic metabolites in the constructed supervised chemometric model. Network pharmacology analysis on CSB revealed 27 liver cancer-related metabolites of which, 1-caffeoylquinic acid was the most enriched one contributing to 13% of the total interactions. Furthermore, 38 target genes were involved, the most enriched of which were Aldo-keto reductase family 1 member B1 (AKR1B10) and interleukin-2 (IL-2). KEGG pathway analysis unveiled 23 significantly related pathways including metabolic pathways that possessed the lowest p-value (1.6E-5). CONCLUSION The findings demonstrated that CSB is a significant source of cytotoxic metabolites against breast cancer and liver cancer cell lines, hence, drawing attention to the pharmaceutical and medicinal value of this negligible plant organ and paving the route for insightful research into its exact pharmacological cytotoxic mechanisms.
Collapse
Affiliation(s)
- Samah M El Sohafy
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Safa M Shams Eldin
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Shaimaa M Sallam
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Rania Bakry
- Institute of Analytical Chemistry and Radiopharmacy, University of Innsbruck, Austria
| | - Rasha A Nassra
- Medical Biochemistry department, faculty of medicine, Alexandria University, Egypt
| | - Hend M Dawood
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
5
|
Razgonova MP, Nawaz MA, Sabitov AS, Golokhvast KS. Genus Ribes: Ribes aureum, Ribes pauciflorum, Ribes triste, and Ribes dikuscha-Comparative Mass Spectrometric Study of Polyphenolic Composition and Other Bioactive Constituents. Int J Mol Sci 2024; 25:10085. [PMID: 39337572 PMCID: PMC11432568 DOI: 10.3390/ijms251810085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
This study presents the metabolomic profiles of the four Ribes species (Ribes pauciflorum Turcz., Ribes triste Pall., Ribes dicuscha Fisch., and Ribes aureum Purch.). The plant material was collected during two expeditions in the Russian Far East. Tandem mass spectrometry was used to detect target analytes. A total of 205 bioactive compounds (155 compounds from polyphenol group and 50 compounds from other chemical groups) were tentatively identified from the berries and extracts of the four Ribes species. For the first time, 29 chemical constituents from the polyphenol group were tentatively identified in the genus Ribes. The newly identified polyphenols include flavones, flavonols, flavan-3-ols, lignans, coumarins, stilbenes, and others. The other newly detected compounds in Ribes species are the naphthoquinone group (1,8-dihydroxy-anthraquinone, 1,3,6,8-tetrahydroxy-9(10H)-anthracenone, 8,8'-dihydroxy-2,2'-binaphthalene-1,1',4,4'-tetrone, etc.), polyhydroxycarboxylic acids, omega-3 fatty acids (stearidonic acid, linolenic acid), and others. Our results imply that Ribes species are rich in polyphenols, especially flavanols, anthocyanins, flavones, and flavan-3-ols. These results indicate the utility of Ribes species for the health and pharmaceutical industry.
Collapse
Affiliation(s)
- Mayya P. Razgonova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, Saint-Petersburg 190000, Russia; (A.S.S.); (K.S.G.)
- Advanced Engineering School, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950, Russia
| | - Muhammad Amjad Nawaz
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, Tomsk 634050, Russia
- Center for Research in the Field of Materials and Technologies, Tomsk State University, Lenin Ave, 36, Tomsk 634050, Russia
| | - Andrey S. Sabitov
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, Saint-Petersburg 190000, Russia; (A.S.S.); (K.S.G.)
| | - Kirill S. Golokhvast
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, Saint-Petersburg 190000, Russia; (A.S.S.); (K.S.G.)
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, Tomsk 634050, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology RAS, Centralnaya 2b, Presidium, Krasnoobsk 633501, Russia
| |
Collapse
|
6
|
Baali F, Boudjelal A, Smeriglio A, Righi N, Djemouai N, Deghima A, Bouafia Z, Trombetta D. Phlomis crinita Cav. From Algeria: A source of bioactive compounds possessing antioxidant and wound healing activities. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118295. [PMID: 38710460 DOI: 10.1016/j.jep.2024.118295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phlomis crinita Cav. (Lamiaceae), locally known as "El Khayata" or "Kayat El Adjarah", is traditionally used in Algeria for its wound-healing properties. AIM OF THE STUDY Investigate, for the first time, the phytochemical profile, safety, antioxidant and wound-healing activities of the flowering tops methanolic extract of P. crinita (PCME) collected from Bouira Province in the North of Algeria. MATERIALS AND METHODS Preliminary phytochemical assays were carried out on PCME to quantify the main classes of bioactive compounds, such as total phenols, flavonoids, and tannins. An in-depth LC-DAD-ESI-MS analysis was carried out to elucidate the phytochemical profile of this plant species. Antioxidant activity was investigated by several colorimetric and fluorimetric assays (DPPH, TEAC, FRAP, ORAC, β-carotene bleaching and ferrozine assay). The acute oral toxicity of PCME (2000 mg/kg b.w.) was tested in vivo on Swiss albino mice, whereas the acute dermal toxicity and wound-healing properties of the PCME ointment (1-5% PCMO) were tested in vivo on Wistar albino rats. Biochemical and histological analyses were carried out on biological samples. RESULTS The phytochemical screening highlighted a high content of phenolic compounds (175.49 ± 0.8 mg of gallic acid equivalents/g of dry extract), mainly flavonoids (82.28 ± 0.44 mg of quercetin equivalents/g of dry extract). Fifty-seven compounds were identified by LC-DAD-ESI-MS analysis, belonging mainly to the class of flavones (32.27%), with luteolin 7-(6″-acetylglucoside) as the most abundant compound and phenolic acids (32.54%), with salvianolic acid C as the most abundant compound. A conspicuous presence of phenylethanoids (15.26%) was also found, of which the major constituent is forsythoside B. PCME showed a strong antioxidant activity with half-inhibitory activity (IC50) ranging from 1.88 to 37.88 μg/mL and a moderate iron chelating activity (IC50 327.44 μg/mL). PCME appears to be safe with Lethal Dose 50 (LD50) ≥ 2000 mg/kg b.w. No mortality or toxicity signs, including any statistically significant changes in body weight gain and relative organs' weight with respect to the control group, were recorded. A significant (p < 0.001) wound contraction was observed in the 5% PCMO-treated group with respect to the untreated and petroleum jelly groups between 8 and 20 days, whereas no statistically significant results were observed at the two lower doses (1 and 2% PCMO). In addition, the 5% PCMO-treated group showed a statistically significant (p < 0.05) wound healing activity with respect to the reference drug-treated group, showing, at the end of the study, the highest wound contraction percentage (88.00 ± 0.16%). CONCLUSION PCME was safe and showed strong antioxidant and wound-healing properties, suggesting new interesting pharmaceutical applications for P. crinita based on its traditional use.
Collapse
Affiliation(s)
- Faiza Baali
- Department of Biology, Faculty of Nature and Life Sciences and Earth Sciences, University of Ghardaia, BP 455, Ghardaïa, 47000, Algeria.
| | - Amel Boudjelal
- Department of Microbiology and Biochemistry, Faculty of Sciences, University Mohamed Boudiaf of M'Sila, 28000, Algeria; Laboratory of Biology: Applications in Health and Environment, University Mohamed Boudiaf of M'Sila, 28000, Algeria.
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| | - Nadjat Righi
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Sciences, University of Ferhat Abbas Setif 1, 19000, Algeria.
| | - Nadjette Djemouai
- Department of Biology, Faculty of Nature and Life Sciences and Earth Sciences, University of Ghardaia, BP 455, Ghardaïa, 47000, Algeria; Microbial Systems Biology Laboratory (LBSM), Higher Normal School of Kouba, B.P. 92, 16050, Kouba, Algiers, Algeria.
| | - Amirouche Deghima
- Department of Nature and Life Sciences, Faculty of Exact Nature and Life Sciences, University of Biskra, 7000, Algeria.
| | - Zineb Bouafia
- Department of Microbiology and Biochemistry, Faculty of Sciences, University Mohamed Boudiaf of M'Sila, 28000, Algeria; Laboratory of Biology: Applications in Health and Environment, University Mohamed Boudiaf of M'Sila, 28000, Algeria.
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| |
Collapse
|
7
|
Hussain A, Azam S, Rehman K, Ali M, Hamid Akash MS, Zhou X, Rauf A, Alshammari A, Albekairi NA, AL-Ghamdi AH, Quresh AK, Khan S, Khan MU. Green synthesis of Fe and Zn-NPs, phytochemistry and pharmacological evaluation of Phlomis cashmeriana Royle ex Benth. Heliyon 2024; 10:e33327. [PMID: 39027488 PMCID: PMC467069 DOI: 10.1016/j.heliyon.2024.e33327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
This investigation portrays the phytochemical screening, green synthesis, characterization of Fe and Zn nanoparticles, their antibacterial, anti-inflammation, cytotoxicity, and anti-thrombolytic activities. Four dissimilar solvents such as, n-hexane, chloroform, ethyl acetate and n-butanol were used to prepare the extracts of Phlomis cashmeriana Royle ex Benth. This is valued medicinal plant (Family Lamiaceae), native to mountains of Afghanistan and Kashmir. In the GC-MS study of its extract, the identified phytoconstituents have different nature such as terpenoids, alcohol and esters. The synthesized nanoparticles were characterized by SEM, UV, XRD, and FT-IR. The phytochemical analysis showed that the plant contains TPC (total phenolic content) 297.51 mg GAE/g and TFC (total flavonoid content) 467.24 mg CE/g. The cytotoxicity values have shown that the chloroform, n-butanol and aqueous extracts were more toxic than other extracts. The anti-inflammatory potential of n-butanol and aqueous extracts was found higher than all other extracts. Chloroform and n-hexane extracts have low MIC values against both E. coli and S. aureus bacterial strains. Chloroform and aqueous extracts have great anti-thrombolytic potential than all other extracts. Overall, this study successfully synthesized the nanoparticles and provides evidence that P. cashmeriana have promising bioactive compounds that could serve as potential source in the drug formulation.
Collapse
Affiliation(s)
- Amjad Hussain
- Institute of Chemistry, University of Okara, Okara, 56300, Punjab, Pakistan
| | - Sajjad Azam
- Institute of Chemistry, University of Okara, Okara, 56300, Punjab, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Meher Ali
- Department of Chemistry, Karakoram International University, Gilgit, 15100, Pakistan
| | | | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdullah Hamed AL-Ghamdi
- Pharmaceutical Care Department, Namerah General Hospital, Ministry of Health, Namerah, 65439, Saudi Arabia
| | - Ahmad Kaleem Quresh
- Department of Chemistry, University of Sahiwal, Sahiwal, 574000, Punjab, Pakistan
| | - Shoaib Khan
- Department of chemistry, Abbottabad University of Science and Technology AUST, Havelian, Abbottabad, Pakistan
| | | |
Collapse
|
8
|
Gostin IN, Blidar CF. Glandular Trichomes and Essential Oils Variability in Species of the Genus Phlomis L.: A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:1338. [PMID: 38794409 PMCID: PMC11125434 DOI: 10.3390/plants13101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
The genus Phlomis is one of the largest genera in the Lamiaceae family and includes species used since ancient times in traditional medicine, as flavoring for food and as fragrance in cosmetics. The secretory structures (represented by glandular trichomes) as well as the essential oils produced by them constitute the subject of this review. While representatives of this genus are not typically regarded as large producers of essential oils compared to other species of the Lamiaceae family, the components identified in their essential oils and their biological properties necessitate more investigation of this genus. A comprehensive analysis of the specialized literature was conducted for each of the 93 currently accepted species to identify all the results obtained by researchers regarding the secretory structures and essential oils of this genus up to the present time. Glandular trichomes, still insufficiently studied, present morphological peculiarities that differentiate this genus within the family: they are of two categories: capitate (with a wide distribution in this genus) and dendroid. The peltate trichomes, characteristic of many species of this family, are absent. The essential oils from the species of the genus Phlomis have been much more widely studied than the secretory structures. They show considerable variability depending on the species and the environmental conditions.
Collapse
Affiliation(s)
- Irina Neta Gostin
- Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Bdul Carol I, No. 11, 700506 Iasi, Romania
| | - Cristian Felix Blidar
- Department of Biology, Faculty of Informatics and Sciences, University of Oradea, Street Universităţii No. 1, 410087 Oradea, Romania;
| |
Collapse
|
9
|
Stefanakis MK, Tsiftsoglou OS, Mašković PZ, Lazari D, Katerinopoulos HE. Chemical Constituents and Anticancer Activities of the Extracts from Phlomis × commixta Rech. f. ( P. cretica × P. lanata). Int J Mol Sci 2024; 25:816. [PMID: 38255889 PMCID: PMC10815138 DOI: 10.3390/ijms25020816] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
The present work is the first report on the ingredients of the P. × commixta hybrid, a plant of the genus Phlomis. So far, thirty substances have been isolated by various chromatographic techniques and identified by spectroscopic methods, such as UV/Vis, NMR, GC-MS and LC-MS. The compounds are classified as flavonoids: naringenin, eriodyctiol, eriodyctiol-7-O-β-D-glucoside, luteolin, luteolin-7-O-β-D-glucoside, apigenin, apigenin-7-O-β-D-glucoside, diosmetin-7-O-β-D-glucoside, quercetin, hesperetin and quercetin-3-O-β-D-glucoside; phenylpropanoids: martynoside, verbascoside, forsythoside B, echinacoside and allysonoside; chromene: 5,7-dihydroxychromone; phenolic acids: caffeic acid, p-hydroxybenzoic acid, chlorogenic acid, chlorogenic acid methyl ester, gallic acid, p-coumaric acid and vanillic acid; aliphatic hydrocarbon: docos-1-ene; steroids: brassicasterol and stigmasterol; a glucoside of allylic alcohol, 3-O-β-D-apiofuranosyl-(1→6)-O-β-D-glucopyranosyl-oct-1-ene-3-ol, was fully characterized as a natural product for the first time. Two tyrosol esters were also isolated: tyrosol lignocerate and tyrosol methyl ether palmitate, the latter one being isolated as a natural product for the first time. Moreover, the biological activities of the extracts from the different polarities of the roots, leaves and flowers were estimated for their cytotoxic potency. All root extracts tested showed a high cytotoxic activity against the Hep2c and RD cell lines.
Collapse
Affiliation(s)
- Michalis K. Stefanakis
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece; (M.K.S.); (H.E.K.)
| | - Olga St. Tsiftsoglou
- Laboratory of Pharmacognosy, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Pavle Z. Mašković
- Department of Food Technology, Faculty of Agronomy, University of Kragujevac, Cara Dušana 34, 32000 Čačak, Serbia;
| | - Diamanto Lazari
- Laboratory of Pharmacognosy, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | | |
Collapse
|
10
|
Manai-Djebali H, Taamalli A, Iswaldi I, Arráez-Román D, Segura-Carretero A, Marouani A, Mliki A, Martínez-Cañas MA, Ghorbel A. Chemometric analysis of Tunisian durum wheat metabolites using UPLC-ESI-QTOF-MS/MS. J Food Sci 2023. [PMID: 37183914 DOI: 10.1111/1750-3841.16605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/06/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023]
Abstract
Bioactive compounds in wheat have received a great interest in the last few years due to their nutritional and health benefits. Various analytical procedures were used to identify these compounds in wheat kernels. An ultra-performance liquid chromatography coupled to electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS/MS) was used for the screening of bioactive compounds in seven Tunisian durum wheat extracts. The aim of this study was to realize a screening of several classes of bioactive compounds in the same analysis and to identify specific metabolite markers for discriminating the durum wheat varieties. The UPLC-ESI-QTOF-MS/MS allows the detection of 81 metabolites, belonging to different chemical families such as sugars, organic acids, amino acids, fatty acids, and phenolic compounds represented by benzoic and cinnamic acid derivatives, phenolic alcohols, flavones, lignans, and condensed tannins. Chemical profiles identified varied greatly between different wheat genotypes. As far as the authors know, this is the first time that different chemical classes were detected at the same time in durum wheat kernels using UPLC-ESI-QTOF-MS/MS. This study gives the most complete map of metabolites in Tunisian durum wheat and proves that UPLC-QTOF-MS/MS coupled with chemometric analysis is a great tool for discrimination between durum wheat cultivars.
Collapse
Affiliation(s)
- Hédia Manai-Djebali
- Laboratory of Olive Biotechnology, LR15CBBC05, Centre of Biotechnology of Borj-Cédria, Hammam-Lif, Tunisia
| | - Amani Taamalli
- Laboratory of Olive Biotechnology, LR15CBBC05, Centre of Biotechnology of Borj-Cédria, Hammam-Lif, Tunisia
- Department of Chemistry, College of Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Ihsan Iswaldi
- Food Business Technology Study Program, School of Applied Science, Technology, Engineering and Mathematics, Universitas Prasetiya Mulya, Tangerang, Indonesia
| | - David Arráez-Román
- Centro de Investigacion y Desarrollo del Alimento Funcional, Parque Tecnológico de Ciencias de la Salud (PTS), Granada, Spain
| | - Antonio Segura-Carretero
- Centro de Investigacion y Desarrollo del Alimento Funcional, Parque Tecnológico de Ciencias de la Salud (PTS), Granada, Spain
| | - Ahmed Marouani
- Higher School of Agriculture, Route de Dahmeni - Boulifa, EL Kef, Tunisia
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cédria, Hammam-Lif, Tunisia
| | - Manuel A Martínez-Cañas
- Tecnological AgriFood Institute, Centre for Scientific Research and Technology in Extremadura, Government of Extremadura, Badajoz, Spain
| | - Abdelwahed Ghorbel
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cédria, Hammam-Lif, Tunisia
| |
Collapse
|
11
|
Chrysargyris A, Tomou EM, Goula K, Dimakopoulou K, Tzortzakis N, Skaltsa H. Sideritis L. essential oils: A systematic review. PHYTOCHEMISTRY 2023; 209:113607. [PMID: 36746369 DOI: 10.1016/j.phytochem.2023.113607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Essential oils are extensively used in the food, cosmetic, perfume, pharmaceutical, and agrochemical industries due to their aroma and pharmacological properties. The Lamiaceae family is mainly represented by widely well-known medicinal and aromatic plants that produce essential oil. Over the years, Sideritis L. essential oils have attracted great interest due to their chemical variability among the different taxa and their pharmacological activities. In-depth research of previously published literature was performed on electronic databases with several key search words for the collection of the available data and a total of 128 scientific studies were used since 1983. To date, 155 accepted Sideritis samples have been studied originating from 15 countries and more than 250 compounds have been reported in 87 Sideritis taxa overall. Furthermore, antimicrobial and antioxidant effects have been the most studied pharmacological activities. This review summarizes and critically discusses the research work on the chemical composition and pharmacological activities of essential oil of the genus Sideritis based on the currently valid taxonomy. Additionally, statistical analysis is encompassed to provide a deeper comprehensive understanding of the high chemical polymorphism of Sideritis essential oils. We expect that this review will encourage researchers to investigate unexplored Sideritis taxa and will contribute to revealing uncharted scientific territory and future perspectives on these plants.
Collapse
Affiliation(s)
- Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036, Limassol, Cyprus.
| | - Ekaterina-Michaela Tomou
- Department of Pharmacognosy & Chemistry of Natural Products, School of Health Sciences, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece.
| | - Katerina Goula
- Section of Ecology and Systematics, Department of Biology, National & Kapodistrian University of Athens, Panepistimiopolis, 15784, Athens, Greece.
| | - Konstantina Dimakopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036, Limassol, Cyprus.
| | - Helen Skaltsa
- Department of Pharmacognosy & Chemistry of Natural Products, School of Health Sciences, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece.
| |
Collapse
|
12
|
Yakubu Y, Ahmad MT, Chong CM, Ismail IS, Shaari K. Phenolic content of Terminalia catappa L. leaf and toxicity evaluation on red hybrid tilapia (Oreochromis sp.). JOURNAL OF FISH BIOLOGY 2023; 102:358-372. [PMID: 36333916 DOI: 10.1111/jfb.15266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Despite the use of Terminalia catappa (TC) leaf by traditional fish farmers around the world to improve the health status of cultured fish, there is a paucity of information on comprehensive metabolite profile and the maximum safe dose of the plant. This study aims at profiling the methanol leaf extract of T. catappa, quantifying total phenolic content (TPC) as well as the total flavonoid content (TFC) and evaluating its acute toxicity on blood, plasma biochemical parameters and histopathology of some vital organs in red hybrid tilapia (Oreochromis sp.). The experimental fish were acclimatised for 2 weeks and divided into six groups. Group (1) served as a control group and was administered 0.2 ml,g-1 of phosphate buffer saline (PBS). Groups 2-6 were orally administered T. catappa leaf extracts (0.2 ml.50 g-1 ) in the following sequence; 31.25, 62.5, 125, 250 and 500 mg.kg-1 body weight. The metabolites identified in T. catappa using liquid chromatography-tandem mass electrospray ionisation spectrometry (LC-ESI-MS/MS) revealed the presence of organic acids, hydrolysable tannins, phenolic acids and flavonoids. Phenolic quantification revealed reasonable quantity of phenolic compounds (217.48 μg GAEmg-1 for TPC and 91.90 μg. QCEmg-1 for TFC). Furthermore, there was no significant difference in all the tested doses in terms of blood parameters and plasma biochemical analysis except for the packed cell volume (PCV) at 500 mg.kg-1 when compared to the control. Significant histopathological changes were observed in groups administered with the extract at 125, 250 and 500 mg.kg-1 doses. To a very large extent it is therefore safe to administer the extract at 31.25 and 62.5 mg.kg-1 in tilapia.
Collapse
Affiliation(s)
- Yahaya Yakubu
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Pure and Applied Chemistry, Faculty of Science, Kaduna State University, Kaduna, Nigeria
| | - Muhammad T Ahmad
- Veterinary Teaching Hospital, Ahmadu Bello University, Zaria, Nigeria
- Faculty of Veterinary Medicine, Ahmadu Bello University Zaria, Zaria, Nigeria
| | - Chou M Chong
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Intan S Ismail
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
13
|
Hu L, Liang Z, Wang Y, Wei G, Huang YC. Identification of C-glycosyl flavones and O-glycosyl flavones in five Dendrobium species by high-performance liquid chromatography coupled with electrospray ionization multi-stage tandem MS. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9158. [PMID: 34223677 DOI: 10.1002/rcm.9158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Flavones are widely used in traditional Chinese medicine (TCM) and are the pharmacologically active ingredients of many medicinal plants, such as Dendrobium. With the increasing demand for medicinal Dendrobium, the identification of characteristic flavones that can serve as chemical markers for quality control is critical step for quality assurance and safety in the TCM industry. METHODS High-performance liquid chromatography coupled with electrospray ionization multi-stage tandem mass spectrometry (HPLC/ESI-MSn ) was used to identify the chemical constituents in five types of Dendrobium: D. crystallinum, D. falconeri, D. strongylanthum, D. moniliforme, and D. gratiosissimum. RESULTS A total of seventy-six C-glycosyl flavones and three O-glycosyl flavones were identified, of which fifteen C-glycosyl flavones were found in D. crystallinum, twenty four were found in D. falconeri, thirty were found in D. strongylanthum, seven were found in D. moniliforme (also called "Huangtongpi", from Anhui, China), fifteen were found in D. moniliforme (also called "Zitongpi", from Yunnan, China) and seventeen were found in D. gratiosissimum. Additionally, three flavone O-glycosides were all found in D. strongylanthum. CONCLUSIONS The results of this study may be useful for the quality assessment and for the application of D. crystallinum, D. falconeri, D. strongylanthum, D. moniliforme, and D. gratiosissimum. This study provides comprehensive information for identification of flavones from other Chinese herbs.
Collapse
Affiliation(s)
- Li Hu
- The First College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiyun Liang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yawen Wang
- The First College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gang Wei
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
- Shaoguan Institute of Danxia Dendrobium Officinale (SIDDO), Shaoguan, China
| | - Yue-Chun Huang
- The First College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
14
|
Screening for α-Glucosidase-Inhibiting Saponins from Pressurized Hot Water Extracts of Quinoa Husks. Foods 2022; 11:foods11193026. [PMID: 36230101 PMCID: PMC9563573 DOI: 10.3390/foods11193026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
The present study extracted total saponins from quinoa husks with pressurized hot water extraction and optimized the extraction conditions. The response surface methodology (RSM) with a Box–Behnken design (BBD) was employed to investigate the effects of extraction flow rate, extraction temperature and extraction time on the extraction yield of total saponins. A maximal yield of 23.06 mg/g was obtained at conditions of 2 mL/min, 210 °C and 50 min. The constituents of the extracts were analyzed by liquid chromatography–mass spectrometry (LC-MS). A total of twenty-three compounds were identified, including five flavonoids, seventeen triterpenoid saponins and a phenolic acid. Moreover, we performed an in vitro assay for the α-glucosidase activity and found a stronger inhibitory effect of the quinoa husk extracts than acarbose, suggesting its potential to be developed into functional products with hypoglycemic effect. Finally, our molecular docking analyses indicated triterpenoid saponins as the main bioactive components.
Collapse
|
15
|
Ding Y, Wu Y, Chen J, Zhou Z, Zhao B, Zhao R, Cui Y, Li Q, Cong Y. Protective effect of Eucommia ulmoides Oliver male flowers on ethanol-induced DNA damage in mouse cerebellum and cerebral cortex. Food Sci Nutr 2022; 10:2794-2803. [PMID: 35959248 PMCID: PMC9361448 DOI: 10.1002/fsn3.2882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022] Open
Abstract
Ethanol is a principal ingredient of alcoholic beverages with potential neurotoxicity and genotoxicity, and the ethanol-associated oxidative DNA damage in the central nervous system is well documented. Natural product may offer new options to protect the brain against ethanol-induced neurotoxicity. The male flower of Eucommia ulmoides (EUF) Oliver has been extensively utilized as the tea, the healthy hot drink on the market. In this study, 19 constituents in the effective fraction of EUF were identified by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). In the single-cell gel electrophoresis assay, EUF was observed to ameliorate DNA damage in mouse cerebellum and cerebral cortex caused by acute ethanol administration, which was further confirmed by the morphological observation. The protective effects of EUF were associated with increasing total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-PX) activities, and a decrease in nitric oxide (NO), malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and kelch-like ECH-associated protein-1 (Keap1) levels. Molecular docking results demonstrated that compounds 4, 7, 9, and 16 from EUF have a strong affinity to the Keap1 Kelch domain to hinder the interaction of nuclear factor-erythroid 2-related factor 2 (Nrf2) with Keap1. These findings suggest that EUF is a potent inhibitor of ethanol-induced brain injury possibly via the inhibition of oxidative stress.
Collapse
Affiliation(s)
- Yanxia Ding
- Institute of PharmacyEngineering Center of Henan Province Eucommia ulmoides Cultivation and UtilizationSchool of PharmacyHenan UniversityKaifengChina
| | - Yantong Wu
- Institute of PharmacyEngineering Center of Henan Province Eucommia ulmoides Cultivation and UtilizationSchool of PharmacyHenan UniversityKaifengChina
| | - Juan Chen
- Institute of PharmacyEngineering Center of Henan Province Eucommia ulmoides Cultivation and UtilizationSchool of PharmacyHenan UniversityKaifengChina
| | - Zhaoli Zhou
- Institute of PharmacyEngineering Center of Henan Province Eucommia ulmoides Cultivation and UtilizationSchool of PharmacyHenan UniversityKaifengChina
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan Joint International Laboratory for Crop Multi‐Omics ResearchSchool of Life SciencesHenan UniversityKaifengChina
| | - Rihong Zhao
- Institute of PharmacyEngineering Center of Henan Province Eucommia ulmoides Cultivation and UtilizationSchool of PharmacyHenan UniversityKaifengChina
| | - Yuzi Cui
- Institute of PharmacyEngineering Center of Henan Province Eucommia ulmoides Cultivation and UtilizationSchool of PharmacyHenan UniversityKaifengChina
| | - Qin Li
- Institute of PharmacyEngineering Center of Henan Province Eucommia ulmoides Cultivation and UtilizationSchool of PharmacyHenan UniversityKaifengChina
| | - Yue Cong
- Institute of PharmacyEngineering Center of Henan Province Eucommia ulmoides Cultivation and UtilizationSchool of PharmacyHenan UniversityKaifengChina
| |
Collapse
|
16
|
Mohammadi M, Kharazian N. Untargeted metabolomics study and identification of potential biomarkers in the six sections of the genus Stachys L. (Lamiaceae) using HPLC-MQ-API-MS/MS. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:915-942. [PMID: 35670362 DOI: 10.1002/pca.3149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION The genus Stachys L., belonging to the family Lamiaceae, is one of the largest genera with remarkable medicinal properties. Plants of this genus produce a broad range of secondary metabolites. OBJECTIVES Due to the incomplete comprehensive assessment of chemical profiles in Stachys species, we conducted an untargeted metabolomics study and identified potential biomarkers in the six sections of Stachys with chemotaxonomic importance. MATERIAL AND METHODS Dried leaves of 17 taxa were utilized for analysis of all the constituents using HPLC-MQ-API-MS. The obtained data were processed and analyzed using multivariate statistical methods, including heatmaps, PLS-DA score plots, functional analysis of metabolic pathways, metabolite set enrichment analysis, and biomarker and network analysis. RESULTS Among the 129 metabolites, 111 flavonoids and 18 non-flavonoids were recognized. The most represented flavonoids, including 41 flavones and 20 flavonols, displayed remarkable abundance. In non-flavonoid compounds, a total of six coumarins and six phenolic acids were present at high levels. In terms of approved markers in six sections, 76 chemical compounds, mainly flavonoids, coumarins, quinic acids, and cinnamic acids, were identified as potential biomarkers or chemotaxonomic indicators. Accordingly, the taxonomic complexities of some Stachys species in sections Fragilicaulis, Aucheriana, and Setifolia were properly resolved. CONCLUSION An HPLC-MS/MS-based metabolomics approach integrated with multivariate statistical methods was employed to identify (1) valuable markers and analyze metabolic diversity and (2) predict the pharmaceutical properties of Stachys species. The obtained chemical profiles provide a new perspective for investigation of the Stachys genus.
Collapse
Affiliation(s)
- Mozhgan Mohammadi
- Department of Botany, Faculty of Sciences, Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Navaz Kharazian
- Department of Botany, Faculty of Sciences, Central Laboratory, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
17
|
de Moura PHB, Porzel A, Nunes RM, Baratto LC, Wessjohann LA, Martins RCC, Leal ICR. Antioxidant capacity and fragmentation features of C-glycoside isoflavones by high-resolution electrospray ionization tandem mass spectrometry using collision-induced and high-energy collisional dissociation techniques. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4793. [PMID: 34881488 DOI: 10.1002/jms.4793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
The rapid annotation and identification by mass spectrometry techniques of flavonoids remains a challenge, due to their structural diversity and the limited availability of reference standards. This study applies a workflow to characterize two isoflavonoids, the orobol-C-glycosides analogs, using high-energy collisional dissociation (HCD)- and collision-induced dissociation (CID)-type fragmentation patterns, and also to evaluate the antioxidant effects of these compounds by ferric reducing antioxidant power (FRAP), 2,2'-azino-bis(3-ethylbenzothiazolin acid) 6-sulfonic acid (ABTS), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods. By the CID-type fragmentation, in positive mode and at all high-resolution mass spectrometry (HRMS) multiple stage, there were shown differences in the annotation of the compounds, mainly concerning some ratios of relative abundance. At CID-MS2 20 eV, the compounds could be efficiently characterized, because they present distinct base peaks [M + H]+ and [M + H-H2O]+ for the orobol-8-C- and orobol-6-C-glycoside, respectively. Similarly, by the HCD-type fragmentation, in HRMS2 stage, differences between orobol analogs in both mode of ionization were observed. However, the HR HCD-MS2 at 80 eV, in positive mode, generated more ions and each isomer presented different base peaks ions, [0,2X]+ for the orobol-8-C-glycoside and [0,3X]+ for the orobol-6-C-glycoside. By the DPPH, the 8-C-derivative showed a very close value compared with the standard rutin and, in the ABTS method, a higher radical-scavenging activity. In both methods, the EC50 of orobol-8-C-glycoside was almost twice better compared with orobol-6-C-glycoside. In FRAP, both C-glycosides showed a good capacity as Fe+3 reducing agents. We could realize that combined MS techniques, highlighting the positive mode of ionization, can be used to evaluate the isoflavones analogs being useful to differentiate between the isomeric flavones; therefore, these data are important to mass spectrometry dereplication studies become more efficient. HIGHLIGHTS: The MS2, in positive mode of ionization, at low CID energies (15 and 20 eV) and at high HCD energies (50 eV), was suitable to characterize orobol 8 and 6-C-derivatives. Positive mode of ionization was effective to rapid annotation of each orobol C-glycoside. The orobol C-derivatives showed high radical scavenging effects. Orobol-8-C-glycoside showed higher antioxidant capacity.
Collapse
Affiliation(s)
- Patricia Homobono Brito de Moura
- Natural Products Research Institute (IPPN), Center of Health Sciences (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Natural Products and Biological Assays (LaProNEB), Natural Products and Food Department, Pharmacy Faculty, Center of Health Sciences (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany
| | - Rafaela Machado Nunes
- Laboratory of Natural Products and Biological Assays (LaProNEB), Natural Products and Food Department, Pharmacy Faculty, Center of Health Sciences (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Leopoldo Clemente Baratto
- Laboratory of Natural Products and Biological Assays (LaProNEB), Natural Products and Food Department, Pharmacy Faculty, Center of Health Sciences (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany
| | - Roberto Carlos Campos Martins
- Natural Products Research Institute (IPPN), Center of Health Sciences (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Ivana Correa Ramos Leal
- Laboratory of Natural Products and Biological Assays (LaProNEB), Natural Products and Food Department, Pharmacy Faculty, Center of Health Sciences (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
18
|
Wan J, Gong X, Wang F, Wen C, Wei Y, Han B, Ouyang Z. Comparative analysis of chemical constituents by HPLC-ESI-MS n and antioxidant activities of Dendrobium huoshanense and Dendrobium officinale. Biomed Chromatogr 2021; 36:e5250. [PMID: 34569088 DOI: 10.1002/bmc.5250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/11/2022]
Abstract
Dendrobium huoshanense is a Chinese medicinal herb that has high quality and excellent efficacy. However, the chemical basis of its activity is still unclear. Of note, Dendrobium officinale is the most widely utilized among the Dendrobium species. Therefore, the current study systematically investigated the chemical constituents of methanolic extracts and different polar fractions of aqueous extracts from the two herbs by HPLC-ESI-MSn , and then compared in vitro antioxidant activities of their five different polar extracts. Consequently, 61 and 49 compounds were identified from D. huoshanense and D. officinale, respectively, of which 43 compounds were common to both species. In addition, 17 out of 22 different compounds were identified only in D. huoshanense. Moreover, the peak areas of some shared identical compounds of D. huoshanense were significantly larger than that of D. officinale. In vitro antioxidant evaluation results showed that the n-BuOH-soluble fraction of the two herbs exhibited remarkable antioxidant activities. Furthermore, the antioxidant activities of different fractions of D. huoshanense were separately superior to that of D. officinale, which may be attributed to its variable and high contents of flavonoids, bibenzyls and phenanthrenes. These results provide the evidence for the high quality and efficacy of D. huoshanense.
Collapse
Affiliation(s)
- Jingqiong Wan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Xiaohui Gong
- School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| | - Feixuan Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China.,Nanjing Institute of Product Quality Inspection, Nanjing, People's Republic of China
| | - Chongwei Wen
- School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| | - Bangxing Han
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, People's Republic of China
| | - Zhen Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China.,School of Pharmacy, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
19
|
Salimikia I, Bahmani M, Abbaszadeh S, Rafieian-Kopaei M, Nazer MR. Campylobacter: A Review of New Promising Remedies with Medicinal Plants and Natural Antioxidants. Mini Rev Med Chem 2021; 20:1462-1474. [PMID: 31965943 DOI: 10.2174/1389557520666200117141641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/02/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022]
Abstract
Campylobacter (curved bacteria) is considered one of the most important and common zoonotic bacteria and the three leading bacterial causes of gastroenteritis and diarrhea. Antibacterial resistance is growing and expanding. The aim of this review article is to report anti-Campylobacter medicinal plants. For this purpose, the search terms consisting of Campylobacter, medicinal plants, essential oil, extract, and traditional medicine were used to retrieve the relevant articles published in the journals indexed in Information Sciences Institute, Web of Science, PubMed, Scopus, Google Scholar, and Scientific Information Databases. Then, the findings of eligible articles were analyzed. According to the analysis, 71 medicinal plants were found to exert anti-Campylobacter effect. The active compounds of these plants are possibly nature-based antibiotic agents that are effective on Campylobacter. If these compounds are isolated, purified, and studied in pharmaceutical investigations, they can be used to produce nature-based, anti-Campylobacter antibiotics.
Collapse
Affiliation(s)
- Iraj Salimikia
- Department of Pharmacognosy, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahmoud Bahmani
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Saber Abbaszadeh
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Reza Nazer
- Department of Infectious Diseases, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
20
|
Torky ZA, Moussa AY, Abdelghffar EA, Abdel-Hameed UK, Eldahshan OA. Chemical profiling, antiviral and antiproliferative activities of the essential oil of Phlomis aurea Decne grown in Egypt. Food Funct 2021; 12:4630-4643. [PMID: 33912870 DOI: 10.1039/d0fo03417g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we investigated the chemical composition of the edible Phlomis aurea oil and its anticancer potential on three human cancer cell lines, as well as its antiviral activity against Herpes simplex-1 (HSV-1). Exploring Phlomis aurea Decne essential oil by gas chromatography coupled with mass spectrometry (GC/MS) revealed the presence of four major components: germacrene D (51.56%), trans-β-farnesene (11.36%), α-pinene (22.96%) & limonene (6.26%). An antiproliferative effect, as determined by the MTT assay, against human hepatic, breast and colon cancer cell lines, manifested IC50 values of 10.14, 328.02, & 628.43 μg mL-1, respectively. Cytotoxicity assay of the Phlomis oil against Vero cell lines revealed a safe profile within the range of 50 μg ml-1. Phlomis essential oil induced the apoptosis of HepG2 cells through increasing cell accumulation in sub G1 & G2/M phases, decreasing both S & G0/G1 phases of the cell cycle, triggering both caspases-3 &-9, and inhibiting cyclin dependent kinase-2 (CDK2). The antiviral activity of the oil against HSV-1 was investigated using the plaque reduction assay, which showed 80% of virus inhibition. Moreover, the molecular docking in silico study of the four major chemical constituents of the oil at the CDK2 binding site demonstrated marked interactions with the ATP-binding site residues through alkyl & Pi-alkyl interactions. Cell cycle distribution of HepG2 cells was studied using flow cytometry to highlight the apoptotic mechanistic approaches by measuring caspases-3 &-9 and CDK2 activities. Thus, the edible Phlomis oil can be regarded as a candidate for in vivo studies to prove that it is a promising natural antiviral/anticancer agent.
Collapse
Affiliation(s)
- Zenab Aly Torky
- Department of Microbiology, Faculty of Science, Ain Shams University, Egypt
| | | | | | | | | |
Collapse
|
21
|
GÖGER G, TÜRKYOLU Ü, GÜRŞEN EN, YUR S, KARADUMAN AB, GÖGER F, TEKİN M, ÖZEK G. Phytochemical characterisation of Phlomis linearis Boiss. & Bal and screening for anticholinesterase, antiamylase, antimicrobial, and cytotoxic properties. Turk J Chem 2021; 45:387-399. [PMID: 34104051 PMCID: PMC8164195 DOI: 10.3906/kim-2009-59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/13/2020] [Indexed: 11/04/2022] Open
Abstract
In the present work, essential oil and fatty acids and extracts obtained from aerial parts of Phlomis linearis Boiss. & Bal. were investigated for chemical composition and biological activities. The phytochemical analyses were conducted with gas chromatography-mass spectrometry/flame ionisation detector (GC-MS/FID) and liquid chromatography-mass spectromtetry (LC-MS/MS) techniques. The extracts and essential oil were studied for α-amylase and acetylcholinesterase activities with two different spectrophotometric methods. Antimicrobial activities of the extracts were investigated by microdilution. The extracts were evaluated in vitro for cytotoxic effects against cancer and normal cell lines by MTT assay. The essential oil (EO) contained α-pinene (12.5%) and β-caryophyllene (10.7%) as main compounds. Palmitic (26.5%) and nonadecanoic acids (26.6%) were determined as fatty acids. Phytochemical analysis of the extracts found phenolic acids, phlinosides, verbascoside, and flavonoids. The extracts and essential oil demonstrated poor α-amylase inhibitory activity. The best acetylcholinesterase inhibitory activity was obtained for diethly ether extract of P. linearis (67.2 ± 3.4%) at 10 mg /mL concentration. Ethyl acetate extract found to be effective against Staphlococcus aureus at a minimum inhibitory concentration (MIC) of 156.26 µg/mL. Diethyl ether extract of P. linearis was active on A549 cell lines with an IC50 = 316 ± 4.16 µg/mL when compared with cisplatin IC50 = 24.43 ± 0.14 µg/mL. To the best of our knowledge, the present work is the first comprehensive report on anti-acetylcholinesterase, anti-α-amylase, and antimicrobial activities, as well as cytotoxic effects of P. linearis.
Collapse
Affiliation(s)
- Gamze GÖGER
- Department of Pharmacognosy, Faculty of Pharmacy, Trakya University, EdirneTurkey
| | | | | | - Süleyman YUR
- Medicinal Plant, Drug and Scientific Research Center (AUBIBAM), Anadolu University, EskişehirTurkey
| | - Abdullah Burak KARADUMAN
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, EskişehirTurkey
| | - Fatih GÖGER
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, EskişehirTurkey
| | - Mehmet TEKİN
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Trakya University, EdirneTurkey
| | - Gülmira ÖZEK
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, EskişehirTurkey
| |
Collapse
|
22
|
Noumi E, Snoussi M, Anouar EH, Alreshidi M, Veettil VN, Elkahoui S, Adnan M, Patel M, Kadri A, Aouadi K, De Feo V, Badraoui R. HR-LCMS-Based Metabolite Profiling, Antioxidant, and Anticancer Properties of Teucrium polium L. Methanolic Extract: Computational and In Vitro Study. Antioxidants (Basel) 2020; 9:E1089. [PMID: 33167507 PMCID: PMC7694502 DOI: 10.3390/antiox9111089] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
In this study, we investigate the phytochemical profile, anticancer, and antioxidant activities of Teucrium polium methanolic extract using both in vitro and in silico approaches. The results showed the identification of 29 phytochemical compounds belonging to 13 classes of compounds and 20 tripeptides using High Resolution-Liquid Chromatography Mass Spectrometry (HR-LCMS). 13R-hydroxy-9E,11Z octadecadienoic acid, dihydrosamidin, valtratum, and cepharantine were the main compounds identified. The tested extract showed promising antioxidant activities (ABTS-IC50 = 0.042 mg/mL; 1,1-diphenyl-2-picrylhydrazyl (DPPH)-IC50 = 0.087 mg/mL, β-carotene-IC50 = 0.101 mg/mL and FRAP-IC50 = 0.292 mg/mL). Using both malignant Walker 256/B and MatLyLu cell lines, T. polium methanolic extract showed a dose/time-dependent antitumor activity. The molecular docking approach revealed that most of the identified molecules were specifically binding with human peroxiredoxin 5, human androgen, and human progesterone receptors with high binding affinity scores. The obtained results confirmed that T. polium is a rich source of bioactive molecules with antioxidant and antitumor potential.
Collapse
Affiliation(s)
- Emira Noumi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.A.); (V.N.V.); (S.E.); (M.A.); (R.B.)
- Laboratory of Bioressources: Integrative Biology and Recovery, High Institute of Biotechnology-University of Monastir, Monastir 5000, Tunisia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.A.); (V.N.V.); (S.E.); (M.A.); (R.B.)
- Laboratory of Genetics, Biodiversity and Valorisation of Bioressources, High Institute of Biotechnology-University of Monastir, Monastir 5000, Tunisia
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.A.); (V.N.V.); (S.E.); (M.A.); (R.B.)
| | - Vajid N. Veettil
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.A.); (V.N.V.); (S.E.); (M.A.); (R.B.)
| | - Salem Elkahoui
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.A.); (V.N.V.); (S.E.); (M.A.); (R.B.)
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP 901, Hammam lif 2050, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.A.); (V.N.V.); (S.E.); (M.A.); (R.B.)
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India;
| | - Adel Kadri
- Department of Chemistry, College of Science and Arts in Baljurashi, Albaha University, Albaha 65527, Saudi Arabia;
- Department of Chemistry, Faculty of Science of Sfax, University of Sfax, BP 1117, Sfax 3000, Tunisia
| | - Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity, Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.A.); (V.N.V.); (S.E.); (M.A.); (R.B.)
- Section of Histology—Cytology, Medicine College of Tunis, Tunis El Manar University, Road Djebel Lakhdhar, La Rabta-Tunis 1007, Tunisia
- Laboratory of Histo-Embryology and Cytogenetic, Medicine College of Sfax, Sfax University, Sfax 3029, Tunisia
| |
Collapse
|
23
|
Boniface PK, Elizabeth FI. Flavones as a Privileged Scaffold in Drug Discovery: Current Developments. Curr Org Synth 2020; 16:968-1001. [PMID: 31984880 DOI: 10.2174/1570179416666190719125730] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/03/2019] [Accepted: 04/27/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Flavones are one of the main subclasses of flavonoids with diverse pharmacological properties. They have been reported to possess antimalarial, antimicrobial, anti-tuberculosis, anti-allergic, antioxidant, anti-inflammatory activities, among others. OBJECTIVE The present review summarizes the recent information on the pharmacological properties of naturally occurring and synthetic flavones. METHODS Scientific publications referring to natural and synthetic flavones in relation to their biological activities were hand-searched in databases such as SciFinder, PubMed (National Library of Medicine), Science Direct, Wiley, ACS, SciELO, Springer, among others. RESULTS As per the literature, seventy-five natural flavones were predicted as active compounds with reference to their IC50 (<20 µg/mL) in in vitro studies. Also, synthetic flavones were found active against several diseases. CONCLUSION As per the literature, flavones are important sources for the potential treatment of multifactorial diseases. However, efforts toward the development of flavone-based therapeutic agents are still needed. The appearance of new catalysts and chemical transformations is expected to provide avenues for the synthesis of unexplored flavones, leading to the discovery of flavones with new properties and biological activities.
Collapse
Affiliation(s)
- Pone K Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ferreira I Elizabeth
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
24
|
The pharmacological and biological roles of eriodictyol. Arch Pharm Res 2020; 43:582-592. [PMID: 32594426 DOI: 10.1007/s12272-020-01243-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/24/2020] [Indexed: 12/25/2022]
Abstract
Eriodictyol is a flavonoid in the flavanones subclass. It is abundantly present in a wide range of medicinal plants, citrus fruits, and vegetables that are considered to have potential health importance. Having the considerable medicinal properties, eriodictyol has been predicted to clarify the mode of action in various cellular and molecular pathways. Evidence for the existing therapeutic roles of eriodictyol includes antioxidant, anti-inflammatory, anti-cancer, neuroprotective, cardioprotective, anti-diabetic, anti-obesity, hepatoprotective, and miscellaneous. Therefore, this review aims to present the recent evidence regarding the mechanisms of action of eriodictyol in different signaling pathways in a specific disease condition. In view of the immense therapeutic effects, eriodictyol may serve as a potential drug source to enhance community health standards.
Collapse
|
25
|
Recent Trends in the Application of Chromatographic Techniques in the Analysis of Luteolin and Its Derivatives. Biomolecules 2019; 9:biom9110731. [PMID: 31726801 PMCID: PMC6921003 DOI: 10.3390/biom9110731] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022] Open
Abstract
Luteolin is a flavonoid often found in various medicinal plants that exhibits multiple biological effects such as antioxidant, anti-inflammatory and immunomodulatory activity. Commercially available medicinal plants and their preparations containing luteolin are often used in the treatment of hypertension, inflammatory diseases, and even cancer. However, to establish the quality of such preparations, appropriate analytical methods should be used. Therefore, the present paper provides the first comprehensive review of the current analytical methods that were developed and validated for the quantitative determination of luteolin and its C- and O-derivatives including orientin, isoorientin, luteolin 7-O-glucoside and others. It provides a systematic overview of chromatographic analytical techniques including thin layer chromatography (TLC), high performance thin layer chromatography (HPTLC), liquid chromatography (LC), high performance liquid chromatography (HPLC), gas chromatography (GC) and counter-current chromatography (CCC), as well as the conditions used in the determination of luteolin and its derivatives in plant material.
Collapse
|
26
|
Sim LY, Abd Rani NZ, Husain K. Lamiaceae: An Insight on Their Anti-Allergic Potential and Its Mechanisms of Action. Front Pharmacol 2019; 10:677. [PMID: 31275149 PMCID: PMC6594199 DOI: 10.3389/fphar.2019.00677] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
The prevalence of allergic diseases such as asthma, allergic rhinitis, food allergy and atopic dermatitis has increased dramatically in recent decades. Conventional therapies for allergy can induce undesirable effects and hence patients tend to seek alternative therapies like natural compounds. Considering the fact above, there is an urgency to discover potential medicinal plants as future candidates in the development of novel anti-allergic therapeutic agents. The Lamiaceae family, or mint family, is a diverse plant family which encompasses more than 7,000 species and with a cosmopolitan distribution. A number of species from this family has been widely employed as ethnomedicine against allergic inflammatory skin diseases and allergic asthma in traditional practices. Phytochemical analysis of the Lamiaceae family has reported the presence of flavonoids, flavones, flavanones, flavonoid glycosides, monoterpenes, diterpenes, triterpenoids, essential oil and fatty acids. Numerous investigations have highlighted the anti-allergic activities of Lamiaceae species with their active principles and crude extracts. Henceforth, this review has the ultimate aim of compiling the up-to-date (2018) findings of published scientific information about the anti-allergic activities of Lamiaceae species. In addition, the botanical features, medicinal uses, chemical constituents and toxicological studies of Lamiaceae species were also documented. The method employed for data collection in this review was mainly the exploration of the PubMed, Ovid and Scopus databases. Additional research studies were obtained from the reference lists of retrieved articles. This comprehensive summarization serves as a useful resource for a better understanding of Lamiaceae species. The anti-allergic mechanisms related to Lamiaceae species are also reviewed extensively which aids in future exploration of the anti-allergic potential of Lamiaceae species.
Collapse
Affiliation(s)
- Lee Yen Sim
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Zahirah Abd Rani
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khairana Husain
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Frański R, Gierczyk B, Kozik T, Popenda Ł, Beszterda M. Signals of diagnostic ions in the product ion spectra of [M - H] - ions of methoxylated flavonoids. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:125-132. [PMID: 30357940 DOI: 10.1002/rcm.8316] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 05/24/2023]
Abstract
RATIONALE The main feature of the fragmentation of [M - H]- ions of methoxylated flavonoids is the loss of methyl radical (formation of the [M - H - CH3 ]-• product ion). Subsequent decomposition of [M - H - CH3 ]-• product ions may be useful for identification of a given compound by HPLC/MS. This paper describes how the selected diagnostic fragment ions can be useful during HPLC/MS(-) analysis of methoxylated flavonoids. METHODS Product ion spectra (ESI-CID-MS/MS spectra) of [M - H]- ions of 17 methoxylated flavonoids (flavones, isoflavones and flavonols) were obtained with a Q-TOF mass spectrometer. Full scan mass spectra (ESI-MS) were obtained with a single quadrupole type of instrument. RESULTS A number of product ions were recognized as useful from the point of view of structural elucidation. In most cases they were diagnostic product ions, formed as a result of C ring breaking. CONCLUSIONS The most important conclusions drawn from this study are: the product ion at m/z 132 indicates that the analysed compound is an isoflavone; the product ion at m/z 117 indicates the presence of one hydroxy group at ring B or at the 3-position; biochanin A and prunetin can be differentiated by their 'in-source' fragmentation, by the relative abundances of product ions at m/z 195, 183 and 167; loss of mass 102 from the [M - H - CH3 ]-• ion indicates that ring B is not substituted and there is no hydroxy group at the 3-position; and rhamnetin can be detected using three diagnostic product ions, namely at m/z 121, 165 and 193.
Collapse
Affiliation(s)
- Rafał Frański
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614, Poznań, Poland
| | - Błażej Gierczyk
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614, Poznań, Poland
| | - Tomasz Kozik
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614, Poznań, Poland
| | - Łukasz Popenda
- NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614, Poznań, Poland
| | - Monika Beszterda
- Department of Food Biochemistry and Analysis, Poznan University of Life Sciences, Mazowiecka 48, 60-623, Poznań, Poland
| |
Collapse
|
28
|
Sun Q, Long Y, Pan S, Liu H, Yang J, Hu X. Carbon dot-based fluorescent probes for sensitive and selective detection of luteolin through the inner filter effect. LUMINESCENCE 2018; 33:1401-1407. [DOI: 10.1002/bio.3562] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/09/2018] [Accepted: 09/16/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Qianqian Sun
- Key Laboratory of Luminescent and Real-Time analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering; Southwest University; Chongqing China
| | - Yuwei Long
- Key Laboratory of Luminescent and Real-Time analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering; Southwest University; Chongqing China
| | - Shuang Pan
- Key Laboratory of Luminescent and Real-Time analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering; Southwest University; Chongqing China
| | - Hui Liu
- College of Pharmaceutical Sciences; Southwest University; Chongqing China
| | - Jidong Yang
- College of Chemical and Environmental Engineering; Chongqing Three Gorges University; Wanzhou Chongqing China
| | - Xiaoli Hu
- Key Laboratory of Luminescent and Real-Time analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering; Southwest University; Chongqing China
| |
Collapse
|
29
|
Sajjadi SE, Delazari Z, Aghaei M, Ghannadian M. Flavone constituents of Phlomis bruguieri Desf. with cytotoxic activity against MCF-7 breast cancer cells. Res Pharm Sci 2018; 13:422-429. [PMID: 30271444 PMCID: PMC6082029 DOI: 10.4103/1735-5362.236835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Phlomis bruguieri (P. bruguieri) is a large genus in the Lamiaceae family, with a wide variety distributed in Euro-Asia, Central Asia, Iran, and China. Phlomis flowers have been used as herbal tea for gastrointestinal disturbances, protection of liver and cardiovascular systems. The aim of this study was to analyse phytochemical of flavonoid constituents in semi polar fraction of P. bruguieri. Methanol extract of plant material (4 kg) yielded 361 g dark green concentrated extract gum. After preliminary fractionation by normal column chromatography on silica gel, Fr. 2 eluted with chloroform: methanol (90:10) selected as semi polar fraction and was more purified using different chromatography columns on silica gel, polyamide SC6 and Sephadex LH-20 adsorbents. Finally one new and three known flavonoids (1-4) were characterized in semi polar fraction. Isolated structures were identified using 1H-NMR, 13C-NMR, 31P-NMR, HSQC, HMBC, negative ESI mass, and UV spectra using different shift reagents. Using standard MTT assay, cytotoxicity of isolated new compound was done against michigan cancer foundation-7 (MCF-7) breast cancer cells. Phytochemical analysis of P. bruguieri resulted in identification of one new 4'-methoxy-luteolin-7-phosphate and three known flavones including luteolin, apigenin, and tricin for the first time in this plant. In MTT cytotoxicity test, 4'-methoxy-luteolin-7-phosphate showed cytotoxicity with IC50 value of 43.65 ± 8.56 μM agasint MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Seyed Ebrahim Sajjadi
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Zeinab Delazari
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mustafa Ghannadian
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
- Isfahan Pharmaceutical Sciences Research Centre, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
30
|
Tzima K, Brunton NP, Rai DK. Qualitative and Quantitative Analysis of Polyphenols in Lamiaceae Plants-A Review. PLANTS (BASEL, SWITZERLAND) 2018; 7:E25. [PMID: 29587434 PMCID: PMC6027318 DOI: 10.3390/plants7020025] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 12/23/2022]
Abstract
Lamiaceae species are promising potential sources of natural antioxidants, owing to their high polyphenol content. In addition, increasing scientific and epidemiological evidence have associated consumption of foods rich in polyphenols with health benefits such as decreased risk of cardiovascular diseases mediated through anti-inflammatory effects. The complex and diverse nature of polyphenols and the huge variation in their levels in commonly consumed herbs make their analysis challenging. Innovative robust analytical tools are constantly developing to meet these challenges. In this review, we present advances in the state of the art for the identification and quantification of polyphenols in Lamiaceae species. Novel chromatographic techniques that have been employed in the past decades are discussed, ranging from ultra-high-pressure liquid chromatography to hyphenated spectroscopic methods, whereas performance characteristics such as selectivity and specificity are also summarized.
Collapse
Affiliation(s)
- Katerina Tzima
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, D15 KN3K Dublin, Ireland.
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin D04V1W8, Ireland.
| | - Nigel P Brunton
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin D04V1W8, Ireland.
| | - Dilip K Rai
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, D15 KN3K Dublin, Ireland.
| |
Collapse
|