1
|
Theil AF, Häckes D, Lans H. TFIIH central activity in nucleotide excision repair to prevent disease. DNA Repair (Amst) 2023; 132:103568. [PMID: 37977600 DOI: 10.1016/j.dnarep.2023.103568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/22/2023] [Accepted: 09/03/2023] [Indexed: 11/19/2023]
Abstract
The heterodecameric transcription factor IIH (TFIIH) functions in multiple cellular processes, foremost in nucleotide excision repair (NER) and transcription initiation by RNA polymerase II. TFIIH is essential for life and hereditary mutations in TFIIH cause the devastating human syndromes xeroderma pigmentosum, Cockayne syndrome or trichothiodystrophy, or combinations of these. In NER, TFIIH binds to DNA after DNA damage is detected and, using its translocase and helicase subunits XPB and XPD, opens up the DNA and checks for the presence of DNA damage. This central activity leads to dual incision and removal of the DNA strand containing the damage, after which the resulting DNA gap is restored. In this review, we discuss new structural and mechanistic insights into the central function of TFIIH in NER. Moreover, we provide an elaborate overview of all currently known patients and diseases associated with inherited TFIIH mutations and describe how our understanding of TFIIH function in NER and transcription can explain the different disease features caused by TFIIH deficiency.
Collapse
Affiliation(s)
- Arjan F Theil
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands
| | - David Häckes
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands.
| |
Collapse
|
2
|
DiGiovanna JJ, Randall G, Edelman A, Allawh R, Xiong M, Tamura D, Khan SG, Rizza ERH, Reynolds JC, Paul SM, Hill SC, Kraemer KH. Debilitating hip degeneration in trichothiodystrophy: Association with ERCC2/XPD mutations, osteosclerosis, osteopenia, coxa valga, contractures, and osteonecrosis. Am J Med Genet A 2022; 188:3448-3462. [PMID: 36103153 PMCID: PMC9669218 DOI: 10.1002/ajmg.a.62962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/25/2022] [Accepted: 08/11/2022] [Indexed: 01/31/2023]
Abstract
Trichothiodystrophy (TTD) is a rare, autosomal recessive, multisystem disorder of DNA repair and transcription with developmental delay and abnormalities in brain, eye, skin, nervous, and musculoskeletal systems. We followed a cohort of 37 patients with TTD at the National Institutes of Health (NIH) from 2001 to 2019 with a median age at last observation of 12 years (range 2-36). Some children with TTD developed rapidly debilitating hip degeneration (DHD): a distinctive pattern of hip pain, inability to walk, and avascular necrosis on imaging. Ten (27%) of the 37 patients had DHD at median age 8 years (range 5-12), followed by onset of imaging findings at median age 9 years (range 5-13). All 10 had mutations in the ERCC2/XPD gene. In 7 of the 10 affected patients, DHD rapidly became bilateral. DHD was associated with coxa valga, central osteosclerosis with peripheral osteopenia of the skeleton, and contractures/tightness of the lower limbs. Except for one patient, surgical interventions were generally not effective at preventing DHD. Four patients with DHD died at a median age of 11 years (range 9-15). TTD patients with ERCC2/XPD gene mutations have a high risk of musculoskeletal abnormalities and DHD leading to poor outcomes. Monitoring by history, physical examination, imaging, and by physical medicine and rehabilitation specialists may be warranted.
Collapse
Affiliation(s)
- John J. DiGiovanna
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Grant Randall
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
- NIH Medical Research Scholars Program, Bethesda, Maryland, USA
| | - Alexandra Edelman
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Rina Allawh
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Michael Xiong
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Deborah Tamura
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Sikandar G. Khan
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Elizabeth R. H. Rizza
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - James C. Reynolds
- Department of Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Scott M. Paul
- Rehabilitation Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Suvimol C. Hill
- Department of Radiology, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Kenneth H. Kraemer
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Ioannidis AD, Khan SG, Tamura D, DiGiovanna JJ, Rizza E, Kraemer KH, Rice RH. Trichothiodystrophy hair shafts display distinct ultrastructural features. Exp Dermatol 2022; 31:1270-1275. [PMID: 35615778 PMCID: PMC10575343 DOI: 10.1111/exd.14614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022]
Abstract
Hair shafts from three trichothiodystrophy (TTD) patients with mutations in the ERCC2 (XPD) gene were examined by transmission electron microscopy. TTD is a rare, recessive disorder with mutations in several genes in the DNA repair/transcription pathway, including ERCC2. Unlike previous studies, the hair shafts were examined after relaxation of their structure by partial disulphide bond reduction in the presence of sodium dodecyl sulphate, permitting improved visualization. Compared with hair shafts of normal phenotype, TTD cuticle cells displayed aberrant marginal bands and exocuticle layers. Clusters of cells stained differently (light versus dark) in the cortex of aberrant shafts, and the keratin macrofibrils appeared much shorter in the cytoplasm. Considerable heterogeneity in these properties was evident among samples and even along the length of single hair shafts. The results are consistent with not only a paucity of high sulphur components, such as keratin-associated proteins, but also a profound imbalance in protein content and organization.
Collapse
Affiliation(s)
- Angeliki-Diotima Ioannidis
- Department of Environmental Toxicology and Forensic Science Program, University of California, Davis, California, USA
| | - Sikandar G. Khan
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Deborah Tamura
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - John J. DiGiovanna
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Elizabeth Rizza
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Kenneth H. Kraemer
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert H. Rice
- Department of Environmental Toxicology and Forensic Science Program, University of California, Davis, California, USA
| |
Collapse
|
4
|
Abiona A, Cordeiro N, Fawcett H, Tamura D, Khan SG, DiGiovanna JJ, Lehmann AR, Fassihi H. Metronidazole-Induced Hepatitis in a Teenager With Xeroderma Pigmentosum and Trichothiodystrophy Overlap. Pediatrics 2021; 148:peds.2021-050360. [PMID: 34593652 DOI: 10.1542/peds.2021-050360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 11/24/2022] Open
Abstract
A teenage girl had the rare combined phenotype of xeroderma pigmentosum and trichothiodystrophy, resulting from mutations in the XPD (ERCC2) gene involved in nucleotide excision repair (NER). After treatment with antibiotics, including metronidazole for recurrent infections, she showed signs of acute and severe hepatotoxicity, which gradually resolved after withdrawal of the treatment. Cultured skin fibroblasts from the patient revealed cellular sensitivity to killing by metronidazole compared with cells from a range of other donors. This reveals that the metronidazole sensitivity was an intrinsic property of her cells. It is well recognized that patients with Cockayne syndrome, another NER disorder, are at high risk of metronidazole-induced hepatotoxicity, but this had not been reported in individuals with other NER disorders. We would urge extreme caution in the use of metronidazole in the management of individuals with the xeroderma pigmentosum and trichothiodystrophy overlap or trichothiodystrophy phenotypes.
Collapse
Affiliation(s)
- Adesoji Abiona
- National Xeroderma Pigmentosum Service, St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Nuno Cordeiro
- Paediatric Neurodisability Service, Rainbow House, Ayrshire Central Hospital, Irvine, NHS Ayrshire and Arran, Scotland, United Kingdom
| | - Heather Fawcett
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, United Kingdom
| | - Deborah Tamura
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Sikandar G Khan
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - John J DiGiovanna
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Alan R Lehmann
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, United Kingdom
| | - Hiva Fassihi
- National Xeroderma Pigmentosum Service, St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
5
|
Chen JD, Liao WD, Wen LY, Zhong RH. Novel ERCC2 variant in trichothiodystrophy infant: the first case report in China. BMC Pediatr 2021; 21:123. [PMID: 33711971 PMCID: PMC7955621 DOI: 10.1186/s12887-021-02585-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/28/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Trichothiodystrophy (TTD) is a rare, autosomal recessive, multisystem disorder most commonly caused by variants in ERCC2. CASE PRESENTATION Here, we describe the first Chinese patient with a novel variant in ERCC2. A male infant, who was born to a healthy non-consanguineous couple, exhibited brittle hair, hair loss ichthyosis, eczema, retinal pigmentation and hypospadias. He carried a novel heterozygous ERCC2 variant. The maternal variant (c.2191-18_2213del) is a previous described genomic deletion that affects the splicing of intron 22. The paternal variant (c.1666-1G > A), that occurs in the splice site of intron 17 and likely alters ERCC2 gene function through aberrant splicing, has not been reported previously. CONCLUSIONS Our case reported a novel pathogenic variant in ERCC2, which expanded the known genetic variants associated with TTD.
Collapse
Affiliation(s)
- Jian-Dong Chen
- Department of Neonatology, Longyan First Affiliated Hospital of Fujian Medical University, No.105, Jiyi North Road, Xinluo District, Longyan, 364000, Fujian, China
| | - Wei-Dong Liao
- Department of Neonatology, Longyan First Affiliated Hospital of Fujian Medical University, No.105, Jiyi North Road, Xinluo District, Longyan, 364000, Fujian, China
| | - Ling-Ying Wen
- Department of Neonatology, Longyan First Affiliated Hospital of Fujian Medical University, No.105, Jiyi North Road, Xinluo District, Longyan, 364000, Fujian, China
| | - Rong-Hua Zhong
- Department of Neonatology, Longyan First Affiliated Hospital of Fujian Medical University, No.105, Jiyi North Road, Xinluo District, Longyan, 364000, Fujian, China.
| |
Collapse
|
6
|
Sandgren JA, Deng G, Linggonegoro DW, Scroggins SM, Perschbacher KJ, Nair AR, Nishimura TE, Zhang SY, Agbor LN, Wu J, Keen HL, Naber MC, Pearson NA, Zimmerman KA, Weiss RM, Bowdler NC, Usachev YM, Santillan DA, Potthoff MJ, Pierce GL, Gibson-Corley KN, Sigmund CD, Santillan MK, Grobe JL. Arginine vasopressin infusion is sufficient to model clinical features of preeclampsia in mice. JCI Insight 2018; 3:99403. [PMID: 30282823 DOI: 10.1172/jci.insight.99403] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/17/2018] [Indexed: 12/29/2022] Open
Abstract
Copeptin, a marker of arginine vasopressin (AVP) secretion, is elevated throughout human pregnancies complicated by preeclampsia (PE), and AVP infusion throughout gestation is sufficient to induce the major phenotypes of PE in mice. Thus, we hypothesized a role for AVP in the pathogenesis of PE. AVP infusion into pregnant C57BL/6J mice resulted in hypertension, renal glomerular endotheliosis, intrauterine growth restriction, decreased placental growth factor (PGF), altered placental morphology, placental oxidative stress, and placental gene expression consistent with human PE. Interestingly, these changes occurred despite a lack of placental hypoxia or elevations in placental fms-like tyrosine kinase-1 (FLT1). Coinfusion of AVP receptor antagonists and time-restricted infusion of AVP uncovered a mid-gestational role for the AVPR1A receptor in the observed renal pathologies, versus mid- and late-gestational roles for the AVPR2 receptor in the blood pressure and fetal phenotypes. These findings demonstrate that AVP is sufficient to initiate phenotypes of PE in the absence of placental hypoxia, and indicate that AVP may mechanistically (independently, and possibly synergistically with hypoxia) contribute to the development of clinical signs of PE in specific subtypes of human PE. Additionally, they identify divergent and gestational time-specific signaling mechanisms that mediate the development of PE phenotypes in response to AVP.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Donna A Santillan
- Department of Obstetrics & Gynecology.,University of Iowa Hospitals & Clinics Center for Hypertension Research
| | - Matthew J Potthoff
- Department of Pharmacology.,University of Iowa Hospitals & Clinics Center for Hypertension Research.,François M. Abboud Cardiovascular Research Center.,Fraternal Order of Eagles' Diabetes Research Center, and.,Obesity Research & Education Initiative, University of Iowa, Iowa City, Iowa USA
| | - Gary L Pierce
- Department of Health & Human Physiology.,University of Iowa Hospitals & Clinics Center for Hypertension Research.,François M. Abboud Cardiovascular Research Center
| | - Katherine N Gibson-Corley
- Department of Pathology.,University of Iowa Hospitals & Clinics Center for Hypertension Research.,Fraternal Order of Eagles' Diabetes Research Center, and
| | - Curt D Sigmund
- Department of Pharmacology.,University of Iowa Hospitals & Clinics Center for Hypertension Research.,François M. Abboud Cardiovascular Research Center.,Fraternal Order of Eagles' Diabetes Research Center, and.,Obesity Research & Education Initiative, University of Iowa, Iowa City, Iowa USA
| | - Mark K Santillan
- Department of Obstetrics & Gynecology.,University of Iowa Hospitals & Clinics Center for Hypertension Research
| | - Justin L Grobe
- Department of Pharmacology.,University of Iowa Hospitals & Clinics Center for Hypertension Research.,François M. Abboud Cardiovascular Research Center.,Fraternal Order of Eagles' Diabetes Research Center, and.,Obesity Research & Education Initiative, University of Iowa, Iowa City, Iowa USA
| |
Collapse
|
7
|
Giri N, Reed HD, Stratton P, Savage SA, Alter BP. Pregnancy outcomes in mothers of offspring with inherited bone marrow failure syndromes. Pediatr Blood Cancer 2018; 65:10.1002/pbc.26757. [PMID: 28801981 PMCID: PMC7408308 DOI: 10.1002/pbc.26757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 01/31/2023]
Abstract
BACKGROUND Children with inherited bone marrow failure syndromes (IBMFSs) may be symptomatic in utero, resulting in maternal and fetal problems during the pregnancy. Subsequent pregnancies by their mothers should be considered "high risk". METHODS We retrospectively analyzed outcomes of 575 pregnancies in 165 unaffected mothers of offspring with Fanconi anemia (FA), dyskeratosis congenita (DC), Diamond-Blackfan anemia (DBA), and Shwachman-Diamond syndrome (SDS) for events noted during pregnancy, labor, and delivery. We compared outcomes of pregnancies with affected and unaffected offspring within each group of mothers and with the general population. RESULTS The rates of miscarriage (12-20%), elective abortion (5-10%), and live birth (68-78%) among mothers of all IBMFS groups were similar and comparable with general population rates but recurrent miscarriages (≥2) were significantly more common in mothers of offspring with DBA and SDS. Offspring with FA were more frequently born small for gestational age (SGA) than unaffected babies (39% vs. 4%) and had fetal malformations (46%) with 18% having three or more, often necessitating early delivery and surgery; offspring with DC had higher rates of SGA (39% vs. 8%) and fetal distress (26% vs. 3%); and offspring with DBA had fetal hypoxia (19% vs. 1%) leading to preterm and emergency cesarean deliveries (26% vs. 6%). Offspring with early-onset severe phenotypes had the most prenatal and peripartum adverse events. CONCLUSION We identified the high-risk nature of pregnancies in mothers with IBMFS-affected fetuses, suggesting the need for prepregnancy counseling and monitoring of subsequent pregnancies by high-risk fetal-maternal specialists.
Collapse
Affiliation(s)
- Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Helen D Reed
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
- Baylor College of Medicine, Houston, TX
| | - Pamela Stratton
- Office of the Clinical Director, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| |
Collapse
|
8
|
Miguet M, Thevenon J, Laugel V, Lefebvre M, Bourchany A, Rivière JB, Duffourd Y, Schaefer E, Antal MC, Abida R, Weingertner AS, Kremer V, Vabres P, Morice-Picard F, Gonzales M, Lipsker D, Fraitag S, Mandel JL, Chelly J, Dollfus H, Faivre L, Thauvin-Robinet C, Calmels N, El Chehadeh S. Mutations in theERCC2(XPD) gene associated with severe fetal ichthyosis and dysmorphic features. Prenat Diagn 2016; 36:1276-1279. [DOI: 10.1002/pd.4965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/19/2016] [Accepted: 11/04/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Marguerite Miguet
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Centre de Référence Maladies Rares Anomalies du Développement et Syndromes Malformatifs de l'Est, Hôpitaux Universitaires de Strasbourg; Hôpital de Hautepierre; Strasbourg France
| | - Julien Thevenon
- FHU TRANSLAD, Centre de Référence Maladies Rares, Anomalies du Développement et Syndromes Malformatifs de l'Est, Centre de Génétique; CHU de Dijon; Dijon France
- GAD: EA 4271, Génétique et Anomalies du Développement (GAD); Université de Bourgogne; Dijon France
| | - Vincent Laugel
- Service de Neuropédiatrie, Hôpitaux Universitaires de Strasbourg; Hôpital de Hautepierre; Strasbourg France
- U1112 Laboratoire de Génétique Médicale, Faculté de Médecine; Université de Strasbourg; Strasbourg France
| | - Mathilde Lefebvre
- FHU TRANSLAD, Centre de Référence Maladies Rares, Anomalies du Développement et Syndromes Malformatifs de l'Est, Centre de Génétique; CHU de Dijon; Dijon France
| | - Aurélie Bourchany
- FHU TRANSLAD, Centre de Référence Maladies Rares, Anomalies du Développement et Syndromes Malformatifs de l'Est, Centre de Génétique; CHU de Dijon; Dijon France
| | - Jean-Baptiste Rivière
- GAD: EA 4271, Génétique et Anomalies du Développement (GAD); Université de Bourgogne; Dijon France
- Laboratoire de Biologie Moléculaire, Plateau Technique de Biologie; CHU de Dijon; Dijon France
| | - Yannis Duffourd
- GAD: EA 4271, Génétique et Anomalies du Développement (GAD); Université de Bourgogne; Dijon France
- Laboratoire de Biologie Moléculaire, Plateau Technique de Biologie; CHU de Dijon; Dijon France
| | - Elise Schaefer
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Centre de Référence Maladies Rares Anomalies du Développement et Syndromes Malformatifs de l'Est, Hôpitaux Universitaires de Strasbourg; Hôpital de Hautepierre; Strasbourg France
| | | | - Rosalie Abida
- Centre de Ressources Biologiques; Hôpitaux Universitaires de Strasbourg; Strasbourg France
| | - Anne-Sophie Weingertner
- Service de Gynécologie-Obstétrique; Centre Médico-Chirurgical et Obstétrical; Schiltigheim France
| | - Valérie Kremer
- Service de Cytogénétique, Hôpitaux Universitaires de Strasbourg; Hôpital de Hautepierre; Strasbourg France
| | - Pierre Vabres
- Service de Dermatologie; CHU de Dijon; Dijon France
- GAD: EA 4271, Génétique et Anomalies du Développement (GAD); Université de Bourgogne; Dijon France
| | - Fanny Morice-Picard
- Unité de Dermatologie Pédiatrique, CHU de Bordeaux; Hôpital Pellegrin; Bordeaux France
| | - Marie Gonzales
- Département de Génétique Médicale, CHU Paris Est, Hôpital Armand Trousseau; APHP et UPMC; Paris France
| | - Dan Lipsker
- Service de Dermatologie, Hôpitaux Universitaires de Strasbourg; Hôpital civil; Strasbourg France
| | - Sylvie Fraitag
- Département de Pathologie, Hôpital Necker-Enfants Malades; APHP; Paris France
| | - Jean-Louis Mandel
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg; Nouvel Hôpital Civil; Strasbourg France
| | - Jamel Chelly
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg; Nouvel Hôpital Civil; Strasbourg France
| | - Hélène Dollfus
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Centre de Référence Maladies Rares Anomalies du Développement et Syndromes Malformatifs de l'Est, Hôpitaux Universitaires de Strasbourg; Hôpital de Hautepierre; Strasbourg France
- U1112 Laboratoire de Génétique Médicale, Faculté de Médecine; Université de Strasbourg; Strasbourg France
| | - Laurence Faivre
- FHU TRANSLAD, Centre de Référence Maladies Rares, Anomalies du Développement et Syndromes Malformatifs de l'Est, Centre de Génétique; CHU de Dijon; Dijon France
- GAD: EA 4271, Génétique et Anomalies du Développement (GAD); Université de Bourgogne; Dijon France
| | - Christel Thauvin-Robinet
- FHU TRANSLAD, Centre de Référence Maladies Rares, Anomalies du Développement et Syndromes Malformatifs de l'Est, Centre de Génétique; CHU de Dijon; Dijon France
- GAD: EA 4271, Génétique et Anomalies du Développement (GAD); Université de Bourgogne; Dijon France
| | - Nadège Calmels
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg; Nouvel Hôpital Civil; Strasbourg France
| | - Salima El Chehadeh
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Centre de Référence Maladies Rares Anomalies du Développement et Syndromes Malformatifs de l'Est, Hôpitaux Universitaires de Strasbourg; Hôpital de Hautepierre; Strasbourg France
| |
Collapse
|
9
|
Londero AP, Orsaria M, Marzinotto S, Grassi T, Fruscalzo A, Calcagno A, Bertozzi S, Nardini N, Stella E, Lellé RJ, Driul L, Tell G, Mariuzzi L. Placental aging and oxidation damage in a tissue micro-array model: an immunohistochemistry study. Histochem Cell Biol 2016; 146:191-204. [PMID: 27106773 DOI: 10.1007/s00418-016-1435-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 12/12/2022]
Abstract
To evaluate the expression of markers correlated with cellular senescence and DNA damage (8-hydroxy-2'-deoxy-guanosine (8-OHdG), p53, p21, APE1/Ref-1 (APE1), interleukin (IL-6 and IL-8) in placentas from healthy and pathologic pregnancies. This retrospective study considered a placental tissue micro-array containing 92 controls from different gestational ages and 158 pathological cases including preeclampsia (PE), HELLP syndrome (hemolysis, elevated liver enzymes, low platelet count), small for gestational age (SGA) fetuses, and intrauterine growth restriction (IUGR) occurring at different gestational ages. In this study, we demonstrated a significant influence of gestational age on the expression in the trophoblast of 8-OHdG, p53, p21, APE1, and IL-6. In placentas of cases affected by PE, HELLP, or IUGR, there was an increased expression of 8-OHdG, p53, APE1, and IL-6 compared to controls (only IL-8 was significantly decreased in cases). In both groups of pathology between 22- and 34-week gestation and after 34-week gestation, APE1 levels were higher in the trophoblast of women affected by hypertensive disorders of pregnancy than women carrying an IUGR fetus. The cytoplasmic expression of 8-OHdG was increased in placentas in IUGR cases compared to PE or HELLP pregnancies. In cases after 34-week gestation, p21 was higher in SGA and IUGR than in controls and late PE. Moreover, p53 was increased after 34-week gestation in IUGR pregnancies. Placentas from pathological pregnancies had an altered expression of 8-OHdG, p53, p21, APE1, IL-6, and IL-8. The alterations of intracellular pathways involving these elements may be the cause or the consequence of placental dysfunction, but in any case reflect an impaired placental function, possibly due to increased aging velocity in pathologic cases.
Collapse
Affiliation(s)
- Ambrogio P Londero
- Clinic of Obstetrics and Gynecology, Deparment of Experimental Clinical and Medical Science, University of Udine, Piazzale SM della Misericordia, 15, 33100, Udine, Italy. .,Unit of Obstetrics and Gynecology, S. Polo Hospital, 34074, Monfalcone, GO, Italy.
| | - Maria Orsaria
- Department of Medical and Biological Sciences, University of Udine, 33100, Udine, Italy
| | - Stefania Marzinotto
- Department of Medical and Biological Sciences, University of Udine, 33100, Udine, Italy
| | - Tiziana Grassi
- Clinic of Obstetrics and Gynecology, Deparment of Experimental Clinical and Medical Science, University of Udine, Piazzale SM della Misericordia, 15, 33100, Udine, Italy
| | - Arrigo Fruscalzo
- Frauenklinik, St Franziskus Hospital, Münster, Germany.,Clinic of Obstetrics and Gynecology and Institute of Pathology, University Hospital of Münster, Albert-Schweitzer-Campus 1, Gebäude: A1, 48149, Münster, Germany
| | - Angelo Calcagno
- Clinic of Obstetrics and Gynecology, Deparment of Experimental Clinical and Medical Science, University of Udine, Piazzale SM della Misericordia, 15, 33100, Udine, Italy
| | - Serena Bertozzi
- Department of Surgical Oncology, IRCCS CRO, 33081, Aviano, PN, Italy
| | - Nastassia Nardini
- Department of Medical and Biological Sciences, University of Udine, 33100, Udine, Italy
| | - Enrica Stella
- Clinic of Obstetrics and Gynecology, Deparment of Experimental Clinical and Medical Science, University of Udine, Piazzale SM della Misericordia, 15, 33100, Udine, Italy
| | - Ralph J Lellé
- Clinic of Obstetrics and Gynecology and Institute of Pathology, University Hospital of Münster, Albert-Schweitzer-Campus 1, Gebäude: A1, 48149, Münster, Germany
| | - Lorenza Driul
- Clinic of Obstetrics and Gynecology, Deparment of Experimental Clinical and Medical Science, University of Udine, Piazzale SM della Misericordia, 15, 33100, Udine, Italy
| | - Gianluca Tell
- Department of Medical and Biological Sciences, University of Udine, 33100, Udine, Italy
| | - Laura Mariuzzi
- Department of Medical and Biological Sciences, University of Udine, 33100, Udine, Italy
| |
Collapse
|
10
|
Kuschal C, Botta E, Orioli D, Digiovanna JJ, Seneca S, Keymolen K, Tamura D, Heller E, Khan SG, Caligiuri G, Lanzafame M, Nardo T, Ricotti R, Peverali FA, Stephens R, Zhao Y, Lehmann AR, Baranello L, Levens D, Kraemer KH, Stefanini M. GTF2E2 Mutations Destabilize the General Transcription Factor Complex TFIIE in Individuals with DNA Repair-Proficient Trichothiodystrophy. Am J Hum Genet 2016; 98:627-42. [PMID: 26996949 DOI: 10.1016/j.ajhg.2016.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/10/2016] [Indexed: 12/24/2022] Open
Abstract
The general transcription factor IIE (TFIIE) is essential for transcription initiation by RNA polymerase II (RNA pol II) via direct interaction with the basal transcription/DNA repair factor IIH (TFIIH). TFIIH harbors mutations in two rare genetic disorders, the cancer-prone xeroderma pigmentosum (XP) and the cancer-free, multisystem developmental disorder trichothiodystrophy (TTD). The phenotypic complexity resulting from mutations affecting TFIIH has been attributed to the nucleotide excision repair (NER) defect as well as to impaired transcription. Here, we report two unrelated children showing clinical features typical of TTD who harbor different homozygous missense mutations in GTF2E2 (c.448G>C [p.Ala150Pro] and c.559G>T [p.Asp187Tyr]) encoding the beta subunit of transcription factor IIE (TFIIEβ). Repair of ultraviolet-induced DNA damage was normal in the GTF2E2 mutated cells, indicating that TFIIE was not involved in NER. We found decreased protein levels of the two TFIIE subunits (TFIIEα and TFIIEβ) as well as decreased phosphorylation of TFIIEα in cells from both children. Interestingly, decreased phosphorylation of TFIIEα was also seen in TTD cells with mutations in ERCC2, which encodes the XPD subunit of TFIIH, but not in XP cells with ERCC2 mutations. Our findings support the theory that TTD is caused by transcriptional impairments that are distinct from the NER disorder XP.
Collapse
Affiliation(s)
- Christiane Kuschal
- Dermatology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Elena Botta
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Donata Orioli
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - John J Digiovanna
- Dermatology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sara Seneca
- Center for Medical Genetics, Research Group Reproduction and Genetics, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Kathelijn Keymolen
- Center for Medical Genetics, Research Group Reproduction and Genetics, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Deborah Tamura
- Dermatology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Elizabeth Heller
- Dermatology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sikandar G Khan
- Dermatology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Giuseppina Caligiuri
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Manuela Lanzafame
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Tiziana Nardo
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Roberta Ricotti
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Fiorenzo A Peverali
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Robert Stephens
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA; Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Yongmei Zhao
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Alan R Lehmann
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Laura Baranello
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - David Levens
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Kenneth H Kraemer
- Dermatology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Miria Stefanini
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy.
| |
Collapse
|
11
|
Heller ER, Khan SG, Kuschal C, Tamura D, DiGiovanna JJ, Kraemer KH. Mutations in the TTDN1 gene are associated with a distinct trichothiodystrophy phenotype. J Invest Dermatol 2014; 135:734-741. [PMID: 25290684 PMCID: PMC4530629 DOI: 10.1038/jid.2014.440] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/29/2014] [Accepted: 09/23/2014] [Indexed: 12/21/2022]
Abstract
Trichothiodystrophy (TTD) is a rare multisystem disorder, characterized by sulfur deficient hair with alternating dark and light “tiger tail” banding on polarized light microscopy. TTD is caused by mutations in DNA repair/transcription genes XPD, XPB or TTDA, and in TTDN1, a gene of unknown function. While most TTD patients are photosensitive, patients with TTDN1 mutations were reported to be non-photosensitive. We followed a cohort of 36 TTD patients from 2001 to 2013. We describe 5 patients from 4 families with defects in the TTDN1 gene: 4 had no photosensitivity while 1 patient exhibited cutaneous burning. Deep phenotyping of our cohort revealed differences between the patients with and without TTDN1 mutations. Delayed bone age and seizure disorders were overrepresented in the TTDN1 group (p=0.009 and p=0.024, respectively), while some characteristic TTD clinical, laboratory, and imaging findings were absent. The 3 oldest TTDN1 patients displayed autistic behaviors in contrast to the characteristic friendly, socially interactive personality in the other patients. DNA sequencing revealed deletion mutations in TTDN1 ranging in size from a single base pair to over 120kb. These data identify a distinct phenotype relationship in TTD caused by TTDN1 mutations and suggest a different mechanism of disease.
Collapse
Affiliation(s)
- Elizabeth R Heller
- Dermatology Branch, Center for Cancer Research, National Cancer Institute National Institutes of Health, Bethesda, MD USA
| | - Sikandar G Khan
- Dermatology Branch, Center for Cancer Research, National Cancer Institute National Institutes of Health, Bethesda, MD USA
| | - Christiane Kuschal
- Dermatology Branch, Center for Cancer Research, National Cancer Institute National Institutes of Health, Bethesda, MD USA
| | - Deborah Tamura
- Dermatology Branch, Center for Cancer Research, National Cancer Institute National Institutes of Health, Bethesda, MD USA
| | - John J DiGiovanna
- Dermatology Branch, Center for Cancer Research, National Cancer Institute National Institutes of Health, Bethesda, MD USA
| | - Kenneth H Kraemer
- Dermatology Branch, Center for Cancer Research, National Cancer Institute National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
12
|
Abstract
OBJECTIVES Trichothiodystrophy (TTD) is a rare autosomal recessive disorder of DNA repair and transcription. Patients have multisystem abnormalities, including alterations in growth and development. This report characterizes the growth and nutritional status of a cohort of children with TTD. METHODS Twenty-five patients with TTD were evaluated through a natural history study of patients with DNA repair diseases at the National Institutes of Health. Mean length of follow-up was 2.7 years. Retrospective and prospective data on nutritional status and height/weight were collected. RESULTS In general, patients with TTD had considerable abnormalities in growth, with a mean height-for-age z score of -2.75 and a mean weight-for-age z score of -2.60 at baseline clinical evaluation. The median weight-for-length at baseline was, however, 50th percentile and indicators of adequate nutrition such as serum albumin, hemoglobin, and vitamins D and B12 were largely within normal limits. Changes in growth parameters as children aged were characterized by further separation from standard growth curves (change height-for-age z score/year [-0.18 ± 0.42] and weight-for-age z score/year [-0.36 ± 0.51]). Patients who died during follow-up (n = 5) had significantly lower standardized height (P = 0.03) and weight (P = 0.006), weight-for-length (<0.0001), and higher heart rates (P = 0.02) compared with the remainder of the cohort. CONCLUSIONS Children with TTD have markedly diminished weight-for-age and height-for-age relative to reference populations. The cause for this stunted growth remains unclear but does not appear to be related to poor nutrient absorption or malnutrition.
Collapse
|
13
|
Moslehi R, Ambroggio X, Nagarajan V, Kumar A, Dzutsev A. Nucleotide excision repair/transcription gene defects in the fetus and impaired TFIIH-mediated function in transcription in placenta leading to preeclampsia. BMC Genomics 2014; 15:373. [PMID: 24885447 PMCID: PMC4229886 DOI: 10.1186/1471-2164-15-373] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 05/06/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Preeclampsia is a significant cause of maternal and fetal mortality and morbidity worldwide. We previously reported associations between trichothiodystrophy (TTD) nucleotide excision repair (NER) and transcription gene mutations in the fetus and the risk of gestational complications including preeclampsia. TTD NER/transcription genes, XPD, XPB and TTD-A, code for subunits of Transcription Factor (TF)IIH. Interpreting XPD mutations in the context of available biochemical data led us to propose adverse effects on CDK-activating kinase (CAK) subunit of TFIIH and TFIIH-mediated functions as a relevant mechanism in preeclampsia. In order to gain deeper insight into the underlying biologic mechanisms involving TFIIH-mediated functions in placenta, we analyzed NER/transcription and global gene expression profiles of normal and preeclamptic placentas and studied gene regulatory networks. RESULTS We found high expression of TTD NER/transcription genes in normal human placenta, above the mean of their expression in all organs. XPD and XPB were consistently expressed from 14 to 40 weeks gestation while expression of TTD-A was strongly negatively correlated (r=-0.7, P<0.0001) with gestational age. Analysis of gene expression patterns of placentas from a case-control study of preeclampsia using Algorithm for Reconstruction of Accurate Cellular Networks (ARACNE) revealed GTF2E1, a component of TFIIE which modulates TFIIH, among major regulators of differentially-expressed genes in preeclampsia. The basal transcription pathway was among the largest dysregulated protein-protein interaction networks in this preeclampsia dataset. Within the basal transcription pathway, significantly down-regulated genes besides GTF2E1 included those coding for the CAK complex of TFIIH, namely CDK7, CCNH, and MNAT1. Analysis of other relevant gene expression and gene regulatory network data also underscored the involvement of transcription pathways and identified JUNB and JUND (components of transcription factor AP-1) as transcription regulators of the network involving the TTD genes, GTF2E1, and selected gene regulators implicated in preeclampsia. CONCLUSIONS Our results indicate that TTD NER/transcription genes are expressed in placenta during gestational periods critical to preeclampsia development. Our overall findings suggest that impairment of TFIIH-mediated function in transcription in placenta is a likely mechanism leading to preeclampsia and provide etiologic clues which may be translated into therapeutic and preventive measures.
Collapse
Affiliation(s)
- Roxana Moslehi
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York (SUNY), Rensselaer, NY 12144, USA.
| | | | | | | | | |
Collapse
|
14
|
Integrative transcriptome analysis reveals dysregulation of canonical cancer molecular pathways in placenta leading to preeclampsia. Sci Rep 2014; 3:2407. [PMID: 23989136 PMCID: PMC3757356 DOI: 10.1038/srep02407] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 07/22/2013] [Indexed: 12/18/2022] Open
Abstract
We previously suggested links between specific XPD mutations in the fetal genome and the risk of placental maldevelopment and preeclampsia, possibly due to impairment of Transcription Factor (TF)IIH-mediated functions in placenta. To identify the underlying mechanisms, we conducted the current integrative analysis of several relevant transcriptome data sources. Our meta-analysis revealed downregulation of TFIIH subunits in preeclamptic placentas. Our overall integrative analysis suggested that, in the presence of hypoxia and oxidative stress, EGFR signaling deficiency, which can be caused by TFIIH impairment as well as by other mechanisms, results in ATF3 upregulation, inducing mediators of clinical symptoms of preeclampsia such as FLT1 and ENG. EGFR- and ATF3-dependent pathways play prominent roles in cancer development. We propose that dysregulation of these canonical cancer molecular pathways occurs in preeclampsia and delineate the relevance of TFIIH, providing etiologic clues which could eventually translate into a therapeutic approach.
Collapse
|
15
|
Totonchy MB, Tamura D, Pantell MS, Zalewski C, Bradford PT, Merchant SN, Nadol J, Khan SG, Schiffmann R, Pierson TM, Wiggs E, Griffith AJ, DiGiovanna JJ, Kraemer KH, Brewer CC. Auditory analysis of xeroderma pigmentosum 1971-2012: hearing function, sun sensitivity and DNA repair predict neurological degeneration. ACTA ACUST UNITED AC 2013; 136:194-208. [PMID: 23365097 DOI: 10.1093/brain/aws317] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
To assess the role of DNA repair in maintenance of hearing function and neurological integrity, we examined hearing status, neurological function, DNA repair complementation group and history of acute burning on minimal sun exposure in all patients with xeroderma pigmentosum, who had at least one complete audiogram, examined at the National Institutes of Health from 1971 to 2012. Seventy-nine patients, aged 1-61 years, were diagnosed with xeroderma pigmentosum (n = 77) or xeroderma pigmentosum/Cockayne syndrome (n = 2). A total of 178 audiograms were included. Clinically significant hearing loss (>20 dB) was present in 23 (29%) of 79 patients. Of the 17 patients with xeroderma pigmentosum-type neurological degeneration, 13 (76%) developed hearing loss, and all 17 were in complementation groups xeroderma pigmentosum type A or type D and reported acute burning on minimal sun exposure. Acute burning on minimal sun exposure without xeroderma pigmentosum-type neurological degeneration was present in 18% of the patients (10/55). Temporal bone histology in a patient with severe xeroderma pigmentosum-type neurological degeneration revealed marked atrophy of the cochlear sensory epithelium and neurons. The 19-year mean age of detection of clinically significant hearing loss in the patients with xeroderma pigmentosum with xeroderma pigmentosum-type neurological degeneration was 54 years younger than that predicted by international norms. The four frequency (0.5/1/2/4 kHz) pure-tone average correlated with degree of neurodegeneration (P < 0.001). In patients with xeroderma pigmentosum, aged 4-30 years, a four-frequency pure-tone average ≥10 dB hearing loss was associated with a 39-fold increased risk (P = 0.002) of having xeroderma pigmentosum-type neurological degeneration. Severity of hearing loss parallels neurological decline in patients with xeroderma pigmentosum-type neurological degeneration. Audiometric findings, complementation group, acute burning on minimal sun exposure and age were important predictors of xeroderma pigmentosum-type neurological degeneration. These results provide evidence that DNA repair is critical in maintaining neurological integrity of the auditory system.
Collapse
Affiliation(s)
- Mariam B Totonchy
- Dermatology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Jonathan A. Dyer
- Dermatology and Child Health; University of Missouri; Columbia; Missouri
| | - Mary Spraker
- Dermatology and Child Health; University of Missouri; Columbia; Missouri
| | - Mary Williams
- Dermatology and Child Health; University of Missouri; Columbia; Missouri
| |
Collapse
|
17
|
Kiss F, Anstey AV. A review of UVB-mediated photosensitivity disorders. Photochem Photobiol Sci 2013; 12:37-46. [DOI: 10.1039/c2pp25275a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Abnormal XPD-induced nuclear receptor transactivation in DNA repair disorders: trichothiodystrophy and xeroderma pigmentosum. Eur J Hum Genet 2012; 21:831-7. [PMID: 23232694 DOI: 10.1038/ejhg.2012.246] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 11/08/2022] Open
Abstract
XPD (ERCC2) is a DNA helicase involved in nucleotide excision repair and in transcription as a structural bridge tying the transcription factor IIH (TFIIH) core with the cdk-activating kinase complex, which phosphorylates nuclear receptors. Mutations in XPD are associated with several different phenotypes, including trichothiodystrophy (TTD), with sulfur-deficient brittle hair, bone defects, and developmental abnormalities without skin cancer, xeroderma pigmentosum (XP), with pigmentary abnormalities and increased skin cancer, or XP/TTD with combined features, including skin cancer. We describe the varied clinical features and mutations in nine patients examined at the National Institutes of Health who were compound heterozygotes for XPD mutations but had different clinical phenotypes: four TTD, three XP, and two combined XP/TTD. We studied TFIIH-dependent transactivation by nuclear receptor for vitamin D (VDR) and thyroid in cells from these patients. The vitamin D stimulation ratio of CYP24 and osteopontin was associated with specific pairs of mutations (reduced in 5, elevated in 1) but not correlated with distinct clinical phenotypes. Thyroid receptor stimulation ratio for KLF9 was not significantly different from normal. XPD mutations frequently were associated with abnormal VDR stimulation in compound heterozygote patients with TTD, XP, or XP/TTD.
Collapse
|
19
|
Effect of mutations in XPD(ERCC2) on pregnancy and prenatal development in mothers of patients with trichothiodystrophy or xeroderma pigmentosum. Eur J Hum Genet 2012; 20:1308-10. [PMID: 22617342 DOI: 10.1038/ejhg.2012.90] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The XPD(ERCC2) gene encodes a DNA helicase involved in DNA repair and transcription. Patients with mutations in XPD may have different autosomal recessive phenotypes including trichothiodystrophy (TTD) or xeroderma pigmentosum (XP). TTD patients have sulfur-deficient, brittle hair, short stature and developmental delay. In contrast, XP patients have freckle-like pigmentation and a greatly increased risk of sun-induced skin cancers. Mothers of TTD patients have been reported to have a high frequency of pregnancy and neonatal complications. We performed a molecular epidemiological study of 15 mothers of 17 TTD patients and 13 mothers of 17 XP patients, all with XPD mutations. We found that 94% (16/17) of the TTD pregnancies had pre-term delivery, pre-eclampsia, hemolysis, elevated liver enzymes and low platelets (HELLP) syndrome, prematurity or low birth weight. None of the 17 XP pregnancies had these complications (P<0.001). As mutations in XPD may have differential effects on DNA repair and transcription, these observations should provide insights into the role of XPD in human pregnancy and fetal development.
Collapse
|
20
|
Abstract
Xeroderma pigmentosum (XP) is a rare, autosomal recessive disorder of DNA repair characterized by sun sensitivity and UV radiation-induced skin and mucous membrane cancers. Initially described in 1874 by Moriz Kaposi in Vienna, nearly 100 years later, James Cleaver in San Francisco reported defective DNA repair in XP cells. This eventually provided the basis for a mechanistic link between sun exposure, DNA damage, somatic mutations, and skin cancer. XP cells were found to have defects in seven of the proteins of the nucleotide excision repair pathway and in DNA polymerase η. XP cells are hypersensitive to killing by UV radiation, and XP cancers have characteristic "UV signature" mutations. Clinical studies at the National Institutes of Health found a nearly 10,000-fold increase in skin cancer in XP patients under the age of 20 years, demonstrating the substantial importance of DNA repair in cancer prevention in the general population. Approximately 25% of XP patients have progressive neurological degeneration with progressive loss of neurons, probably from DNA damage induced by oxidative metabolism, which kills nondividing cells in the nervous system. Interestingly, patients with another disorder, trichothiodystrophy, have defects in some of the same genes as XP, but they have primary developmental abnormalities without an increase in skin cancer.
Collapse
Affiliation(s)
- John J DiGiovanna
- DNA Repair Section, Dermatology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4258, USA
| | | |
Collapse
|