1
|
Ragab AE, Al-Ashmawy GM, Afify SRE, El-Feky OA, Ibrahim AO. Synergistic anticancer effects of cisplatin and phenolic aglycones of the aerial part of Rumex dentatus L. in tongue squamous cell carcinoma: insights from network pharmacology and biological verification. BMC Complement Med Ther 2025; 25:25. [PMID: 39863836 PMCID: PMC11762535 DOI: 10.1186/s12906-024-04718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/26/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) ranks as the sixth most common malignancy globally. Cisplatin is the standard chemotherapy for OSCC, but resistance often reduces its efficacy, necessitating new treatments with fewer side effects. Rumex dentatus L., from the Polygonaceae family, is known for its medicinal properties, but its anticancer potential has not been thoroughly explored. This study aimed to investigate the synergy between cisplatin and an extract from the aerial parts of R. dentatus L. in treating tongue carcinoma (HNO97) in vitro, using network pharmacology, biological verification, and phytochemical analysis. METHODS The study included UPLC-ESI-MS/MS analysis, cytotoxicity assays, cell cycle analysis, apoptosis assessment, and RT-qPCR for gene expression of Bcl2, p53, and ATG7. Potential targets were identified, and mechanisms of action were examined through online databases and enrichment analyses. RESULTS The R. dentatus L. extract contained 14 phenolic aglycons. Combining cisplatin and R. dentatus L. was more effective in inhibiting proliferation, inducing cell cycle arrest and apoptosis, and reducing autophagy in HNO97 cells than cisplatin alone. KEGG analysis indicated that the drug combination might work through pathways like PI3K-Akt signaling, microRNAs in cancer, and EGFR tyrosine kinase inhibitor resistance. CONCLUSIONS Combining cisplatin with R. dentatus L. may be a promising approach for treating tongue carcinoma by affecting multiple pathways, providing a new perspective for developing more effective treatments for OSCC.
Collapse
Affiliation(s)
- Amany E Ragab
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Ghada M Al-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
- Department of Biochemistry, Faculty of Pharmacy, Alsalam University, Kafr Alzayat, Algharbia, 31611, Egypt.
| | - Sherin R El Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alsalam University, Kafr Alzayat, Algharbia, 31611, Egypt
| | - Ola A El-Feky
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Alsalam University, Kafr Alzayat, Algharbia, 31611, Egypt
| | - Amera O Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
2
|
Sweilam SH, Abd El Hafeez MS, Mansour MA, Mekky RH. Unravelling the Phytochemical Composition and Antioxidant Potential of Different Parts of Rumex vesicarius L.: A RP-HPLC-MS-MS/MS, Chemometrics, and Molecular Docking-Based Comparative Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:1815. [PMID: 38999655 PMCID: PMC11244572 DOI: 10.3390/plants13131815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Rumex vesicarius L. Polygonaceae is a wildly grown plant in Egypt, North Africa, and Asia with wide traditional uses. Several studies reported its biological activities and richness in phytochemicals. This research addresses a comprehensive metabolic profiling of the flowers, leaves, stems, and roots via RP-HPLC-QTOF-MS and MS/MS with chemometrics. A total of 60 metabolites were observed and grouped into phenolic acids, flavonoids, phenols, terpenes, amino acids, fatty acids, organic acids, and sugars. Principal component analysis and hierarchal cluster analysis showed the segregation of different parts. Moreover, the antioxidant capacity was determined via several methods and agreed with the previous results. Additionally, an in silico approach of molecular docking of the predominant bioactive metabolites was employed against two antioxidant targets, NADPH oxidase and human peroxiredoxin 5 enzyme (PDB ID: 2CDU and 1HD2) receptors, alongside ADME predictions. The molecular modelling revealed that most of the approached molecules were specifically binding with the tested enzymes, achieving high binding affinities. The results confirmed that R. vesicarius stems and roots are rich sources of bioactive antioxidant components. To our knowledge, this is the first comprehensive metabolic profiling of R. vesicarius giving a prospect of its relevance in the development of new naturally based antioxidants.
Collapse
Affiliation(s)
- Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Cairo, Egypt
| | - Mohamed S Abd El Hafeez
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Cairo, Egypt
| | - Mahmoud A Mansour
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Cairo, Egypt
| | - Reham Hassan Mekky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Cairo, Egypt
| |
Collapse
|
3
|
Dammak A, Chtourou F, Luca SV, Skalicka-Wozniak K, Bouaziz M. Insights into the phytochemical composition and antioxidant potential of the Tunisian Ceratonia siliqua L. Fitoterapia 2024; 175:105919. [PMID: 38537888 DOI: 10.1016/j.fitote.2024.105919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 05/26/2024]
Abstract
Carob (Ceratonia siliqua L.) corresponds to an evergreen leguminous tree (Fabaceae family). The high phenolic content of numerous parts of carob has been deeply associated with several nutritional and functional benefits. The aim of this study was to investigate the physicochemical properties of ground carob pods and seeds, the effect of different extraction procedures as well a comprehensive phytochemical characterization of hydro-methanolic extracts (80/20 v/v) of pods and seeds by HPLC-DAD ESI-Q-TOF-MS/MS. Additionally, their antioxidant activity was evaluated using in vitro assays. The results showed thatthe dry matter (DM) values were 88.09% for pods and 89.10% for seeds, protein contents were 0.41 g/100 g DM for pods and 0.88 g/100 g DM for seedsand total sugars contents were 0.35 g/100 DM for pods and 26.70 g/100 g DM for seeds. Furthermore, the oil holding capacities (OHC) were 10.43 g/g for pods and 7.53 g/g for seeds, while the water holding capacities were 8.46 g/g for pods and 2.59 g/g for seeds.The hydro-methanolic extracts of both pods and seeds showed the presence of 53 secondary bioactive metabolites belonging to various classes(flavonoids, phenolic acids, tannins and non-phenolic compounds). The antioxidant activities were evidenced in DPPH (22.24 mg/ml for pods and 26.37 mg/ml for seeds), ABTS (198.50 mmol Eq Trolox/100 g for pods and 201.04 mmol Eq Trolox/100 g for seeds) and FRAP (0.39 mmol Eq Trolox/100 g for pods and 0.53 mmol Eq Trolox/100 g for seeds).Moreover,high significant (p ≤ 0.01) correlation coefficients were found between the antioxidant activity estimated by the DPPH method and total phenols (r = 0.943), orthodiphenols (r = 0.996), flavonoids (r = 0.880) and flavonols (r = 0.982). Nevertheless, lower correlations were detected with ABTS and FRAP methods.These results demonstrated that carob parts displayed an interesting potential that can be of interest for further valorizations as a natural antioxidant with multiple applications, namely functional food ingredients or prevention of many health problems.
Collapse
Affiliation(s)
- Ameni Dammak
- Laboratory of Electrochemistry and Environment, National School of Engineers of Sfax, University of Sfax, BP1173, 3038 Sfax, Tunisia
| | - Fatma Chtourou
- Laboratory of Electrochemistry and Environment, National School of Engineers of Sfax, University of Sfax, BP1173, 3038 Sfax, Tunisia
| | - Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany; Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115, Iasi, Romania.
| | | | - Mohamed Bouaziz
- Laboratory of Electrochemistry and Environment, National School of Engineers of Sfax, University of Sfax, BP1173, 3038 Sfax, Tunisia; Higher Institute of Biotechnology of Sfax, University of Sfax, BP1175, 3038 Sfax, Tunisia.
| |
Collapse
|
4
|
Abdelrahman SESAH, El Hawary S, Mohsen E, El Raey MA, Selim HMRM, Hamdan AME, Ghareeb MA, Hamed AA. Bio-fabricated zinc oxide nanoparticles mediated by endophytic fungus Aspergillus sp. SA17 with antimicrobial and anticancer activities: in vitro supported by in silico studies. Front Microbiol 2024; 15:1366614. [PMID: 38803373 PMCID: PMC11128569 DOI: 10.3389/fmicb.2024.1366614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction In recent years, the world's attention has been drawn to antimicrobial resistance (AMR) because to the frightening prospect of growing death rates. Nanomaterials are being investigated due to their potential in a wide range of technical and biological applications. Methods The purpose of this study was to biosynthesis zinc oxide nanoparticles (ZnONPs) using Aspergillus sp. SA17 fungal extract, followed by characterization of the produced nanoparticles (NP) using electron microscopy (TEM and SEM), UV-analysis, X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). Results and Discussion The HR-TEM revealed spherical nanoparticles with an average size of 7.2 nm, and XRD validated the crystalline nature and crystal structure features of the generated ZnONPs, while the zeta potential was 18.16 mV, indicating that the particles' surfaces are positively charged. The FT-IR was also used to identify the biomolecules involved in the synthesis of ZnONPs. The antibacterial and anticancer properties of both the crude fungal extract and its nano-form against several microbial strains and cancer cell lines were also investigated. Inhibition zone diameters against pathogenic bacteria ranged from 3 to 13 mm, while IC50 values against cancer cell lines ranged from 17.65 to 84.55 M. Additionally, 33 compounds, including flavonoids, phenolic acids, coumarins, organic acids, anthraquinones, and lignans, were discovered through chemical profiling of the extract using UPLC-QTOF-MS/MS. Some molecules, such pomiferin and glabrol, may be useful for antibacterial purposes, according to in silico study, while daidzein 4'-sulfate showed promise as an anti-cancer metabolite.
Collapse
Affiliation(s)
| | - Seham El Hawary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Engy Mohsen
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Mohamed A. El Raey
- Department of Phytochemistry and Plant Systematics, Pharmaceutical Division, National Research Centre, Cairo, Egypt
| | - Heba Mohammed Refat M. Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Almaarefa University, Riyadh, Saudi Arabia
- Microbiology and Immunology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Ahmed M. E. Hamdan
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Mosad A. Ghareeb
- Medicinal Chemistry Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Ahmed A. Hamed
- Microbial Chemistry Department, National Research Centre, Giza, Egypt
| |
Collapse
|
5
|
Grojja Y, Hajlaoui H, Luca SV, Abidi J, Skalicka-Woźniak K, Zouari S, Bouaziz M. Untargeted Phytochemical Profiling, Antioxidant, and Antimicrobial Activities of a Tunisian Capsicum annuum Cultivar. Molecules 2023; 28:6346. [PMID: 37687171 PMCID: PMC10489744 DOI: 10.3390/molecules28176346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Peppers are among the spices possessing a wide plethora of biological properties due to their excellent supply of health-related metabolites. Capsicum annuum L. (Solanaceae) is cultivated throughout Tunisia, and there is a shortage of information on the identification of the secondary metabolites in the seeds of this species as well as on their biological activities. In the present work, we intended to undertake a chemical characterization of the bioactive compounds from the hydro-methanolic seed extract of C. annuum as well as an evaluation of its broad spectrum of antimicrobial and antioxidant activities. The chemical profile was evaluated by RP-HPLC-DAD-QTOF-MS/MS, whereas the total phenol and flavonoid content, antioxidant, and antimicrobial activities were determined in in vitro assays. In this work, 45 compounds belonging to various phytochemical classes, such as organic acids (2), phenolic compounds (4 phenolic acids and 5 flavonoids), capsaicinoids (3), capsianosides (5), fatty acids (13), amino acids (1), sphingolipids (10), and steroids (2) were identified in the hydro-methanolic seed extract of C. annuum. The phenolic and flavonoid content (193.7 mg GAE/g DW and 25.1 mg QE/g DW, respectively) of the C. annuum extract correlated with the high antiradical activity (IC50 = 45.0 µg/mL), reducing power (EC50 = 61.3 µg/mL) and chelating power (IC50 = 79.0 µg/mL) activities. The hydro-methanolic seed extract showed an important antimicrobial activity against seven bacterial and four fungal strains. In fact, the inhibition zones (IZs) for bacteria ranged from 9.00 ± 1.00 mm to 12.00 ± 0.00 mm; for fungi, the IZs ranged from 12.66 ± 0.57 mm to 13.66 ± 0.57 mm. The minimal inhibition concentration and minimal bactericidal concentration values showed that the extract was more effective against fungi than bacteria.
Collapse
Affiliation(s)
- Yossri Grojja
- Laboratory of Electrochemistry and Environment, National School of Engineers of Sfax, University of Sfax-Tunisia, B.P “1173”, Sfax 3038, Tunisia; (Y.G.); (J.A.)
| | - Hafedh Hajlaoui
- Faculty of Sciences and Technology of SidiBouzid, University of Kairouan, Campus University Agricultural City, Sidi Bouzid 9100, Tunisia;
- Laboratory of Plant-Soil-Environment Interactions, LR21ES01, Faculty of Sciences of Tunis, University of Tunis EL Manar, Tunis 2092, Tunisia
| | - Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;
- Department of Pharmacognosy and Phytotherapy, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Jouda Abidi
- Laboratory of Electrochemistry and Environment, National School of Engineers of Sfax, University of Sfax-Tunisia, B.P “1173”, Sfax 3038, Tunisia; (Y.G.); (J.A.)
| | | | - Sami Zouari
- Laboratory of Medicinal and Environmental Chemistry, High Institute of Biotechnology of Sfax, University of Sfax, Sfax 3038, Tunisia;
| | - Mohamed Bouaziz
- Laboratory of Electrochemistry and Environment, National School of Engineers of Sfax, University of Sfax-Tunisia, B.P “1173”, Sfax 3038, Tunisia; (Y.G.); (J.A.)
- Higher Institute of Biotechnology of Sfax, University of Sfax, B.P “1175”, Sfax 3038, Tunisia
| |
Collapse
|
6
|
Lagies S, Pan D, Mohl DA, Plattner DA, Gentle IE, Kammerer B. Mitochondrial Metabolomics of Sym1-Depleted Yeast Cells Revealed Them to Be Lysine Auxotroph. Cells 2023; 12:692. [PMID: 36899826 PMCID: PMC10000845 DOI: 10.3390/cells12050692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Metabolomics has expanded from cellular to subcellular level to elucidate subcellular compartmentalization. By applying isolated mitochondria to metabolome analysis, the hallmark of mitochondrial metabolites has been unraveled, showing compartment-specific distribution and regulation of metabolites. This method was employed in this work to study a mitochondrial inner membrane protein Sym1, whose human ortholog MPV17 is related to mitochondria DNA depletion syndrome. Gas chromatography-mass spectrometry-based metabolic profiling was combined with targeted liquid chromatography-mass spectrometry analysis to cover more metabolites. Furthermore, we applied a workflow employing ultra-high performance liquid chromatography-quadrupole time of flight mass spectrometry with a powerful chemometrics platform, focusing on only significantly changed metabolites. This workflow highly reduced the complexity of acquired data without losing metabolites of interest. Consequently, forty-one novel metabolites were identified in addition to the combined method, of which two metabolites, 4-guanidinobutanal and 4-guanidinobutanoate, were identified for the first time in Saccharomyces cerevisiae. With compartment-specific metabolomics, we identified sym1Δ cells as lysine auxotroph. The highly reduced carbamoyl-aspartate and orotic acid indicate a potential role of the mitochondrial inner membrane protein Sym1 in pyrimidine metabolism.
Collapse
Affiliation(s)
- Simon Lagies
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Daqiang Pan
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany
- Institute of Pharmaceutical Science, University of Freiburg, 79104 Freiburg, Germany
| | - Daniel A. Mohl
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Dietmar A. Plattner
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Ian E. Gentle
- Institute of Medical Microbiology and Hygiene, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Bernd Kammerer
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
7
|
Skiba A, Kozioł E, Luca SV, Budzyńska B, Podlasz P, Van Der Ent W, Shojaeinia E, Esguerra CV, Nour M, Marcourt L, Wolfender JL, Skalicka-Woźniak K. Evaluation of the Antiseizure Activity of Endemic Plant Halfordia kendack Guillaumin and Its Main Constituent, Halfordin, on a Zebrafish Pentylenetetrazole (PTZ)-Induced Seizure Model. Int J Mol Sci 2023; 24:ijms24032598. [PMID: 36768918 PMCID: PMC9916433 DOI: 10.3390/ijms24032598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Epilepsy is a neurological disease that burdens over 50 million people worldwide. Despite the considerable number of available antiseizure medications, it is estimated that around 30% of patients still do not respond to available treatment. Herbal medicines represent a promising source of new antiseizure drugs. This study aimed to identify new drug lead candidates with antiseizure activity from endemic plants of New Caledonia. The crude methanolic leaf extract of Halfordia kendack Guillaumin (Rutaceae) significantly decreased (75 μg/mL and 100 μg/mL) seizure-like behaviour compared to sodium valproate in a zebrafish pentylenetetrazole (PTZ)-induced acute seizure model. The main coumarin compound, halfordin, was subsequently isolated by liquid-liquid chromatography and subjected to locomotor, local field potential (LFP), and gene expression assays. Halfordin (20 μM) significantly decreased convulsive-like behaviour in the locomotor and LFP analysis (by 41.4% and 60%, respectively) and significantly modulated galn, and penka gene expression.
Collapse
Affiliation(s)
- Adrianna Skiba
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence: (A.S.); (K.S.-W.); Tel.: +48-81448-7093 (A.S.); +48-81448-7089 (K.S.-W.)
| | - Ewelina Kozioł
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| | - Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Barbara Budzyńska
- Independent Laboratory of Behavioral Studies, Medical University, Chodzki 4a, 20-090 Lublin, Poland
| | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Wietske Van Der Ent
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Forskningsparken, Gaustadalleén 21, 0349 Oslo, Norway
| | - Elham Shojaeinia
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Forskningsparken, Gaustadalleén 21, 0349 Oslo, Norway
| | - Camila V. Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Forskningsparken, Gaustadalleén 21, 0349 Oslo, Norway
- Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Blindern, P.O. Box 1068, 0316 Oslo, Norway
| | - Mohammed Nour
- Institut des Sciences Exactes et Appliquées (ISEA)-EA 4243, France University of New Caledonia, 98851 Nouméa, New Caledonia, France
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Krystyna Skalicka-Woźniak
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence: (A.S.); (K.S.-W.); Tel.: +48-81448-7093 (A.S.); +48-81448-7089 (K.S.-W.)
| |
Collapse
|
8
|
Ntemafack A, Singh RV, Ali S, Kuiate JR, Hassan QP. Antiviral potential of anthraquinones from Polygonaceae, Rubiaceae and Asphodelaceae: Potent candidates in the treatment of SARS-COVID-19, A comprehensive review. SOUTH AFRICAN JOURNAL OF BOTANY : OFFICIAL JOURNAL OF THE SOUTH AFRICAN ASSOCIATION OF BOTANISTS = SUID-AFRIKAANSE TYDSKRIF VIR PLANTKUNDE : AMPTELIKE TYDSKRIF VAN DIE SUID-AFRIKAANSE GENOOTSKAP VAN PLANTKUNDIGES 2022; 151:146-155. [PMID: 36193345 PMCID: PMC9519529 DOI: 10.1016/j.sajb.2022.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/03/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Medicinal plants are being used as an alternative source of health management to cure various human ailments. The healing role is attributed to the hidden dynamic groups of various phytoconstituents, most of which have been recorded from plants and their derivatives. Nowadays, medicinal plants have gained more attention due to their pharmacological and industrial potential. Aromatic compounds are one of the dynamic groups of secondary metabolites (SM) naturally present in plants; and anthraquinones of this group are found to be attractive due to their high bioactivity and low toxicity. They have been reported to exhibit anticancer, antimicrobial, immune-suppressive, antioxidant, antipyretic, diuretic and anti-inflammatory activities. Anthraquinones have been also shown to exhibit potent antiviral effects against different species of viruses. Though, it has been reported that a medicinal plant with antiviral activity against one viral infection may be used to combat other types of viral infections. Therefore, in this review, we explored and highlighted the antiviral properties of anthraquinones of Polygonaceae, Rubiaceae and Asphodelaceae families. Anthraquinones from these plant families have been reported for their effects on human respiratory syncytial virus and influenza virus. They are hence presumed to have antiviral potential against SARS-CoV as well. Thus, anthraquinones are potential candidates that need to be screened thoroughly and developed as drugs to combat COVID-19. The information documented in this review could therefore serve as a starting point in developing novel drugs that may help to curb the SARS-COVID-19 pandemic.
Collapse
Affiliation(s)
- Augustin Ntemafack
- Department of Biochemistry, University of Dschang, Dschang, Cameroon
- Department of Biochemistry and Molecular Biology, Indiana University-Purdue University Indianapolis, Indiana, USA
| | - Rahul Vikram Singh
- Department of Dietetic and Nutrition Technology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Sabeena Ali
- Molecular Biology and Plant Biotechnology Division, CSIR - Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, India
| | | | - Qazi Parvaiz Hassan
- Molecular Biology and Plant Biotechnology Division, CSIR - Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, India
| |
Collapse
|
9
|
Balkrishna A, Verma S, Tiwari D, Srivastava J, Varshney A. UPLC-QToF-MS based fingerprinting of polyphenolic metabolites in the bark extract of Boehmeria rugulosa Wedd. JOURNAL OF MASS SPECTROMETRY : JMS 2022; 57:e4890. [PMID: 36353856 DOI: 10.1002/jms.4890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Boehmeria rugulosa Wedd. is an evergreen tree of Urticaceae family. Its bark has been extensively used in ethno-medicinal system for various ailments such as bone fracture, sprain, snakebite, and wound healing. Phyto-metabolites, which are considered as the principle components for biological activities, have been least explored for this plant. The present work investigated metabolite profiling of the stem bark of B. rugulosa in water extract using Ultra Performance Liquid Chromatography Quadrupole Time of Flight Mass Spectrometry (UPLC-QToF-MS) technique coupled with the UNIFI platform. We identified, for the first time, 20 polyphenolic metabolites belonging to seven groups: caffeoylquinic acids, coumaroylquinic acids, flavan-3-ols, oligomeric flavonoids, caffeic acid derivatives, coumaric acid derivative, and flavone glycoside in the B. rugulosa extract. UNIFI informatics-coupled UPLC-QToF-MS platform aids in the quick identification and fragmentation pattern of metabolites, with higher degree of reproducibility. The present study provides a chemical and therapeutic basis for further exploration of B. rugulosa as a valuable source of phytochemicals that could be instrumental in deciphering its ethno-medicinal utility for various human diseases.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
- Patanjali Yog Peeth (UK) Trust, Glasgow, UK
| | - Sudeep Verma
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Deepti Tiwari
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Jyotish Srivastava
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
10
|
Li JJ, Li YX, Li N, Zhu HT, Wang D, Zhang YJ. The genus Rumex (Polygonaceae): an ethnobotanical, phytochemical and pharmacological review. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:21. [PMID: 35710954 PMCID: PMC9203642 DOI: 10.1007/s13659-022-00346-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Rumex L., a genus in Polygonaceae family with about 200 species, is growing widely around the world. Some Rumex species, called "sorrel" or "dock", have been used as food application and treatment of skin diseases and hemostasis after trauma by the local people of its growing areas for centuries. To date, 29 Rumex species have been studied to contain about 268 substances, including anthraquinones, flavonoids, naphthalenes, stilbenes, diterpene alkaloids, terpenes, lignans, and tannins. Crude extract of Rumex spp. and the pure isolates displayed various bioactivities, such as antibacterial, anti-inflammatory, antitumor, antioxidant, cardiovascular protection and antiaging activities. Rumex species have important potential to become a clinical medicinal source in future. This review covers research articles from 1900 to 2022, fetched from SciFinder, Web of Science, ResearchGate, CNKI and Google Scholar, using "Rumex" as a search term ("all fields") with no specific time frame set for the search. Thirty-five Rumex species were selected and summarized on their geographical distribution, edible parts, traditional uses, chemical research and pharmacological properties.
Collapse
Affiliation(s)
- Jing-Juan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yong-Xiang Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Na Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Hong-Tao Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Ying-Jun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| |
Collapse
|
11
|
Gu YX, Yan TC, Yue ZX, Liu FM, Cao J, Ye LH. Recent developments and applications in the microextraction and separation technology of harmful substances in a complex matrix. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Kolodziejczyk-Czepas J, Kozachok S, Pecio Ł, Marchyshyn S, Oleszek W. Determination of phenolic profiles of Herniaria polygama and Herniaria incana fractions and their in vitro antioxidant and anti-inflammatory effects. PHYTOCHEMISTRY 2021; 190:112861. [PMID: 34325241 DOI: 10.1016/j.phytochem.2021.112861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The study is based on phytochemical profiling and in vitro evaluation of biological effects of phenolic acid derivatives-rich Herniaria fractions, isolated from two rupturewort (Herniaria L.) species, i.e. Herniaria incana Lam. (syn. H. besseri Fisch. ex Hornem) and H. polygama J. Gay (syn. H. odorata). For the first time, the composition of phenolic compounds of these species was extensively evaluated by both LC-HR-QTOF-ESI-MS and Nuclear Magnetic Resonance spectroscopy (NMR). LC-MS analyses of H. polygama revealed 72 tentatively identified compounds, while H. incana - 63. Only 8% of the metabolites reported in this work have been previously described for Herniaria spp. Most of the identified specialized metabolites were cinnamic and benzoic acid derivatives. Phenolic fraction of H. incana herb contained flavonoids as well. A multi-step chromatographic separation of phenolic fractions from H. polygama yielded three known cinnamic and one benzoic acid derivates, and from H. incana - 4 known flavonoids and one previously undescribed, i.e. rhamnocitrin-3-O-[3-hydroxy-3-methylglutaryl-(1 → 6'')]-[α-rhamnopyranosyl-(1 → 2'')]-β-glucopyranoside. Antioxidant properties of the examined fractions (1-50 μg/ml) were assessed in human blood plasma under the conditions of peroxynitrite-induced oxidative stress. Measurements of well-known biomarkers such as 3-nitrotyrosine, protein thiol groups, thiobarbituric acid-reactive substances and the ferric reducing ability of blood plasma revealed the protective effect of Herniaria fractions against oxidative damage to blood plasma components. Furthermore, the examined fractions effectively ameliorated the inflammatory response of the concanavalin A-stimulated human peripheral blood mononuclear cells (PBMCs). Additionally, cellular safety of the fractions was confirmed in PBMCs.
Collapse
Affiliation(s)
- Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Solomiia Kozachok
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100, Puławy, Poland; Department of Pharmacognosy with Medical Botany, I Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001, Ternopil, Ukraine.
| | - Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100, Puławy, Poland
| | - Svitlana Marchyshyn
- Department of Pharmacognosy with Medical Botany, I Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001, Ternopil, Ukraine
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100, Puławy, Poland
| |
Collapse
|
13
|
Ouyang XL, Ma TH, Xie GL, Chen S, Wang HS, Jia Q, Zhang ED, Huang JH. Acetylated Rhamnose Triterpenoid Saponins from Glechoma longituba Analyzed by LC-Q-TOFMS. Chem Biodivers 2021; 18:e2100272. [PMID: 34532975 DOI: 10.1002/cbdv.202100272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/16/2021] [Indexed: 11/07/2022]
Abstract
The aim of the present work is to isolate a series of triterpene derivatives with rhamnosyl linking acetyl groups from Glechoma longituba according to the structural characteristics of previously described triterpene saponins. The extract ion chromatography spectrum of the crude extract of G. longituba was detected and analyzed by HPLC-HR-ESI-MS to determine possible components, and these metabolites were traced and separated by combining high-resolution mass spectrometry and predicted liquid chromatography retention time. Three 11α, 12α-epoxypentacyclic oleanolic acid triterpene saponins (glechomanosides H-J) and one ursane triterpene aldehyde saponin with a C-28 aldehyde group were isolated from G. longituba. The structure of these compounds was confirmed by NMR and compared with those of previously characterized compounds. The strategy described in this report enables a rapid, reliable, and complete analysis of glycoside compounds containing different numbers of acetyl groups at different positions on the sugar.
Collapse
Affiliation(s)
- Xi-Lin Ouyang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, Guangxi, P. R. China
- Department of Pharmacy, Gannan Healthcare Vocational College, Ganzhou, 341000, Jiangxi, P. R. China
| | - Tian-Hua Ma
- Seasons Biotechnology (Taizhou) Co., Ltd., Taizhou City, 318000, Zhejiang, P. R. China
| | - Gui-Liang Xie
- Department of Pharmacy, Gannan Healthcare Vocational College, Ganzhou, 341000, Jiangxi, P. R. China
| | - Shan Chen
- Eight plus One Pharmaceutical Co., Ltd., Guilin, 541000, Guangxi, P. R. China
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, Guangxi, P. R. China
| | - Qiang Jia
- Seasons Biotechnology (Taizhou) Co., Ltd., Taizhou City, 318000, Zhejiang, P. R. China
| | - En-De Zhang
- Eight plus One Pharmaceutical Co., Ltd., Guilin, 541000, Guangxi, P. R. China
| | - Jing-Hua Huang
- Eight plus One Pharmaceutical Co., Ltd., Guilin, 541000, Guangxi, P. R. China
| |
Collapse
|
14
|
Kim BR, Paudel SB, Han AR, Park J, Kil YS, Choi H, Jeon YG, Park KY, Kang SY, Jin CH, Kim JB, Nam JW. Metabolite Profiling and Dipeptidyl Peptidase IV Inhibitory Activity of Coreopsis Cultivars in Different Mutations. PLANTS 2021; 10:plants10081661. [PMID: 34451706 PMCID: PMC8401970 DOI: 10.3390/plants10081661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022]
Abstract
Coreopsis species have been developed to produce cultivars of various floral colors and sizes and are also used in traditional medicine. To identify and evaluate mutant cultivars of C. rosea and C. verticillata, their phytochemical profiles were systematically characterized using ultra-performance liquid chromatography time-of-flight mass spectrometry, and their anti-diabetic effects were evaluated using the dipeptidyl peptidase (DPP)-IV inhibitor screening assay. Forty compounds were tentatively identified. This study is the first to provide comprehensive chemical information on the anti-diabetic effect of C. rosea and C. verticillata. All 32 methanol extracts of Coreopsis cultivars inhibited DPP-IV activity in a concentration-dependent manner (IC50 values: 34.01–158.83 μg/mL). Thirteen compounds presented as potential markers for distinction among the 32 Coreopsis cultivars via principal component analysis and orthogonal partial least squares discriminant analysis. Therefore, these bio-chemometric models can be useful in distinguishing cultivars as potential dietary supplements for functional plants.
Collapse
Affiliation(s)
- Bo-Ram Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Jeollabuk-do, Korea; (B.-R.K.); (A.-R.H.); (J.P.); (C.H.J.); (J.-B.K.)
- Natural Product Research Division, Honam National Institute of Biological Resources, Mokpo-si 58762, Jeollanam-do, Korea
| | - Sunil Babu Paudel
- College of Pharmacy, Yeungnam University, Gyeongsan-si 38541, Gyeongsangbuk-do, Korea; (S.B.P.); (Y.-S.K.); (H.C.)
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Jeollabuk-do, Korea; (B.-R.K.); (A.-R.H.); (J.P.); (C.H.J.); (J.-B.K.)
| | - Jisu Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Jeollabuk-do, Korea; (B.-R.K.); (A.-R.H.); (J.P.); (C.H.J.); (J.-B.K.)
| | - Yun-Seo Kil
- College of Pharmacy, Yeungnam University, Gyeongsan-si 38541, Gyeongsangbuk-do, Korea; (S.B.P.); (Y.-S.K.); (H.C.)
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan-si 38541, Gyeongsangbuk-do, Korea; (S.B.P.); (Y.-S.K.); (H.C.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
| | - Yeo Gyeong Jeon
- Uriseed Group, Icheon-si 17408, Gyeonggi-do, Korea; (Y.G.J.); (K.Y.P.)
| | - Kong Young Park
- Uriseed Group, Icheon-si 17408, Gyeonggi-do, Korea; (Y.G.J.); (K.Y.P.)
| | - Si-Yong Kang
- Department of Horticulture, College of Industrial Sciences, Kongju National University, Yesan-gun 32439, Chungcheongnam-do, Korea;
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Jeollabuk-do, Korea; (B.-R.K.); (A.-R.H.); (J.P.); (C.H.J.); (J.-B.K.)
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Jeollabuk-do, Korea; (B.-R.K.); (A.-R.H.); (J.P.); (C.H.J.); (J.-B.K.)
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si 38541, Gyeongsangbuk-do, Korea; (S.B.P.); (Y.-S.K.); (H.C.)
- Correspondence: ; Tel.: +82-53-810-2818
| |
Collapse
|
15
|
Trifan A, Wolfram E, Esslinger N, Grubelnik A, Skalicka-Woźniak K, Minceva M, Luca SV. Globoidnan A, rabdosiin and globoidnan B as new phenolic markers in European-sourced comfrey (Symphytum officinale L.) root samples. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:482-494. [PMID: 33015885 DOI: 10.1002/pca.2996] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 05/25/2023]
Abstract
INTRODUCTION Symphytum officinale L. (comfrey, Boraginaceae) is a cultivated or spontaneously growing medicinal plant that is traditionally used for the treatment of bone fractures, hematomas, muscle pains and joint pains. A wide range of topical preparations and dried roots for ex tempore applications are marketed in European drug stores or pharmacies. OBJECTIVE The aim of this study was to perform the qualitative and quantitative analysis of pyrrolizidine alkaloids (PAs) and phenolic compounds in the hydroethanolic extracts of 16 commercial comfrey root batches purchased from 12 different European countries. METHODS Liquid chromatography hyphenated with high-resolution tandem mass spectrometry (LC-HRMS/MS) was used for the profiling of PAs and phenolic compounds, whereas LC-MS/MS and liquid chromatography with diode array detection (LC-DAD) were used for their quantification. RESULTS 20 PAs (i.e. intermedine, lycopsamine, acetylintermedine, acetyllycopsamine, symphytine, symphytine-N-oxide), 17 phenolic compounds (i.e. caffeic and rosmarinic acids, rabdosiin, globoidnan A, globoidnan B) and 9 nonphenolic compounds (sugars, organic and fatty acids) were fully or partly annotated in the analysed samples. In addition, the quantitative analyses revealed that globoidnan B, rabdosiin and globoidnan A are new phenolic markers that can be used together with rosmarinic acid and PAs for the quality control of commercial comfrey root batches. CONCLUSIONS This study brings new insights into the phytochemical complexity of S. officinale, revealing not only numerous toxic PAs, but also a significant number of valuable phenolic compounds that could contribute to the bioactivities of comfrey-based preparations.
Collapse
Affiliation(s)
- Adriana Trifan
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Iasi, 700115, Romania
| | - Evelyn Wolfram
- Phytopharmacy and Natural Products Research Group, Zurich University of Applied Sciences, Wädenswil, 8820, Switzerland
| | | | | | - Krystyna Skalicka-Woźniak
- Independent Laboratory of Natural Products Chemistry, Department of Pharmacognosy, Medical University of Lublin, Lublin, 20-093, Poland
| | - Mirjana Minceva
- Biothermodynamics, TUM School of Life and Food Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany
| | - Simon Vlad Luca
- Biothermodynamics, TUM School of Life and Food Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany
| |
Collapse
|
16
|
Liu Y, Watanabe M, Yasukawa S, Kawamura Y, Aneklaphakij C, Fernie AR, Tohge T. Cross-Species Metabolic Profiling of Floral Specialized Metabolism Facilitates Understanding of Evolutional Aspects of Metabolism Among Brassicaceae Species. FRONTIERS IN PLANT SCIENCE 2021; 12:640141. [PMID: 33868339 PMCID: PMC8045754 DOI: 10.3389/fpls.2021.640141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/01/2021] [Indexed: 05/24/2023]
Abstract
Plants produce a variety of floral specialized (secondary) metabolites with roles in several physiological functions, including light-protection, attraction of pollinators, and protection against herbivores. Pigments and volatiles synthesized in the petal have been focused on and characterized as major chemical factors influencing pollination. Recent advances in plant metabolomics have revealed that the major floral specialized metabolites found in land plant species are hydroxycinnamates, phenolamides, and flavonoids albeit these are present in various quantities and encompass diverse chemical structures in different species. Here, we analyzed numerous floral specialized metabolites in 20 different Brassicaceae genotypes encompassing both different species and in the case of crop species different cultivars including self-compatible (SC) and self-incompatible (SI) species by liquid chromatography-mass spectrometry (LC-MS). Of the 228 metabolites detected in flowers among 20 Brassicaceae species, 15 metabolite peaks including one phenylacyl-flavonoids and five phenolamides were detected and annotated as key metabolites to distinguish SC and SI plant species, respectively. Our results provide a family-wide metabolic framework and delineate signatures for compatible and incompatible genotypes thereby providing insight into evolutionary aspects of floral metabolism in Brassicaceae species.
Collapse
Affiliation(s)
- Yuting Liu
- Graduate School of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Mutsumi Watanabe
- Graduate School of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Sayuri Yasukawa
- Graduate School of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Yuriko Kawamura
- Graduate School of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Chaiwat Aneklaphakij
- Graduate School of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Takayuki Tohge
- Graduate School of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| |
Collapse
|