1
|
Ivanova A, Korchivaia E, Semenova M, Lebedev I, Mazunin I, Volodyaev I. The chromosomal challenge of human embryos: Mechanisms and fundamentals. HGG ADVANCES 2025; 6:100437. [PMID: 40211536 DOI: 10.1016/j.xhgg.2025.100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
Chromosomal abnormalities in human pre-implantation embryos, originating from either meiotic or mitotic errors, present a significant challenge in reproductive biology. Complete aneuploidy is primarily linked to errors during the resumption of meiosis in oocyte maturation, which increase with maternal age, while mosaic aneuploidies result from mitotic errors after fertilization. The biological causes of these abnormalities are increasingly becoming a topic of interest for research groups and clinical specialists. This review explores the intricate processes of meiotic and early mitotic divisions in embryos, shedding light on the mechanisms that lead to changes in chromosome number in daughter cells. Key factors in meiotic division include difficulties in spindle assembly without centrosomes, kinetochore (KT) orientation disturbances, and inefficient cell-cycle checkpoints. The weakening of cohesion molecules that bind chromosomes, exacerbated by maternal aging, further complicates chromosomal segregation. Mitotic errors in early development are influenced by defects in sperm centrosomes, KT misalignment, and the gradual depletion of maternal regulatory factors. Coupled with the inactive or partially active embryonic genome, this depletion increases the likelihood of chromosomal aberrations. While various theoretical mechanisms for these abnormalities exist, current data remain insufficient to determine their exact contributions. Continued research is essential to unravel these complex processes and improve outcomes in assisted reproductive technologies.
Collapse
Affiliation(s)
- Anna Ivanova
- Faculty of Biology, Moscow State University, Moscow, Russia.
| | | | - Maria Semenova
- Faculty of Biology, Moscow State University, Moscow, Russia
| | - Igor Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Ilya Mazunin
- Department of Biology and Genetics, Petrovsky Medical University, Moscow, Russia; ICARM (Interdisciplinary Clinical Association for Reproductive Medicine), Moscow, Russia
| | - Ilya Volodyaev
- Faculty of Biology, Moscow State University, Moscow, Russia; ICARM (Interdisciplinary Clinical Association for Reproductive Medicine), Moscow, Russia; European Medical Center, Moscow, Russia.
| |
Collapse
|
2
|
Meng (姿 含 孟) Z, Norwitz NG, Bickel SE. Meiotic cohesion requires Sirt1 and preserving its activity in aging oocytes reduces missegregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642822. [PMID: 40161738 PMCID: PMC11952436 DOI: 10.1101/2025.03.12.642822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Chromosome segregation errors in human oocytes increase dramatically as women age and premature loss of meiotic cohesion is one factor that contributes to a higher incidence of segregation errors in older oocytes. Here we show that cohesion maintenance during meiotic prophase in Drosophila oocytes requires the NAD+-dependent deacetylase, Sirt1. Knockdown of Sirt1 during meiotic prophase causes premature loss of arm cohesion and chromosome segregation errors. We have previously demonstrated that when Drosophila oocytes arrest and age in diplotene, segregation errors increase significantly. By quantifying acetylation of the Sirt1 substrate H4K16 on oocytes chromosomes, we find that Sirt1 deacetylase activity declines markedly during aging. However, if females are fed the Sirt1 activator SRT1720 as their oocytes age, the H4K16ac signal on oocyte DNA remains low in aged oocytes, consistent with preservation of Sirt1 activity during aging. Strikingly, age-dependent segregation errors are significantly reduced if mothers are fed SRT1720 while their oocytes age. Our data suggest that maintaining Sirt1 activity in aging oocytes may provide a viable therapeutic strategy to decrease age-dependent segregation errors.
Collapse
Affiliation(s)
- Zihan Meng (姿 含 孟)
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755
| | - Nicholas G. Norwitz
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755
| | - Sharon E. Bickel
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755
| |
Collapse
|
3
|
Palsson G, Hardarson MT, Jonsson H, Steinthorsdottir V, Stefansson OA, Eggertsson HP, Gudjonsson SA, Olason PI, Gylfason A, Masson G, Thorsteinsdottir U, Sulem P, Helgason A, Gudbjartsson DF, Halldorsson BV, Stefansson K. Complete human recombination maps. Nature 2025; 639:700-707. [PMID: 39843742 PMCID: PMC11922761 DOI: 10.1038/s41586-024-08450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/25/2024] [Indexed: 01/24/2025]
Abstract
Human recombination maps are a valuable resource for association and linkage studies and crucial for many inferences of population history and natural selection. Existing maps1-5 are based solely on cross-over (CO) recombination, omitting non-cross-overs (NCOs)-the more common form of recombination6-owing to the difficulty in detecting them. Using whole-genome sequence data in families, we estimate the number of NCOs transmitted from parent to offspring and derive complete, sex-specific recombination maps including both NCOs and COs. Mothers have fewer but longer NCOs than fathers, and oocytes accumulate NCOs in a non-regulated fashion with maternal age. Recombination, primarily NCO, is responsible for 1.8% (95% confidence interval: 1.3-2.3) and 11.3% (95% confidence interval: 9.0-13.6) of paternal and maternal de novo mutations, respectively, and may drive the increase in de novo mutations with maternal age. NCOs are substantially more prominent than COs in centromeres, possibly to avoid large-scale genomic changes that may cause aneuploidy. Our results demonstrate that NCOs highlight to a much greater extent than COs the differences in the meiotic process between the sexes, in which maternal NCOs may reflect the safeguarding of oocytes from infancy until ovulation.
Collapse
Affiliation(s)
| | - Marteinn T Hardarson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavík, Iceland
| | | | | | | | | | | | | | | | | | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Agnar Helgason
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Bjarni V Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- School of Technology, Reykjavik University, Reykjavík, Iceland.
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
4
|
Ito M, Yun Y, Kulkarni DS, Lee S, Sandhu S, Nuñez B, Hu L, Lee K, Lim N, Hirota RM, Prendergast R, Huang C, Huang I, Hunter N. Distinct and interdependent functions of three RING proteins regulate recombination during mammalian meiosis. Proc Natl Acad Sci U S A 2025; 122:e2412961121. [PMID: 39761402 PMCID: PMC11745341 DOI: 10.1073/pnas.2412961121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/21/2024] [Indexed: 01/30/2025] Open
Abstract
During meiosis, each pair of homologous chromosomes becomes connected by at least one crossover, as required for accurate segregation, and adjacent crossovers are widely separated thereby limiting total numbers. In coarsening models, this crossover patterning results from nascent recombination sites competing to accrue a limiting pro-crossover RING-domain protein (COR) that diffuses between synapsed chromosomes. Here, we delineate the localization dynamics of three mammalian CORs in the mouse and determine their interdependencies. RNF212, HEI10, and the newest member RNF212B show divergent spatiotemporal dynamics along synapsed chromosomes, including profound differences in spermatocytes and oocytes, that are not easily reconciled by elementary coarsening models. Contrasting mutant phenotypes and genetic requirements indicate that RNF212B, RNF212, and HEI10 play distinct but interdependent functions in regulating meiotic recombination and coordinating the events of meiotic prophase-I by integrating signals from DNA breaks, homolog synapsis, the cell-cycle, and incipient crossover sites.
Collapse
Affiliation(s)
- Masaru Ito
- HHMI, University of California, Davis, CA95616
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA95616
- Institute for Protein Research, Osaka University, Osaka565-0871, Japan
| | - Yan Yun
- HHMI, University of California, Davis, CA95616
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA95616
- Center for Reproductive Medicine, Clinical Research Center, Shantou Central Hospital, Shantou, China515041
| | - Dhananjaya S. Kulkarni
- HHMI, University of California, Davis, CA95616
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA95616
| | - Sunkyung Lee
- HHMI, University of California, Davis, CA95616
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA95616
| | - Sumit Sandhu
- HHMI, University of California, Davis, CA95616
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA95616
| | - Briana Nuñez
- HHMI, University of California, Davis, CA95616
- Department of Biochemistry & Molecular Biology, Brown University, Providence, RI02912
| | - Linya Hu
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA95616
| | - Kevin Lee
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA95616
| | - Nelly Lim
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA95616
| | - Rachel M. Hirota
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA95616
| | - Rowan Prendergast
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA95616
| | - Cynthia Huang
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA95616
| | - Ivy Huang
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA95616
| | - Neil Hunter
- HHMI, University of California, Davis, CA95616
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA95616
- Department of Molecular & Cellular Biology, University of California, Davis, CA95616
| |
Collapse
|
5
|
Shapiro JG, Changela N, Jang JK, Joshi JN, McKim KS. Distinct checkpoint and homolog biorientation pathways regulate meiosis I in Drosophila oocytes. PLoS Genet 2025; 21:e1011400. [PMID: 39879252 PMCID: PMC11809923 DOI: 10.1371/journal.pgen.1011400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/10/2025] [Accepted: 01/16/2025] [Indexed: 01/31/2025] Open
Abstract
Mitosis and meiosis have two mechanisms for regulating the accuracy of chromosome segregation: error correction and the spindle assembly checkpoint (SAC). We have investigated the function of several checkpoint proteins in meiosis I of Drosophila oocytes. Increased localization of several SAC proteins was found upon depolymerization of microtubules by colchicine. However, unattached kinetochores or errors in biorientation of homologous chromosomes do not induce increased SAC protein localization. Furthermore, the metaphase I arrest does not depend on SAC genes, suggesting the APC is inhibited even if the SAC is not functional. Two SAC proteins, ROD of the ROD-ZW10-Zwilch (RZZ) complex and MPS1, are also required for the biorientation of homologous chromosomes during meiosis I, suggesting an error correction function. Both proteins aid in preventing or correcting erroneous attachments and depend on SPC105R for localization to the kinetochore. We have defined a region of SPC105R, amino acids 123-473, that is required for ROD localization and biorientation of homologous chromosomes at meiosis I. Surprisingly, ROD removal from kinetochores and movement towards spindle poles, termed "streaming," is independent of the dynein adaptor Spindly and is not linked to the stabilization of end-on attachments. Instead, meiotic RZZ streaming appears to depend on cell cycle stage and may be regulated independently of kinetochore attachment or biorientation status. We also show that Spindly is required for biorientation at meiosis I, and surprisingly, the direction of RZZ streaming.
Collapse
Affiliation(s)
- Joanatta G. Shapiro
- Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Neha Changela
- Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Janet K. Jang
- Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Jay N. Joshi
- Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kim S. McKim
- Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
6
|
Pendina AA, Krapivin MI, Chiryaeva OG, Petrova LI, Pashkova EP, Golubeva AV, Tikhonov AV, Koltsova AS, Trusova ED, Staroverov DA, Glotov AS, Bespalova ON, Efimova OA. Chromosomal Abnormalities in Miscarriages and Maternal Age: New Insights from the Study of 7118 Cases. Cells 2024; 14:8. [PMID: 39791709 PMCID: PMC11720377 DOI: 10.3390/cells14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Chromosomal abnormalities of the embryo are the most common cause of first-trimester pregnancy loss. In this single-center study, we assessed the frequency and the spectrum of chromosomal abnormalities in miscarriages for each year of maternal age from 23 to 44. Cytogenetic data were obtained by conventional karyotyping of 7118 miscarriages in women with naturally conceived pregnancies. Chromosomal abnormalities were identified in 67.25% of miscarriages. The total incidence of chromosomal abnormalities increased with maternal aging; however, its average change for a one-year increase in maternal age differed between age spans, equaling 0.704% in the span from 23 to 37 years and 2.095% in the span from 38 to 44 years. At the age of 38 years, the incidence rate surged sharply by 14.79% up to 79.01% and then increased progressively up to 94% in 44-year-old women. The spectrum of chromosomal abnormalities in miscarriages was the same for each year of maternal age from 23 to 44 years. However, the proportions of particular chromosomal abnormalities differed between karyotypically abnormal miscarriages in younger and older women. The proportions of trisomy 16, polyploidy, monosomy X, mosaic aneuploidies, and structural rearrangements decreased with increasing maternal age. In contrast, the proportions of multiple aneuploidies and regular trisomies 13, 15, 18, 21, and 22 showed an upward trend with maternal aging. To summarize, despite the increase in the total incidence of chromosomal abnormalities in miscarriages with maternal aging, the rate of change differs for younger and older women, being three times lower in the former than in the latter. Moreover, the proportion of some abnormalities in karyotypically abnormal miscarriages shows a steady growth, whereas the proportion of others becomes increasingly low with maternal aging, most probably due to the age-dependent prevalence of different molecular and cellular defects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Olga A. Efimova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| |
Collapse
|
7
|
Biswas L, Tyc KM, Aboelenain M, Sun S, Dundović I, Vukušić K, Liu J, Guo V, Xu M, Scott RT, Tao X, Tolić IM, Xing J, Schindler K. Maternal genetic variants in kinesin motor domains prematurely increase egg aneuploidy. Proc Natl Acad Sci U S A 2024; 121:e2414963121. [PMID: 39475646 PMCID: PMC11551467 DOI: 10.1073/pnas.2414963121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/27/2024] [Indexed: 11/06/2024] Open
Abstract
The female reproductive lifespan is highly dependent on egg quality, especially the presence of a normal number of chromosomes in an egg, known as euploidy. Mistakes in meiosis leading to egg aneuploidy are frequent in humans. Yet, knowledge of the precise genetic landscape that causes egg aneuploidy in women is limited, as phenotypic data on the frequency of human egg aneuploidy are difficult to obtain and therefore absent in public genetic datasets. Here, we identify genetic determinants of reproductive aging via egg aneuploidy in women using a biobank of individual maternal exomes linked with maternal age and embryonic aneuploidy data. Using the exome data, we identified 404 genes bearing variants enriched in individuals with pathologically elevated egg aneuploidy rates. Analysis of the gene ontology and protein-protein interaction network implicated genes encoding the kinesin protein family in egg aneuploidy. We interrogate the causal relationship of the human variants within candidate kinesin genes via experimental perturbations and demonstrate that motor domain variants increase aneuploidy in mouse oocytes. Finally, using a knock-in mouse model, we validate that a specific variant in kinesin KIF18A accelerates reproductive aging and diminishes fertility. These findings reveal additional functional mechanisms of reproductive aging and shed light on how genetic variation underlies individual heterogeneity in the female reproductive lifespan, which might be leveraged to predict reproductive longevity. Together, these results lay the groundwork for the noninvasive biomarkers for egg quality, a first step toward personalized fertility medicine.
Collapse
Affiliation(s)
- Leelabati Biswas
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Katarzyna M Tyc
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Mansour Aboelenain
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Siqi Sun
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Iva Dundović
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb 1000, Croatia
| | - Kruno Vukušić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb 1000, Croatia
| | - Jason Liu
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | | | - Min Xu
- Department of Statistics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Richard T Scott
- Foundation for Embryonic Competence, Basking Ridge, NJ 07920
| | - Xin Tao
- Juno Genetics US, Basking Ridge, NJ 07920
| | - Iva M Tolić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb 1000, Croatia
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
8
|
Moore T. X centromeric drive may explain the prevalence of polycystic ovary syndrome and other conditions: Genomic structure of the human X chromosome pericentromeric region is consistent with meiotic drive associated with PCOS and other conditions. Bioessays 2024; 46:e2400056. [PMID: 39072829 DOI: 10.1002/bies.202400056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024]
Abstract
X chromosome centromeric drive may explain the prevalence of polycystic ovary syndrome and contribute to oocyte aneuploidy, menopause, and other conditions. The mammalian X chromosome may be vulnerable to meiotic drive because of X inactivation in the female germline. The human X pericentromeric region contains genes potentially involved in meiotic mechanisms, including multiple SPIN1 and ZXDC paralogs. This is consistent with a multigenic drive system comprising differential modification of the active and inactive X chromosome centromeres in female primordial germ cells and preferential segregation of the previously inactivated X chromosome centromere to the polar body at meiosis I. The drive mechanism may explain differences in X chromosome regulation in the female germlines of the human and mouse and, based on the functions encoded by the genes in the region, the transmission of X pericentromeric genetic or epigenetic variants to progeny could contribute to preeclampsia, autism, and differences in sexual differentiation.
Collapse
Affiliation(s)
- Tom Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Shapiro JG, Changela N, Jang JK, Joshi JN, McKim KS. Distinct checkpoint and homolog biorientation pathways regulate meiosis I in Drosophila oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608908. [PMID: 39229242 PMCID: PMC11370425 DOI: 10.1101/2024.08.21.608908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Mitosis and meiosis have two mechanisms for regulating the accuracy of chromosome segregation: error correction and the spindle assembly checkpoint (SAC). We have investigated the function of several checkpoint proteins in meiosis I of Drosophila oocytes. Evidence of a SAC response by several of these proteins is found upon depolymerization of microtubules by colchicine. However, unattached kinetochores or errors in biorientation of homologous chromosomes does not induce a SAC response. Furthermore, the metaphase I arrest does not depend on SAC genes, suggesting the APC is inhibited even if the SAC is silenced. Two SAC proteins, ROD of the ROD-ZW10-Zwilch (RZZ) complex and MPS1, are also required for the biorientation of homologous chromosomes during meiosis I, suggesting an error correction function. Both proteins aid in preventing or correcting erroneous attachments and depend on SPC105R for localization to the kinetochore. We have defined a region of SPC105R, amino acids 123-473, that is required for ROD localization and biorientation of homologous chromosomes at meiosis I. Surprisingly, ROD removal, or "streaming", is independent of the dynein adaptor Spindly and is not linked to the stabilization of end-on attachments. Instead, meiotic RZZ streaming appears to depend on cell cycle stage and may be regulated independently of kinetochore attachment or biorientation status. We also show that dynein adaptor Spindly is also required for biorientation at meiosis I, and surprisingly, the direction of RZZ streaming.
Collapse
Affiliation(s)
- Joanatta G Shapiro
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Neha Changela
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Janet K Jang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Jay N Joshi
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kim S McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
10
|
Haseeb MA, Bernys AC, Dickert EE, Bickel SE. An RNAi screen to identify proteins required for cohesion rejuvenation during meiotic prophase in Drosophila oocytes. G3 (BETHESDA, MD.) 2024; 14:jkae123. [PMID: 38849129 PMCID: PMC11304968 DOI: 10.1093/g3journal/jkae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Accurate chromosome segregation during meiosis requires the maintenance of sister chromatid cohesion, initially established during premeiotic S phase. In human oocytes, DNA replication and cohesion establishment occur decades before chromosome segregation and deterioration of meiotic cohesion is one factor that leads to increased segregation errors as women age. Our previous work led us to propose that a cohesion rejuvenation program operates to establish new cohesive linkages during meiotic prophase in Drosophila oocytes and depends on the cohesin loader Nipped-B and the cohesion establishment factor Eco. In support of this model, we recently demonstrated that chromosome-associated cohesin turns over extensively during meiotic prophase and failure to load cohesin onto chromosomes after premeiotic S phase results in arm cohesion defects in Drosophila oocytes. To identify proteins required for prophase cohesion rejuvenation but not S phase establishment, we conducted a Gal4-UAS inducible RNAi screen that utilized two distinct germline drivers. Using this strategy, we identified 29 gene products for which hairpin expression during meiotic prophase, but not premeiotic S phase, significantly increased segregation errors. Prophase knockdown of Brahma or Pumilio, two positives with functional links to the cohesin loader, caused a significant elevation in the missegregation of recombinant homologs, a phenotype consistent with premature loss of arm cohesion. Moreover, fluorescence in situ hybridization confirmed that Brahma, Pumilio, and Nipped-B are required during meiotic prophase for the maintenance of arm cohesion. Our data support the model that Brahma and Pumilio regulate Nipped-B-dependent cohesin loading during rejuvenation. Future analyses will better define the mechanism(s) that govern meiotic cohesion rejuvenation and whether additional prophase-specific positives function in this process.
Collapse
Affiliation(s)
- Muhammad A Haseeb
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA 03755
| | - Alana C Bernys
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA 03755
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA 08544
| | - Erin E Dickert
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA 03755
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA 27710
| | - Sharon E Bickel
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA 03755
| |
Collapse
|
11
|
Porokh V, Kyjovská D, Martonová M, Klenková T, Otevřel P, Kloudová S, Holubcová Z. Zygotic spindle orientation defines cleavage pattern and nuclear status of human embryos. Nat Commun 2024; 15:6369. [PMID: 39075061 PMCID: PMC11286845 DOI: 10.1038/s41467-024-50732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/19/2024] [Indexed: 07/31/2024] Open
Abstract
The first embryonic division represents a starting point for the development of a new individual. In many species, tight control over the first embryonic division ensures its accuracy. However, the first division in humans is often erroneous and can impair embryo development. To delineate the spatiotemporal organization of the first mitotic division typical for normal human embryo development, we systematically analyzed a unique timelapse dataset of 300 IVF embryos that developed into healthy newborns. The zygotic division pattern of these best-quality embryos was compared to their siblings that failed to implant or arrested during cleavage stage. We show that division at the right angle to the juxtaposed pronuclei is preferential and supports faithful zygotic division. Alternative configurations of the first mitosis are associated with reduced clustering of nucleoli and multinucleation at the 2-cell stage, which are more common in women of advanced age. Collectively, these data imply that orientation of the first division predisposes human embryos to genetic (in)stability and may contribute to aneuploidy and age-related infertility.
Collapse
Affiliation(s)
- Volodymyr Porokh
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Drahomíra Kyjovská
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| | - Martina Martonová
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| | - Tereza Klenková
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| | - Pavel Otevřel
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| | - Soňa Kloudová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| | - Zuzana Holubcová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic.
| |
Collapse
|
12
|
Haseeb MA, Weng KA, Bickel SE. Chromatin-associated cohesin turns over extensively and forms new cohesive linkages in Drosophila oocytes during meiotic prophase. Curr Biol 2024; 34:2868-2879.e6. [PMID: 38870933 PMCID: PMC11258876 DOI: 10.1016/j.cub.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/27/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
In dividing cells, accurate chromosome segregation depends on sister chromatid cohesion, protein linkages that are established during DNA replication. Faithful chromosome segregation in oocytes requires that cohesion, first established in S phase, remain intact for days to decades, depending on the organism. Premature loss of meiotic cohesion in oocytes leads to the production of aneuploid gametes and contributes to the increased incidence of meiotic segregation errors as women age (maternal age effect). The prevailing model is that cohesive linkages do not turn over in mammalian oocytes. However, we have previously reported that cohesion-related defects arise in Drosophila oocytes when individual cohesin subunits or cohesin regulators are knocked down after meiotic S phase. Here, we use two strategies to express a tagged cohesin subunit exclusively during mid-prophase in Drosophila oocytes and demonstrate that newly expressed cohesin is used to form de novo linkages after meiotic S phase. Cohesin along the arms of oocyte chromosomes appears to completely turn over within a 2-day window during prophase, whereas replacement is less extensive at centromeres. Unlike S-phase cohesion establishment, the formation of new cohesive linkages during meiotic prophase does not require acetylation of conserved lysines within the Smc3 head. Our findings indicate that maintenance of cohesion between S phase and chromosome segregation in Drosophila oocytes requires an active cohesion rejuvenation program that generates new cohesive linkages during meiotic prophase.
Collapse
Affiliation(s)
- Muhammad A Haseeb
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
| | - Katherine A Weng
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
| | - Sharon E Bickel
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA.
| |
Collapse
|
13
|
Biswas L, Tyc KM, Aboelenain M, Sun S, Dundović I, Vukušić K, Liu J, Guo V, Xu M, Scott RT, Tao X, Tolić IM, Xing J, Schindler K. Maternal genetic variants in kinesin motor domains prematurely increase egg aneuploidy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.04.24309950. [PMID: 39006445 PMCID: PMC11245073 DOI: 10.1101/2024.07.04.24309950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The female reproductive lifespan depends on egg quality, particularly euploidy. Mistakes in meiosis leading to egg aneuploidy are common, but the genetic landscape causing this is not well understood due to limited phenotypic data. We identify genetic determinants of reproductive aging via egg aneuploidy using a biobank of maternal exomes linked with maternal age and embryonic aneuploidy data. We found 404 genes with variants enriched in individuals with high egg aneuploidy rates and implicate kinesin protein family genes in aneuploidy risk. Experimental perturbations showed that motor domain variants in these genes increase aneuploidy in mouse oocytes. A knock-in mouse model validated that a specific variant in kinesin KIF18A accelerates reproductive aging and diminishes fertility. These findings suggest potential non-invasive biomarkers for egg quality, aiding personalized fertility medicine. One sentence summary The study identifies novel genetic determinants of reproductive aging linked to egg aneuploidy by analyzing maternal exomes and demonstrates that variants in kinesin genes, specifically KIF18A , contribute to increased aneuploidy and accelerated reproductive aging, offering potential for personalized fertility medicine.
Collapse
|
14
|
Jones G, Kleckner N, Zickler D. Meiosis through three centuries. Chromosoma 2024; 133:93-115. [PMID: 38730132 PMCID: PMC11180163 DOI: 10.1007/s00412-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Meiosis is the specialized cellular program that underlies gamete formation for sexual reproduction. It is therefore not only interesting but also a fundamentally important subject for investigation. An especially attractive feature of this program is that many of the processes of special interest involve organized chromosomes, thus providing the possibility to see chromosomes "in action". Analysis of meiosis has also proven to be useful in discovering and understanding processes that are universal to all chromosomal programs. Here we provide an overview of the different historical moments when the gap between observation and understanding of mechanisms and/or roles for the new discovered molecules was bridged. This review reflects also the synergy of thinking and discussion among our three laboratories during the past several decades.
Collapse
Affiliation(s)
- Gareth Jones
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), Centre National de La Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, 91198, Gif-Sur-Yvette, France
| |
Collapse
|
15
|
Steinthorsdottir V, Halldorsson BV, Jonsson H, Palsson G, Oddsson A, Westergaard D, Arnadottir GA, Stefansdottir L, Banasik K, Esplin MS, Hansen TF, Brunak S, Nyegaard M, Ostrowski SR, Pedersen OBV, Erikstrup C, Thorleifsson G, Nadauld LD, Haraldsson A, Steingrimsdottir T, Tryggvadottir L, Jonsdottir I, Gudbjartsson DF, Hoffmann ER, Sulem P, Holm H, Nielsen HS, Stefansson K. Variant in the synaptonemal complex protein SYCE2 associates with pregnancy loss through effect on recombination. Nat Struct Mol Biol 2024; 31:710-716. [PMID: 38287193 PMCID: PMC11026158 DOI: 10.1038/s41594-023-01209-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024]
Abstract
Two-thirds of all human conceptions are lost, in most cases before clinical detection. The lack of detailed understanding of the causes of pregnancy losses constrains focused counseling for future pregnancies. We have previously shown that a missense variant in synaptonemal complex central element protein 2 (SYCE2), in a key residue for the assembly of the synaptonemal complex backbone, associates with recombination traits. Here we show that it also increases risk of pregnancy loss in a genome-wide association analysis on 114,761 women with reported pregnancy loss. We further show that the variant associates with more random placement of crossovers and lower recombination rate in longer chromosomes but higher in the shorter ones. These results support the hypothesis that some pregnancy losses are due to failures in recombination. They further demonstrate that variants with a substantial effect on the quality of recombination can be maintained in the population.
Collapse
Affiliation(s)
| | - Bjarni V Halldorsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | | | | | | | - David Westergaard
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark
| | | | | | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark
| | - M Sean Esplin
- Division of Maternal and Fetal Medicine, Intermountain Health, Murray, UT, USA
| | - Thomas Folkmann Hansen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Headache Center & Danish Multiple Sclerose Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Nyegaard
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Birger Vesterager Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Asgeir Haraldsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Children's Hospital Iceland, Landspitali University Hospital, Reykjavik, Iceland
| | - Thora Steingrimsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Obstetrics and Gynecology, Landspitali University Hospital, Reykjavik, Iceland
| | - Laufey Tryggvadottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Cancer Society Research and Registration Center, Reykjavik, Iceland
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Eva R Hoffmann
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Hilma Holm
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | - Henriette Svarre Nielsen
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
16
|
Horakova A, Konecna M, Anger M. Chromosome Division in Early Embryos-Is Everything under Control? And Is the Cell Size Important? Int J Mol Sci 2024; 25:2101. [PMID: 38396778 PMCID: PMC10889803 DOI: 10.3390/ijms25042101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Chromosome segregation in female germ cells and early embryonic blastomeres is known to be highly prone to errors. The resulting aneuploidy is therefore the most frequent cause of termination of early development and embryo loss in mammals. And in specific cases, when the aneuploidy is actually compatible with embryonic and fetal development, it leads to severe developmental disorders. The main surveillance mechanism, which is essential for the fidelity of chromosome segregation, is the Spindle Assembly Checkpoint (SAC). And although all eukaryotic cells carry genes required for SAC, it is not clear whether this pathway is active in all cell types, including blastomeres of early embryos. In this review, we will summarize and discuss the recent progress in our understanding of the mechanisms controlling chromosome segregation and how they might work in embryos and mammalian embryos in particular. Our conclusion from the current literature is that the early mammalian embryos show limited capabilities to react to chromosome segregation defects, which might, at least partially, explain the widespread problem of aneuploidy during the early development in mammals.
Collapse
Affiliation(s)
- Adela Horakova
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
- Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic
| | - Marketa Konecna
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
- Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic
| | - Martin Anger
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 621 00 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
| |
Collapse
|
17
|
Budrewicz J, Chavez SL. Insights into embryonic chromosomal instability: mechanisms of DNA elimination during mammalian preimplantation development. Front Cell Dev Biol 2024; 12:1344092. [PMID: 38374891 PMCID: PMC10875028 DOI: 10.3389/fcell.2024.1344092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
Mammalian preimplantation embryos often contend with aneuploidy that arose either by the inheritance of meiotic errors from the gametes, or from mitotic mis-segregation events that occurred following fertilization. Regardless of the origin, mis-segregated chromosomes become encapsulated in micronuclei (MN) that are spatially isolated from the main nucleus. Much of our knowledge of MN formation comes from dividing somatic cells during tumorigenesis, but the error-prone cleavage-stage of early embryogenesis is fundamentally different. One unique aspect is that cellular fragmentation (CF), whereby small subcellular bodies pinch off embryonic blastomeres, is frequently observed. CF has been detected in both in vitro and in vivo-derived embryos and likely represents a response to chromosome mis-segregation since it only appears after MN formation. There are multiple fates for MN, including sequestration into CFs, but the molecular mechanism(s) by which this occurs remains unclear. Due to nuclear envelope rupture, the chromosomal material contained within MN and CFs becomes susceptible to double stranded-DNA breaks. Despite this damage, embryos may still progress to the blastocyst stage and exclude chromosome-containing CFs, as well as non-dividing aneuploid blastomeres, from participating in further development. Whether these are attempts to rectify MN formation or eliminate embryos with poor implantation potential is unknown and this review will discuss the potential implications of DNA removal by CF/blastomere exclusion. We will also extrapolate what is known about the intracellular pathways mediating MN formation and rupture in somatic cells to preimplantation embryogenesis and how nuclear budding and DNA release into the cytoplasm may impact overall development.
Collapse
Affiliation(s)
- Jacqueline Budrewicz
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, United States
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Shawn L. Chavez
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, United States
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, United States
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, United States
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
18
|
Verdyck P, Altarescu G, Santos-Ribeiro S, Vrettou C, Koehler U, Griesinger G, Goossens V, Magli C, Albanese C, Parriego M, Coll L, Ron-El R, Sermon K, Traeger-Synodinos J. Aneuploidy in oocytes from women of advanced maternal age: analysis of the causal meiotic errors and impact on embryo development. Hum Reprod 2023; 38:2526-2535. [PMID: 37814912 DOI: 10.1093/humrep/dead201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/06/2023] [Indexed: 10/11/2023] Open
Abstract
STUDY QUESTION In oocytes of advanced maternal age (AMA) women, what are the mechanisms leading to aneuploidy and what is the association of aneuploidy with embryo development? SUMMARY ANSWER Known chromosome segregation errors such as precocious separation of sister chromatids explained 90.4% of abnormal chromosome copy numbers in polar bodies (PBs), underlying impaired embryo development. WHAT IS KNOWN ALREADY Meiotic chromosomal aneuploidies in oocytes correlate with AMA (>35 years) and can affect over half of oocytes in this age group. This underlies the rationale for PB biopsy as a form of early preimplantation genetic testing for aneuploidy (PGT-A), as performed in the 'ESHRE STudy into the Evaluation of oocyte Euploidy by Microarray analysis' (ESTEEM) randomized controlled trial (RCT). So far, chromosome analysis of oocytes and PBs has shown that precocious separation of sister chromatids (PSSC), Meiosis II (MII) non-disjunction (ND), and reverse segregation (RS) are the main mechanisms leading to aneuploidy in oocytes. STUDY DESIGN, SIZE, DURATION Data were sourced from the ESTEEM study, a multicentre RCT from seven European centres to assess the clinical utility of PGT-A on PBs using array comparative genomic hybridization (aCGH) in patients of AMA (36-40 years). This included data on the chromosome complement in PB pairs (PGT-A group), and on embryo morphology in a subset of embryos, up to Day 6 post-insemination, from both the intervention (PB biopsy and PGT-A) and control groups. PARTICIPANTS/MATERIALS, SETTING, METHODS ESTEEM recruited 396 AMA patients: 205 in the intervention group and 191 in the control group. Complete genetic data from 693 PB pairs were analysed. Additionally, the morphology from 1034 embryos generated from fertilized oocytes (two pronuclei) in the PB biopsy group and 1082 in the control group were used for statistical analysis. MAIN RESULTS AND THE ROLE OF CHANCE Overall, 461/693 PB pairs showed abnormal segregation in 1162/10 810 chromosomes. The main observed abnormal segregations were compatible with PSSC in Meiosis I (MI) (n = 568/1162; 48.9%), ND of chromatids in MII or RS (n = 417/1162; 35.9%), and less frequently ND in MI (n = 65/1162; 5.6%). For 112 chromosomes (112/1162; 9.6%), we observed a chromosome copy number in the first PB (PB1) and second PB (PB2) that is not explained by any of the known mechanisms causing aneuploidy in oocytes. We observed that embryos in the PGT-A arm of the RCT did not have a significantly different morphology between 2 and 6 days post-insemination compared to the control group, indicating that PB biopsy did not affect embryo quality. Following age-adjusted multilevel mixed-effect ordinal logistic regression models performed for each embryo evaluation day, aneuploidy was associated with a decrease in embryo quality on Day 3 (adjusted odds ratio (aOR) 0.62, 95% CI 0.43-0.90), Day 4 (aOR 0.15, 95% CI 0.06-0.39), and Day 5 (aOR 0.28, 95% CI 0.14-0.58). LIMITATIONS, REASON FOR CAUTION RS cannot be distinguished from normal segregation or MII ND using aCGH. The observed segregations were based on the detected copy number of PB1 and PB2 only and were not confirmed by the analysis of embryos. The embryo morphology assessment was static and single observer. WIDER IMPLICATIONS OF THE FINDINGS Our finding of frequent unexplained chromosome copy numbers in PBs indicates that our knowledge of the mechanisms causing aneuploidy in oocytes is incomplete. It challenges the dogma that aneuploidy in oocytes is exclusively caused by mis-segregation of chromosomes during MI and MII. STUDY FUNDING/COMPETING INTEREST(S) Data were mined from a study funded by ESHRE. Illumina provided microarrays and other consumables necessary for aCGH testing of PBs. None of the authors have competing interests. TRIAL REGISTRATION NUMBER Data were mined from the ESTEEM study (ClinicalTrials.gov Identifier NCT01532284).
Collapse
Affiliation(s)
- P Verdyck
- Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - G Altarescu
- Shaare-Zedek Medical Center, The Hebrew University School of Medicine, Jerusalem, Israël
| | - S Santos-Ribeiro
- IVI-RMA Lisboa, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - C Vrettou
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | - U Koehler
- MGZ-Medizinisch Genetisches Zentrum, Munich, Germany
| | - G Griesinger
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Schleswig-Holstein, Campus Luebeck, Lübeck, Germany
| | - V Goossens
- The European Society of Human Reproduction and Embryology, Strombeek-Bever, Belgium
| | - C Magli
- SISMER, Reproductive Medicine Unit, Bologna, Italy
| | - C Albanese
- SISMER, Reproductive Medicine Unit, Bologna, Italy
| | - M Parriego
- Department of Obstetrics, Gynecology and Reproductive Medicine, Dexeus University Hospital, Barcelona, Spain
| | - L Coll
- Department of Obstetrics, Gynecology and Reproductive Medicine, Dexeus University Hospital, Barcelona, Spain
| | - R Ron-El
- Shaare-Zedek Medical Center, The Hebrew University School of Medicine, Jerusalem, Israël
| | - K Sermon
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - J Traeger-Synodinos
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, 'Aghia Sophia' Children's Hospital, Athens, Greece
| |
Collapse
|
19
|
Attia SM, Al-Hamamah MA, Attia MSM, Alanazi A, Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Harisa GI. Rituximab alleviates increased disomic sperm in DBA/1J mouse models of rheumatoid arthritis via restoration of redox imbalance. J Biochem Mol Toxicol 2023; 37:e23496. [PMID: 37555509 DOI: 10.1002/jbt.23496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/15/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023]
Abstract
Compared to the general population, patients with arthritis have a higher risk of fertility abnormalities, which have deleterious effects on both reproductive function and pregnancy outcomes, especially in patients wishing to conceive. These may be due to the disease itself or those of drug therapies. Despite the increasing use of rituximab in arthritis, limited data are available on its potential to induce aneuploidy in germ cells. Therefore, the aim of the current investigation was to determine if repeated treatment with rituximab affects the incidence of aneuploidy and redox imbalance in arthritic mouse sperm. Mice were treated with 250 mg/kg rituximab once weakly for 3 weeks, and then sperm were sampled 22 days after the last dose of rituximab. Fluorescence in situ hybridization assay with chromosome-specific DNA probes was used to evaluate the disomic/diploid sperm. Our results showed that rituximab had no aneuploidogenic effect on the meiotic stage of spermatogenesis. Conversely, arthritis induced a significantly high frequency of disomy, and treatment of arthritic mice with rituximab reduced the increased levels of disomic sperm. The occurrence of total diploidy was not significantly different in all groups. Reduced glutathione and8-hydroxydeoxyguanosine, markers of oxidative stress were significantly altered in arthritic animals, while rituximab treatment restored these changes. Additionally, arthritis severity was reduced after rituximab treatment. We conclude that rituximab may efficiently alleviate the arthritis-induced effects on male meiosis and avert the higher risk of abnormal reproductive outcomes. Therefore, treating arthritic patients with rituximab may efficiently inhibit the transmission of genetic anomalies induced by arthritis to future generations.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed A Al-Hamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrazaq Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gamaleldin I Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Abstract
The raison d'être of meiosis is shuffling of genetic information via Mendelian segregation and, within individual chromosomes, by DNA crossing-over. These outcomes are enabled by a complex cellular program in which interactions between homologous chromosomes play a central role. We first provide a background regarding the basic principles of this program. We then summarize the current understanding of the DNA events of recombination and of three processes that involve whole chromosomes: homolog pairing, crossover interference, and chiasma maturation. All of these processes are implemented by direct physical interaction of recombination complexes with underlying chromosome structures. Finally, we present convergent lines of evidence that the meiotic program may have evolved by coupling of this interaction to late-stage mitotic chromosome morphogenesis.
Collapse
Affiliation(s)
- Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
21
|
Albekairi NA, Al-Hamamah MA, Alshamrani AA, Attia MSM, Nadeem A, Ansari MA, Ahmad SF, Bakheet SA, Attia SM. Dapagliflozin Mitigated Elevated Disomic and Diploid Sperm in a Mouse Model of Diabetes and Recover the Disrupted Ogg1, Parp1, and P53 Gene Expression. Biomedicines 2023; 11:2980. [PMID: 38001980 PMCID: PMC10669605 DOI: 10.3390/biomedicines11112980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Increases in numerical chromosomal syndromes were observed in children of diabetic mothers. However, the effects of diabetes on male reproduction, specifically numerical chromosomal aberrations (aneuploidy), have not been studied. Furthermore, despite the increasing use of dapagliflozin for diabetes treatment, no data exists on its ability to affect aneuploidy levels in germ cells. Thus, our investigation aimed to evaluate the effects of diabetes on spontaneous sperm aneuploidy and whether treatment with dapagliflozin influences the frequency of aneuploidy in the sperm of an experimental diabetic animal model. Our findings show that dapagliflozin has no aneugenic effects on the meiotic stages of spermatogenesis. In contrast, diabetes raised the frequency of aneuploidy, and dapagliflozin administration decreased the elevated levels of disomic and diploid sperm. The level of oxidative stress was markedly increased in diabetic mice, but were reduced by dapagliflozin treatment. Furthermore, the expression of some of DNA repair genes was disrupted in diabetic animals, whereas dapagliflozin therapy restored these disruptions and significantly enhanced DNA repair. Thus, dapagliflozin may effectively ameliorate diabetes-induced aneugenic effects on male meiosis and treating diabetic patients with dapagliflozin may effectively mitigate the transmission of diabetes-induced chromosomal defects to offspring.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.A.); (M.A.A.-H.); (A.A.A.); (M.S.M.A.); (M.A.A.); (S.A.B.)
| |
Collapse
|
22
|
Bai W, Zhang Q, Lin Z, Ye J, Shen X, Zhou L, Cai W. Analysis of copy number variations and possible candidate genes in spontaneous abortion by copy number variation sequencing. Front Endocrinol (Lausanne) 2023; 14:1218793. [PMID: 37916154 PMCID: PMC10616874 DOI: 10.3389/fendo.2023.1218793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/20/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction Embryonic chromosomal abnormalities represent a major causative factor in early pregnancy loss, highlighting the importance of understanding their role in spontaneous abortion. This study investigates the potential correlation between chromosomal abnormalities and spontaneous abortion using copy number variation sequencing (CNV-seq), a Next-Generation Sequencing (NGS) technology. Methods We analyzed Copy Number Variations (CNVs) in 395 aborted fetal specimens from spontaneous abortion patients by CNV-seq. And collected correlated data, including maternal age, gestational week, and Body Mass Index (BMI), and analyzed their relationship with the CNVs. Results Out of the 395 cases, 67.09% of the fetuses had chromosomal abnormalities, including numerical abnormalities, structural abnormalities, and mosaicisms. Maternal age was found to be an important risk factor for fetal chromosomal abnormalities, with the proportion of autosomal trisomy in abnormal karyotypes increasing with maternal age, while polyploidy decreased. The proportion of abnormal karyotypes with mosaic decreased as gestational age increased, while the frequency of polyploidy and sex chromosome monosomy increased. Gene enrichment analysis identified potential miscarriage candidate genes and functions, as well as pathogenic genes and pathways associated with unexplained miscarriage among women aged below or over 35 years old. Based on our study, it can be inferred that there is an association between BMI values and the risk of recurrent miscarriage caused by chromosomal abnormalities. Discussion Overall, these findings provide important insights into the understanding of spontaneous abortion and have implications for the development of personalized interventions for patients with abnormal karyotypes.
Collapse
Affiliation(s)
- Wei Bai
- Department of Laboratory Medicine, Wenzhou Traditional Chinese Medicine Hospital of Zhejiang Chinese Medical University, Zhejiang, China
| | - Qi Zhang
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, China
| | - Zhi Lin
- Department of Laboratory Medicine, Wenzhou Traditional Chinese Medicine Hospital of Zhejiang Chinese Medical University, Zhejiang, China
| | - Jin Ye
- Department of Laboratory Medicine, Wenzhou Traditional Chinese Medicine Hospital of Zhejiang Chinese Medical University, Zhejiang, China
| | - Xiaoqi Shen
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, China
| | - Linshuang Zhou
- Department of Laboratory Medicine, Wenzhou Traditional Chinese Medicine Hospital of Zhejiang Chinese Medical University, Zhejiang, China
| | - Wenpin Cai
- Department of Laboratory Medicine, Wenzhou Traditional Chinese Medicine Hospital of Zhejiang Chinese Medical University, Zhejiang, China
| |
Collapse
|
23
|
Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev 2023; 103:2623-2677. [PMID: 37171807 PMCID: PMC10625843 DOI: 10.1152/physrev.00032.2022] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Mammalian eggs (oocytes) are formed during fetal life and establish associations with somatic cells to form primordial follicles that create a store of germ cells (the primordial pool). The size of this pool is influenced by key events during the formation of germ cells and by factors that influence the subsequent activation of follicle growth. These regulatory pathways must ensure that the reserve of oocytes within primordial follicles in humans lasts for up to 50 years, yet only approximately 0.1% will ever be ovulated with the rest undergoing degeneration. This review outlines the mechanisms and regulatory pathways that govern the processes of oocyte and follicle formation and later growth, within the ovarian stroma, through to ovulation with particular reference to human oocytes/follicles. In addition, the effects of aging on female reproductive capacity through changes in oocyte number and quality are emphasized, with both the cellular mechanisms and clinical implications discussed. Finally, the details of current developments in culture systems that support all stages of follicle growth to generate mature oocytes in vitro and emerging prospects for making new oocytes from stem cells are outlined.
Collapse
Affiliation(s)
- Evelyn E Telfer
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanne Grosbois
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yvonne L Odey
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Roseanne Rosario
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
24
|
Haseeb MA, Weng KA, Bickel SE. Chromatin-associated cohesin turns over extensively and forms new cohesive linkages during meiotic prophase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553729. [PMID: 37645916 PMCID: PMC10462139 DOI: 10.1101/2023.08.17.553729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In dividing cells, accurate chromosome segregation depends on sister chromatid cohesion, protein linkages that are established during DNA replication. Faithful chromosome segregation in oocytes requires that cohesion, first established in S phase, remain intact for days to decades, depending on the organism. Premature loss of meiotic cohesion in oocytes leads to the production of aneuploid gametes and contributes to the increased incidence of meiotic segregation errors as women age (maternal age effect). The prevailing model is that cohesive linkages do not turn over in mammalian oocytes. However, we have previously reported that cohesion-related defects arise in Drosophila oocytes when individual cohesin subunits or cohesin regulators are knocked down after meiotic S phase. Here we use two strategies to express a tagged cohesin subunit exclusively during mid-prophase in Drosophila oocytes and demonstrate that newly expressed cohesin is used to form de novo linkages after meiotic S phase. Moreover, nearly complete turnover of chromosome-associated cohesin occurs during meiotic prophase, with faster replacement on the arms than at the centromeres. Unlike S-phase cohesion establishment, the formation of new cohesive linkages during meiotic prophase does not require acetylation of conserved lysines within the Smc3 head. Our findings indicate that maintenance of cohesion between S phase and chromosome segregation in Drosophila oocytes requires an active cohesion rejuvenation program that generates new cohesive linkages during meiotic prophase.
Collapse
Affiliation(s)
- Muhammad A. Haseeb
- Department of Biological Sciences, Dartmouth College 78 College Street, Hanover, NH 03755
| | - Katherine A. Weng
- Department of Biological Sciences, Dartmouth College 78 College Street, Hanover, NH 03755
| | | |
Collapse
|
25
|
Reece AS, Bennett K, Hulse GK. Cannabis- and Substance-Related Carcinogenesis in Europe: A Lagged Causal Inferential Panel Regression Study. J Xenobiot 2023; 13:323-385. [PMID: 37489337 PMCID: PMC10366890 DOI: 10.3390/jox13030024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Recent European data facilitate an epidemiological investigation of the controversial cannabis-cancer relationship. Of particular concern were prior findings associating high-dose cannabis use with reproductive problems and potential genetic impacts. Cancer incidence data age-standardised to the world population was obtained from the European Cancer Information System 2000-2020 and many European national cancer registries. Drug use data were obtained from the European Monitoring Centre for Drugs and Drug Addiction. Alcohol and tobacco consumption was sourced from the WHO. Median household income was taken from the World bank. Cancer rates in high-cannabis-use countries were significantly higher than elsewhere (β-estimate = 0.4165, p = 3.54 × 10-115). Eighteen of forty-one cancers (42,675 individual rates) were significantly associated with cannabis exposure at bivariate analysis. Twenty-five cancers were linked in inverse-probability-weighted multivariate models. Temporal lagging in panel models intensified these effects. In multivariable models, cannabis was a more powerful correlate of cancer incidence than tobacco or alcohol. Reproductive toxicity was evidenced by the involvement of testis, ovary, prostate and breast cancers and because some of the myeloid and lymphoid leukaemias implicated occur in childhood, indicating inherited intergenerational genotoxicity. Cannabis is a more important carcinogen than tobacco and alcohol and fulfills epidemiological qualitative and quantitative criteria for causality for 25/41 cancers. Reproductive and transgenerational effects are prominent. These findings confirm the clinical and epidemiological salience of cannabis as a major multigenerational community carcinogen.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Kellie Bennett
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- Faculty of Health Sciences, Curtin University, 208 Kent St., Bentley, Perth, WA 6102, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
26
|
Lledo B, Marco A, Morales R, Ortiz JA, García-Hernández E, Lozano FM, Cascales A, Guerrero J, Bernabeu A, Bernabeu R. Identification of novel candidate genes associated with meiotic aneuploidy in human embryos by whole-exome sequencing. J Assist Reprod Genet 2023; 40:1755-1763. [PMID: 37171739 PMCID: PMC10352178 DOI: 10.1007/s10815-023-02825-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
PURPOSE To identify novel genetic variants responsible for meiotic embryonic aneuploidy. METHODS A prospective observational cohort study that included 29 couples who underwent trophectoderm biopsies from 127 embryos and performed whole-exome sequencing (WES) between November 2019 and March 2022. Patients were divided into two groups according to the expected embryo aneuploidy rate based on maternal age. RESULTS After variant filtering in the WES analysis of 58 patients/donors, five heterozygous variants were identified in female partners from the study group that had an impact on embryo aneuploidy. Additionally, a slowdown in embryo development and a decrease in the number of blastocysts available for biopsy were observed in the study group embryos. CONCLUSION This study has identified new candidate genes and variants not previously associated with meiotic embryo aneuploidy, but which are involved in important biological processes related to cell division and chromosome segregation. WES may be an efficient tool to identify patients with a higher-than-expected risk of embryo aneuploidy based on maternal age and allow for individualized genetic counselling prior to treatment.
Collapse
Affiliation(s)
- B Lledo
- Instituto Bernabeu Biotech, 03016, Alicante, Spain.
| | - A Marco
- Instituto Bernabeu Biotech, 03016, Alicante, Spain
| | - R Morales
- Instituto Bernabeu Biotech, 03016, Alicante, Spain
| | - J A Ortiz
- Instituto Bernabeu Biotech, 03016, Alicante, Spain
| | | | - F M Lozano
- Instituto Bernabeu Biotech, 03016, Alicante, Spain
| | - A Cascales
- Instituto Bernabeu Biotech, 03016, Alicante, Spain
| | - J Guerrero
- Instituto Bernabeu of Fertility and Gynaecology, 03016, Alicante, Spain
| | - A Bernabeu
- Instituto Bernabeu of Fertility and Gynaecology, 03016, Alicante, Spain
- Cátedra de Medicina Comunitaria y Salud Reproductiva, Miguel Hernández University, Alicante, Spain
| | - R Bernabeu
- Instituto Bernabeu of Fertility and Gynaecology, 03016, Alicante, Spain
- Cátedra de Medicina Comunitaria y Salud Reproductiva, Miguel Hernández University, Alicante, Spain
| |
Collapse
|
27
|
Villar L, Tralik B, Diamond MP, Allon M, Maldonado I, Dozortsev DI. Ovulation and birth after administration of progesterone trigger-two case reports. J Assist Reprod Genet 2023; 40:1037-1044. [PMID: 36808579 PMCID: PMC10239420 DOI: 10.1007/s10815-023-02750-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
PURPOSE To determine whether using progesterone as a trigger of a gonadotropin surge will induce ovulation and a competent corpus luteum. METHODS Patients were administered 5 or 10 mg of progesterone intramuscularly when the leading follicle reached preovulatory size. RESULTS We demonstrate that progesterone injections result in classical ultrasonographic hallmarks of ovulation about 48 h later and the formation of a corpus luteum competent to support pregnancy. CONCLUSION Our results support further exploration of using progesterone to trigger a gonadotropin surge in assisted human reproduction.
Collapse
Affiliation(s)
- Lina Villar
- CITMER Medicina Reproductiva, Mexico City, Mexico
| | - Beata Tralik
- Advanced Fertility Center of Texas, Houston, TX, USA
| | - Michael P Diamond
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Michael Allon
- Advanced Fertility Center of Texas, Houston, TX, USA
| | | | - Dmitri I Dozortsev
- CITMER Medicina Reproductiva, Mexico City, Mexico.
- Advanced Fertility Center of Texas, Houston, TX, USA.
| |
Collapse
|
28
|
Gong T, McNally FJ. Caenorhabditis elegans spermatocytes can segregate achiasmate homologous chromosomes apart at higher than random frequency during meiosis I. Genetics 2023; 223:iyad021. [PMID: 36792551 PMCID: PMC10319977 DOI: 10.1093/genetics/iyad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Chromosome segregation errors during meiosis are the leading cause of aneuploidy. Faithful chromosome segregation during meiosis in most eukaryotes requires a crossover which provides a physical attachment holding homologs together in a "bivalent." Crossovers are critical for homologs to be properly aligned and partitioned in the first meiotic division. Without a crossover, individual homologs (univalents) might segregate randomly, resulting in aneuploid progeny. However, Caenorhabditis elegans zim-2 mutants, which have crossover defects on chromosome V, have fewer dead embryos than that expected from random segregation. This deviation from random segregation is more pronounced in zim-2 males than that in females. We found three phenomena that can explain this apparent discrepancy. First, we detected crossovers on chromosome V in both zim-2(tm574) oocytes and spermatocytes, suggesting a redundant mechanism to make up for the ZIM-2 loss. Second, after accounting for the background crossover frequency, spermatocytes produced significantly more euploid gametes than what would be expected from random segregation. Lastly, trisomy of chromosome V is viable and fertile. Together, these three phenomena allow zim-2(tm574) mutants with reduced crossovers on chromosome V to have more viable progeny. Furthermore, live imaging of meiosis in spo-11(me44) oocytes and spermatocytes, which exhibit crossover failure on all 6 chromosomes, showed 12 univalents segregating apart in roughly equal masses in a homology-independent manner, supporting the existence of a mechanism that segregates any 2 chromosomes apart.
Collapse
Affiliation(s)
- Ting Gong
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
29
|
Das A, Destouni A. Novel insights into reproductive ageing and menopause from genomics. Hum Reprod 2023; 38:195-203. [PMID: 36478237 DOI: 10.1093/humrep/deac256] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/03/2022] [Indexed: 12/12/2022] Open
Abstract
The post-reproductive phase or menopause in females is triggered by a physiological timer that depends on a threshold of follicle number in the ovary. Curiously, reproductive senescence appears to be decoupled from chronological age and is instead thought to be a function of physiological ageing. Ovarian ageing is associated with a decrease in oocyte developmental competence, attributed to a concomitant increase in meiotic errors. Although many biological hallmarks of general ageing are well characterized, the precise mechanisms underlying the programmed ageing of the female reproductive system remain elusive. In particular, the molecular pathways linking the external menopause trigger to the internal oocyte chromosome segregation machinery that controls fertility outcomes is unclear. However, recent large scale genomics studies have begun to provide insights into this process. Next-generation sequencing integrated with systems biology offers the advantage of sampling large datasets to uncover molecular pathways associated with a phenotype such as ageing. In this mini-review, we discuss findings from these studies that are crucial for advancing female reproductive senescence research. Targets identified in these studies can inform future animal models for menopause. We present three potential hypotheses for how external pathways governing ovarian ageing can influence meiotic chromosome segregation, with evidence from both animal models and molecular targets revealed from genomics studies. Although still in incipient stages, we discuss the potential of genomics studies combined with epigenetic age acceleration models for providing a predictive toolkit of biomarkers controlling menopause onset in women. We also speculate on future research directions to investigate extending female reproductive lifespan, such as comparative genomics in model systems that lack menopause. Novel genomics insights from such organisms are predicted to provide clues to preserving female fertility.
Collapse
Affiliation(s)
- Arunika Das
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Aspasia Destouni
- Laboratory of Cytogenetics and Molecular Genetics, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larissa, Greece
| |
Collapse
|
30
|
Grateau S, Dupont C, Rivet-Danon D, Béranger A, Johnson N, Mathieu d'Argent E, Chabbert-Buffet N, Sermondade N. [Fertility preservation for transmen]. GYNECOLOGIE, OBSTETRIQUE, FERTILITE & SENOLOGIE 2022; 50:797-804. [PMID: 36183988 DOI: 10.1016/j.gofs.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The evolution of medical techniques as well as legislative changes currently allow to propose fertility preservation strategies in the context of transidentity. During "female to male" transition, androgen therapy has an impact on gonadal function since it usually induces a blockage of ovulation with amenorrhea. Although this effect is reversible when treatment is stopped, the possible long-term effects of testosterone treatment on future fertility or health of future children are poorly known. In addition, transitional surgeries definitely compromise fecundity when they include bilateral ovariectomy and/or hysterectomy. Yet, although long ignored or poorly expressed, the desire for parenthood is a reality in transgender men. Fertility preservation options in FtM transition rely on oocyte or ovarian tissue cryopreservation. The purpose of this review is to provide an overview of the literature regarding fertility preservation in transgender men. Although series remain limited, the increase in the number of recently published articles reflects the interest in improving the management of fertility issues in transgender men.
Collapse
Affiliation(s)
- S Grateau
- Service de biologie de la reproduction - CECOS, Sorbonne université, hôpital Tenon, AP-HP, 4, rue de la Chine, 75020 Paris, France
| | - C Dupont
- Service de biologie de la reproduction - CECOS, Sorbonne université, hôpital Tenon, AP-HP, 4, rue de la Chine, 75020 Paris, France
| | - D Rivet-Danon
- Service de biologie de la reproduction - CECOS, Sorbonne université, hôpital Tenon, AP-HP, 4, rue de la Chine, 75020 Paris, France
| | - A Béranger
- Service de biologie de la reproduction - CECOS, Sorbonne université, hôpital Tenon, AP-HP, 4, rue de la Chine, 75020 Paris, France
| | - N Johnson
- Service de gynécologie-obstétrique-médecine de la reproduction, Sorbonne université, hôpital Tenon, AP-HP, Paris, France
| | - E Mathieu d'Argent
- Service de gynécologie-obstétrique-médecine de la reproduction, Sorbonne université, hôpital Tenon, AP-HP, Paris, France
| | - N Chabbert-Buffet
- Service de gynécologie-obstétrique-médecine de la reproduction, Sorbonne université, hôpital Tenon, AP-HP, Paris, France
| | - N Sermondade
- Service de biologie de la reproduction - CECOS, Sorbonne université, hôpital Tenon, AP-HP, 4, rue de la Chine, 75020 Paris, France.
| |
Collapse
|
31
|
Petersen MMBS, Hartwig TS, Nielsen HS. Pregnancy Loss and Cardiovascular Diseases in Women: Recent Findings and Potential Mechanisms. Curr Atheroscler Rep 2022; 24:889-899. [PMID: 36383292 DOI: 10.1007/s11883-022-01065-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE OF REVIEW Pregnancy loss (PL) has been acknowledged by the American Heart Association as a risk factor for cardiovascular diseases (CVD) later in life. This review aims to sum up recent findings (< ~ 5 years), concerning the link between PL and CVD. RECENT FINDINGS The association between PL and risk of CVD increased with increasing number of PLs and is inversely correlated to maternal age, indicating that the association concerns euploid PLs. Likely mechanisms leading to PL and an increased risk of CVD include endothelial dysfunction, a pro-inflammatory state, antiphospholipid syndrome, autoimmunity, and genetic predisposition. PL as an independent risk factor for CVD constitutes an obvious gateway for a more targeted approach to future research, prevention, and treatment. Future research should clarify the following questions to which the answers are still unknown: whether PL is (a) directly causing the increased risk of CVD or (b) sharing pathophysiological mechanisms also leading to CVD.
Collapse
Affiliation(s)
- Mette Marie Babiel Schmidt Petersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark. .,Department of Obstetrics and Gynecology, Copenhagen University Hospital Hvidovre, Kettegaard Alle 30, 2650, Hvidovre, Denmark.
| | - Tanja Schlaikjær Hartwig
- Department of Obstetrics and Gynecology, Copenhagen University Hospital Hvidovre, Kettegaard Alle 30, 2650, Hvidovre, Denmark
| | - Henriette Svarre Nielsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.,Department of Obstetrics and Gynecology, Copenhagen University Hospital Hvidovre, Kettegaard Alle 30, 2650, Hvidovre, Denmark
| |
Collapse
|
32
|
Mo X, Liu F, Xing C, Shan M, Yao B, Sun Q, Zou Y, Zhang K, Tan J, Sun S, Ren Y. Age‐related SUMOylation of PLK1 is essential to meiosis progression in mouse oocytes. J Cell Physiol 2022; 237:4580-4590. [DOI: 10.1002/jcp.30910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Xiao‐Long Mo
- Department of Histology and Embryology, School of Basic Medicine Zunyi Medical University Zunyi Guizhou China
| | - Feng Liu
- Department of Histology and Embryology, School of Basic Medicine Zunyi Medical University Zunyi Guizhou China
| | - Chun‐Hua Xing
- College of Animal Science and Technology Nanjing Agricultural University Nanjing Jiangsu China
| | - Meng‐Meng Shan
- College of Animal Science and Technology Nanjing Agricultural University Nanjing Jiangsu China
| | - Bo Yao
- Department of Histology and Embryology, School of Basic Medicine Zunyi Medical University Zunyi Guizhou China
| | - Qi‐Qi Sun
- Department of Histology and Embryology, School of Basic Medicine Zunyi Medical University Zunyi Guizhou China
| | - Yuan‐Jing Zou
- College of Animal Science and Technology Nanjing Agricultural University Nanjing Jiangsu China
| | - Kun‐Huan Zhang
- College of Animal Science and Technology Nanjing Agricultural University Nanjing Jiangsu China
| | - Jun Tan
- Department of Histology and Embryology, School of Basic Medicine Zunyi Medical University Zunyi Guizhou China
| | - Shao‐Chen Sun
- College of Animal Science and Technology Nanjing Agricultural University Nanjing Jiangsu China
| | - Yan‐Ping Ren
- Department of Histology and Embryology, School of Basic Medicine Zunyi Medical University Zunyi Guizhou China
| |
Collapse
|
33
|
Brouillet S, Ducrocq B, Mestres S, Guillemain C, Ravel C, Reignier A. [Fertility preservation and access to medically assisted reproduction for Trans people: Guidelines from French Professional Association for Transgender Health]. GYNECOLOGIE, OBSTETRIQUE, FERTILITE & SENOLOGIE 2022; 50:682-688. [PMID: 35750197 DOI: 10.1016/j.gofs.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Many health care professionals are dealing with the issue of transgender people in their medical practice. In the field of reproduction, Trans people can benefit from fertility preservation before the introduction of hormonal treatment or surgery altering their fertility. This article, which is the result of a collaborative work of several reproductive professionals involved in the health of Trans people, provides an overview of the possibilities of fertility preservation and medically assisted reproduction techniques in France for Trans people.
Collapse
Affiliation(s)
- S Brouillet
- Inserm 1203 DEFE, département de biologie de la reproduction, CHU de Montpellier, université de Montpellier, Montpellier, France
| | - B Ducrocq
- CECOS, CHU de Lille, institut de biologie de la reproduction, Lille, France
| | - S Mestres
- Assistance médicale à la procréation, CECOS, CHU de Clermont-Ferrand, CHU d'Estaing, Clermont-Ferrand, France
| | - C Guillemain
- Pôle femmes-parents-enfants, centre clinicobiologique d'assistance médicale à la procréation - CECOS, APHM, hôpital La Conception, 13385 Marseille cedex 5, France
| | - C Ravel
- Inserm, service de biologie de la reproduction - CECOS, EHESP, CHU de Rennes, université Rennes, Irset (institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000 Rennes, France
| | - A Reignier
- Inserm, biologie et médecine de la reproduction et gynécologie médicale, centre de recherche en transplantation et immunologie, UMR 1064, CHU de Nantes, Nantes université, Nantes, France.
| |
Collapse
|
34
|
Tesarik J, Mendoza-Tesarik R. Molecular Clues to Understanding Causes of Human-Assisted Reproduction Treatment Failures and Possible Treatment Options. Int J Mol Sci 2022; 23:10357. [PMID: 36142268 PMCID: PMC9499616 DOI: 10.3390/ijms231810357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
More than forty years after the first birth following in vitro fertilization (IVF), the success rates of IVF and of IVF-derived assisted reproduction techniques (ART) still remain relatively low. Interindividual differences between infertile couples and the nature of the problems underlying their infertility appear to be underestimated nowadays. Consequently, the molecular basis of each couple's reproductive function and of its disturbances is needed to offer an individualized diagnostic and therapeutic approaches to each couple, instead of applying a standard or minimally adapted protocols to everybody. Interindividual differences include sperm and oocyte function and health status, early (preimplantation) embryonic development, the optimal window of uterine receptivity for the implanting embryo, the function of the corpus luteum as the main source of progesterone production during the first days of pregnancy, the timing of the subsequent luteoplacental shift in progesterone production, and aberrant reactions of the uterine immune cells to the implanting and recently implanted embryos. In this article, the molecular basis that underlies each of these abnormalities is reviewed and discussed, with the aim to design specific treatment options to be used for each of them.
Collapse
|
35
|
Miljanović O, Teofilov S, Anđelić M, Magić Z, Cikota-Aleksić B. Maternal MTHFR 677C>T, 1298A>C gene polymorphisms and risk of offspring aneuploidy. Prenat Diagn 2022; 42:1190-1200. [PMID: 35856339 DOI: 10.1002/pd.6214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/31/2022] [Accepted: 07/08/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The objective was to investigate the association between maternal methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms, crucial for DNA methylation, and risk of offspring aneuploidy. METHODS MTHFR gene polymorphisms 677C>T and 1298A>C were determined by polymerase chain reaction based method, in 163 women with offspring aneuploidy and 155 women with healthy children. Five genetic models were used to assess risk, according to the type of aneuploidy and the age of women at conception. RESULTS MTHFR 677TT genotype and T allele were significantly more prevalent among women with offspring aneuploidy, with an increased risk of aneuploidy demonstrated under a recessive (OR 3.499), homozygote (OR 3.456) and allele contrast model (OR 1.574). The more prominent association was found with sex chromosome aneuploidies and trisomy 13/18, and also in women ≤35 years at conception. No association was observed between 1298A>C polymorphism and risk of offspring aneuploidy, although synergistic effect of two polymorphisms increase the risk of aneuploidy, primarily amplifying the 677T allele effects (p<0.001). CONCLUSION Maternal MTHFR 677C>T gene polymorphism, alone or in combination with another 1298A>C polymorphism, appears to be a substantial risk factor for offspring aneuploidy in Montenegro population, especially for sex chromosome aneuploidies and trisomy 13/18, and among younger women. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Olivera Miljanović
- Center for Medical Genetic and Immunology, Clinical Center of Montenegro, Podgorica, Montenegro.,Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Slađana Teofilov
- Center for Medical Genetic and Immunology, Clinical Center of Montenegro, Podgorica, Montenegro
| | - Miljana Anđelić
- Center for Medical Genetic and Immunology, Clinical Center of Montenegro, Podgorica, Montenegro
| | - Zvonko Magić
- Academy of Medical Sciences of the Serbian Medical Society, Belgrade, Serbia
| | | |
Collapse
|
36
|
Abstract
Many human embryos die in utero owing to an excess or deficit of chromosomes, a phenomenon known as aneuploidy; this is largely a consequence of nondisjunction during maternal meiosis I. Asymmetries of this division render it vulnerable to selfish centromeres that promote their own transmission, these being thought to somehow underpin aneuploidy. In this essay, I suggest that these vulnerabilities provide only half the solution to the enigma. In mammals, as in utero and postnatal provisioning is continuous, the costs of early death are mitigated. With such reproductive compensation, selection can favour a centromere because it induces lethal aneuploidy: if, when taken towards the polar body, it instead kills the embryo via aneuploidy, it gains. The model is consistent with the observation that reduced dosage of a murine drive suppressor induces aneuploidy and with the fact that high aneuploidy rates in vertebrates are seen exclusively in mammals. I propose further tests of this idea. The wastefulness of human reproduction may be a price we pay for nurturing our offspring.
Collapse
Affiliation(s)
- Laurence D. Hurst
- Wissenshaftskolleg zu Berlin, Berlin, Germany
- The Milner Centre for Evolution, University of Bath, Bath, Somerset, United Kingdom
| |
Collapse
|
37
|
Adeleye AJ, Feinberg E. Minding the gender gap in fertility: The rationale, obstacles, and strategies to improve utilization of fertility preservation. MED 2022; 3:293-297. [DOI: 10.1016/j.medj.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Babayev E, Duncan FE. Age-associated changes in cumulus cells and follicular fluid: the local oocyte microenvironment as a determinant of gamete quality. Biol Reprod 2022; 106:351-365. [PMID: 34982142 PMCID: PMC8862720 DOI: 10.1093/biolre/ioab241] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/15/2021] [Accepted: 12/30/2021] [Indexed: 01/07/2023] Open
Abstract
The ovary is the first organ to age in humans with functional decline evident already in women in their early 30s. Reproductive aging is characterized by a decrease in oocyte quantity and quality, which is associated with an increase in infertility, spontaneous abortions, and birth defects. Reproductive aging also has implications for overall health due to decreased endocrinological output. Understanding the mechanisms underlying reproductive aging has significant societal implications as women globally are delaying childbearing and medical interventions have greatly increased the interval between menopause and total lifespan. Age-related changes inherent to the female gamete are well-characterized and include defects in chromosome and mitochondria structure, function, and regulation. More recently, it has been appreciated that the extra-follicular ovarian environment may have important direct or indirect impacts on the developing gamete, and age-dependent changes include increased fibrosis, inflammation, stiffness, and oxidative damage. The cumulus cells and follicular fluid that directly surround the oocyte during its final growth phase within the antral follicle represent additional critical local microenvironments. Here we systematically review the literature and evaluate the studies that investigated the age-related changes in cumulus cells and follicular fluid. Our findings demonstrate unique genetic, epigenetic, transcriptomic, and proteomic changes with associated metabolomic alterations, redox status imbalance, and increased apoptosis in the local oocyte microenvironment. We propose a model of how these changes interact, which may explain the rapid decline in gamete quality with age. We also review the limitations of published studies and highlight future research frontiers.
Collapse
Affiliation(s)
- Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
39
|
Ghevaria H, SenGupta S, Naja R, Odia R, Exeter H, Serhal P, Gonzalez XV, Sun X, Delhanty J. Next Generation Sequencing Detects Premeiotic Errors in Human Oocytes. Int J Mol Sci 2022; 23:ijms23020665. [PMID: 35054849 PMCID: PMC8776218 DOI: 10.3390/ijms23020665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Autosomal aneuploidy is the leading cause of embryonic and foetal death in humans. This arises mainly from errors in meiosis I or II of oogenesis. A largely ignored source of error stems from germinal mosaicism, which leads to premeiotic aneuploidy. Molecular cytogenetic studies employing metaphase fluorescence in situ hybridization and comparative genomic hybridisation suggest that premeiotic aneuploidy may affect 10–20% of oocytes overall. Such studies have been criticised on technical grounds. We report here an independent study carried out on unmanipulated oocytes that have been analysed using next generation sequencing (NGS). This study confirms that the incidence of premeiotic aneuploidy in an unselected series of oocytes exceeds 10%. A total of 140 oocytes donated by 42 women gave conclusive results; of these, 124 (88.5%) were euploid. Sixteen out of 140 (11.4%) provided evidence of premeiotic aneuploidy. Of the 140, 112 oocytes were immature (germinal vesicle or metaphase I), of which 10 were aneuploid (8.93%); the remaining 28 were intact metaphase II - first polar body complexes, and six of these were aneuploid (21.4%). Of the 16 aneuploid cells, half contained simple errors (one or two abnormal chromosomes) and half contained complex errors. We conclude that germinal mosaicism leading to premeiotic aneuploidy is a consistent finding affecting at least 10% of unselected oocytes from women undergoing egg collection for a variety of reasons. The importance of premeiotic aneuploidy lies in the fact that, for individual oocytes, it greatly increases the risk of an aneuploid mature oocyte irrespective of maternal age. As such, this may account for some cases of aneuploid conceptions in very young women.
Collapse
Affiliation(s)
- Harita Ghevaria
- Preimplantation Genetics Group, Institute for Women’s Health, University College London (UCL), London WC1E 6HX, UK; (H.G.); (R.N.); (X.V.G.); (X.S.); (J.D.)
| | - Sioban SenGupta
- Preimplantation Genetics Group, Institute for Women’s Health, University College London (UCL), London WC1E 6HX, UK; (H.G.); (R.N.); (X.V.G.); (X.S.); (J.D.)
- Correspondence:
| | - Roy Naja
- Preimplantation Genetics Group, Institute for Women’s Health, University College London (UCL), London WC1E 6HX, UK; (H.G.); (R.N.); (X.V.G.); (X.S.); (J.D.)
| | - Rabi Odia
- Embryology Department, The Centre for Reproductive and Genetic Health, London W1W 5QS, UK; (R.O.); (H.E.)
| | - Holly Exeter
- Embryology Department, The Centre for Reproductive and Genetic Health, London W1W 5QS, UK; (R.O.); (H.E.)
| | - Paul Serhal
- Clinical Department, The Centre for Reproductive and Genetic Health, London W1W 5QS, UK;
| | - Xavier Viñals Gonzalez
- Preimplantation Genetics Group, Institute for Women’s Health, University College London (UCL), London WC1E 6HX, UK; (H.G.); (R.N.); (X.V.G.); (X.S.); (J.D.)
| | - Xuhui Sun
- Preimplantation Genetics Group, Institute for Women’s Health, University College London (UCL), London WC1E 6HX, UK; (H.G.); (R.N.); (X.V.G.); (X.S.); (J.D.)
| | - Joy Delhanty
- Preimplantation Genetics Group, Institute for Women’s Health, University College London (UCL), London WC1E 6HX, UK; (H.G.); (R.N.); (X.V.G.); (X.S.); (J.D.)
| |
Collapse
|
40
|
Yueh WT, Singh VP, Gerton JL. Maternal Smc3 protects the integrity of the zygotic genome through DNA replication and mitosis. Development 2021; 148:dev199800. [PMID: 34935904 PMCID: PMC8722392 DOI: 10.1242/dev.199800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/22/2021] [Indexed: 01/10/2023]
Abstract
Aneuploidy is frequently observed in oocytes and early embryos, begging the question of how genome integrity is monitored and preserved during this crucial period. SMC3 is a subunit of the cohesin complex that supports genome integrity, but its role in maintaining the genome during this window of mammalian development is unknown. We discovered that, although depletion of Smc3 following meiotic S phase in mouse oocytes allowed accurate meiotic chromosome segregation, adult females were infertile. We provide evidence that DNA lesions accumulated following S phase in SMC3-deficient zygotes, followed by mitosis with lagging chromosomes, elongated spindles, micronuclei, and arrest at the two-cell stage. Remarkably, although centromeric cohesion was defective, the dosage of SMC3 was sufficient to enable embryogenesis in juvenile mutant females. Our findings suggest that, despite previous reports of aneuploidy in early embryos, chromosome missegregation in zygotes halts embryogenesis at the two-cell stage. Smc3 is a maternal gene with essential functions in the repair of spontaneous damage associated with DNA replication and subsequent chromosome segregation in zygotes, making cohesin a key protector of the zygotic genome.
Collapse
Affiliation(s)
- Wei-Ting Yueh
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|