1
|
Lauar MR, Pestana-Oliveira N, Collister JP, Vulchanova L, Evans LC, Osborn JW. The organum vasculosum of the lamina terminalis contributes to neurohumoral mechanisms of renal vascular hypertension. Am J Physiol Regul Integr Comp Physiol 2025; 328:R161-R171. [PMID: 39705721 DOI: 10.1152/ajpregu.00203.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/22/2024]
Abstract
The organum vasculosum of the lamina terminalis (OVLT) is a forebrain circumventricular organ that modulates central autonomic control of arterial pressure and body fluid homeostasis. It has been implicated in the pathogenesis of rat models of hypertension that are driven by increased salt intake since OVLT lesion (OVLTx) attenuates both the DOCA-salt and angiotensin II-salt models. However, its contribution to the development of hypertension that is not salt-dependent, such as the 2 kidney, 1 clip (2K1C) renovascular model, is not clear. We recently reported that afferent renal denervation (ARDN) attenuates the pathogenesis of 2K1C hypertension in the rat and this was associated with a reduction of neurogenic pressor activity, water intake, vasopressin release, and renal inflammation, suggesting that afferent renal nerves, similar to OVLT, modulates central autonomic pathways that control arterial pressure and body fluid homeostasis. This idea led to the present study, which was designed to measure the effect of OVLTx on arterial pressure and body fluid homeostasis in 2K1C-HTN rats. Male Sprague-Dawley rats were randomly selected to receive OVLTx or sham operation and were instrumented 1 wk later with telemeters to continuously measure mean arterial pressure (MAP). The following week, rats received a silver clip around the left renal artery to generate 2K1C hypertension or sham-clip surgery. MAP was continuously measured for 6 wk, and once a week, rats were housed in metabolic cages for 24 h to evaluate water intake and urinary volume. Urine was analyzed for inflammatory cytokines and copeptin, a surrogate marker of vasopressin. Neurogenic pressor activity (NPA) was assessed on the last day of the protocol by measuring the peak MAP response to ganglionic blockade. Upon completion of the study, rats were euthanized and kidneys were removed for the measurement of inflammatory cytokine content. Hypertension in 2K1C rats was associated with increased NPA, water intake, vasopressin release, and renal inflammation. All of these responses were markedly attenuated or abolished in OVLTx 2K1C rats. These findings suggest that the OVLT, similar to afferent renal nerves, plays a key role in the development of hypertension, polydipsia, vasopressin release, and renal inflammation in 2K1C-HTN rats.NEW & NOTEWORTHY Renovascular hypertension (RVHT), accounting for 1%-5% of high blood pressure cases, is the most common secondary hypertension resistant to treatment. In two-kidney one-clip (2K1C) hypertensive rats, renal artery stenosis triggers sympathetic nervous system activation, increased vasopressin, water intake, and inflammation. OVLT lesions prevented these responses, similar to afferent renal denervation. This study suggests that OVLT plays a key role in 2K1C hypertension pathogenesis and interacts with afferent renal nerves. Future studies will explore the underlying mechanisms.
Collapse
Affiliation(s)
- Mariana R Lauar
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Nayara Pestana-Oliveira
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - John P Collister
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| | - Louise C Evans
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - John W Osborn
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
2
|
Stocker SD, Kinsman BJ, Farquhar WB, Gyarmati G, Peti-Peterdi J, Sved AF. Physiological Mechanisms of Dietary Salt Sensing in the Brain, Kidney, and Gastrointestinal Tract. Hypertension 2024; 81:447-455. [PMID: 37671571 PMCID: PMC10915107 DOI: 10.1161/hypertensionaha.123.19488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Excess dietary salt (NaCl) intake is strongly correlated with cardiovascular disease and is a major contributing factor to the pathogenesis of hypertension. NaCl-sensitive hypertension is a multisystem disorder that involves renal dysfunction, vascular abnormalities, and neurogenically-mediated increases in peripheral resistance. Despite a major research focus on organ systems and these effector mechanisms causing NaCl-induced increases in arterial blood pressure, relatively less research has been directed at elucidating how NaCl is sensed by various tissues to elicit these downstream effects. The purpose of this review is to discuss how the brain, kidney, and gastrointestinal tract sense NaCl including key cell types, the role of NaCl versus osmolality, and the underlying molecular and electrochemical mechanisms.
Collapse
Affiliation(s)
- Sean D. Stocker
- Department of Neurobiology, University of Pittsburgh School of Medicine
| | - Brian J Kinsman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital
| | | | - Georgina Gyarmati
- Department of Physiology and Neuroscience and Medicine, Zilkha Neurogenetic Institute, University of Southern California
| | - Janos Peti-Peterdi
- Department of Physiology and Neuroscience and Medicine, Zilkha Neurogenetic Institute, University of Southern California
| | - Alan F. Sved
- Department of Neuroscience, University of Pittsburgh
| |
Collapse
|
3
|
Stocker SD. Altered Neuronal Discharge in the Organum Vasculosum of the Lamina Terminalis Contributes to Dahl Salt-Sensitive Hypertension. Hypertension 2023; 80:872-881. [PMID: 36752103 PMCID: PMC10023399 DOI: 10.1161/hypertensionaha.122.20798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Salt-sensitive hypertension in humans and experimental models is associated with higher plasma and cerebrospinal fluid sodium chloride (NaCl) concentrations. Changes in extracellular NaCl concentrations are sensed by specialized neurons in the organum vasculosum of the lamina terminalis (OVLT). Stimulation of OVLT neurons increases sympathetic nerve activity (SNA) and arterial blood pressure (ABP), whereas chronic activation produces hypertension. Therefore, the present study tested whether OVLT neuronal activity was elevated and contributed to SNA and ABP in salt-sensitive hypertension. METHODS Male Dahl salt-sensitive (Dahl S) and Dahl salt-resistant (Dahl R) rats were fed 0.1% or 4.0% NaCl diets for 3 to 4 weeks and used for single-unit recordings of OVLT neurons or simultaneous recording of multiple sympathetic nerves during pharmacological inhibition of the OVLT. RESULTS Plasma and cerebrospinal fluid Na+ and Cl- concentrations were higher in Dahl S rats fed 4% versus 0.1% or Dahl R rats fed either diet. In vivo single-unit recordings revealed a significantly higher discharge of NaCl-responsive OVLT neurons in Dahl S rats fed 4% versus 0.1% or Dahl R rats. Interestingly, intracarotid infusion of hypertonic NaCl evoked greater increases in OVLT neuronal discharge of Dahl S versus Dahl R rats regardless of NaCl diet. The activity of non-NaCl-responsive OVLT neurons was not different across strain or diets. Finally, inhibition of OVLT neurons by local injection of the gamma-aminobutyric acid agonist muscimol produced a greater decrease in renal SNA, splanchnic SNA, and ABP of Dahl S rats fed 4% versus 0.1% or Dahl R rats. CONCLUSIONS A high salt diet activates NaCl-responsive OVLT neurons to increase SNA and ABP in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Sean D Stocker
- Department of Neurobiology, University of Pittsburgh School of Medicine, PA
| |
Collapse
|
4
|
Issotina Zibrila A, Wang Z, Sangaré-Oumar MM, Zeng M, Liu X, Wang X, Zeng Z, Kang YM, Liu J. Role of blood-borne factors in sympathoexcitation-mediated hypertension: Potential neurally mediated hypertension in preeclampsia. Life Sci 2022; 320:121351. [PMID: 36592790 DOI: 10.1016/j.lfs.2022.121351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023]
Abstract
Hypertension remains a threat for society due to its unknown causes, preventing proper management, for the growing number of patients, for its state as a high-risk factor for stroke, cardiac and renal complication and as cause of disability. Data from clinical and animal researches have suggested the important role of many soluble factors in the pathophysiology of hypertension through their neuro-stimulating effects. Central targets of these factors are of molecular, cellular and structural nature. Preeclampsia (PE) is characterized by high level of soluble factors with strong pro-hypertensive activity and includes immune factors such as proinflammatory cytokines (PICs). The potential neural effect of those factors in PE is still poorly understood. Shedding light into the potential central effect of the soluble factors in PE may advance our current comprehension of the pathophysiology of hypertension in PE, which will contribute to better management of the disease. In this paper, we summarized existing data in respect of hypothesis of this review, that is, the existence of the neural component in the pathophysiology of the hypertension in PE. Future studies would address this hypothesis to broaden our understanding of the pathophysiology of hypertension in PE.
Collapse
Affiliation(s)
- Abdoulaye Issotina Zibrila
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China; Department of Animal Physiology, Faculty of science and Technology, University of Abomey-Calavi, 06 BP 2584 Cotonou, Benin
| | - Zheng Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, PR China
| | - Machioud Maxime Sangaré-Oumar
- Department of Animal Physiology, Faculty of science and Technology, University of Abomey-Calavi, 06 BP 2584 Cotonou, Benin
| | - Ming Zeng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China
| | - Xiaoxu Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China
| | - Xiaomin Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China
| | - Zhaoshu Zeng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China.
| | - Jinjun Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an 710061, Shaanxi, PR China.
| |
Collapse
|
5
|
Collister JP, Ployngam T, Ariza‐Guzman PA, Osborn JW. Neurons of the median preoptic nucleus contribute to chronic angiotensin II-salt induced hypertension in the rat. Physiol Rep 2022; 10:e15551. [PMID: 36564179 PMCID: PMC9788964 DOI: 10.14814/phy2.15551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023] Open
Abstract
Experiments were designed to test the hypothesis that median preoptic (MnPO) neurons are necessary for the full hypertensive response to chronic angiotensin II (AngII) in rats consuming a high salt diet. The MnPO is implicated in many of the physiologic actions of AngII, primarily acting as a downstream nucleus to AngII binding at circumventricular organs such as the organum vasculosum of the lamina terminalis (OVLT). We have previously shown a prominent effect of lesion of the OVLT on the chronic hypertensive effects of AngII in rats consuming high salt. Additionally, we have shown that lesion of the MnPO attenuated the hypertensive response to chronic intravenous infusion of AngII in rats. However, whether MnPO neurons or fibers of passage contribute to this response is not clear. Male Sprague Dawley rats were randomly assigned to either sham (SHAM; n = 8) or ibotenic acid lesion of the MnPO (MnPOx; n = 6). In the MnPOx group, 200 nl of ibotenic acid in phosphate buffer saline (5 μg/μl) was injected into each of 3 predetermined coordinates targeted at the entire MnPO. After a week of recovery, rats were instrumented with radiotelemetric pressure transducers, provided 2.0% NaCl diet and distilled water ad libitum and given another week to recover. After 3 days of baseline measurements, osmotic minipumps were implanted subcutaneously in all rats for administration of AngII at a rate of 150 ng/kg/min. Blood pressure measurements were made for 14 days after minipump implantation. By day 7 of AngII treatment, blood pressure responses appeared to plateau in both groups while the hypertensive response was markedly attenuated in MnPOx rats (MnPOx, 122 ± 6 mmHg; SHAM, 143 ± 8 mmHg). These results support the hypothesis that neurons of the MnPO are involved in the central pathway mediating the chronic hypertensive effects of AngII in rats consuming a high salt diet.
Collapse
Affiliation(s)
- John P. Collister
- Department of Veterinary and Biomedical Sciences, College of Veterinary MedicineUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Trasida Ployngam
- Department of Veterinary and Biomedical Sciences, College of Veterinary MedicineUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Pilar A. Ariza‐Guzman
- Department of Integrative Biology and PhysiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - John W. Osborn
- Department of SurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
6
|
Stocker SD, Wenner MM, Farquhar WB, Browning KN. Activation of the Organum Vasculosum of the Lamina Terminalis Produces a Sympathetically Mediated Hypertension. Hypertension 2022; 79:139-149. [PMID: 34809435 PMCID: PMC8665096 DOI: 10.1161/hypertensionaha.121.18117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neurons in the organum vasculosum of the lamina terminalis (OVLT) sense extracellular NaCl and angiotensin II concentrations to regulate body fluid homeostasis and arterial blood pressure. Lesion of the anteroventral third ventricular region or OVLT attenuates multiple forms of neurogenic hypertension. However, the extent by which OVLT neurons directly regulate sympathetic nerve activity to produce hypertension is not known. Therefore, the present study tested this hypothesis by using a multi-faceted approach including optogenetics, single-unit and multifiber nerve recordings, and chemogenetics. First, optogenetic activation of OVLT neurons in conscious Sprague-Dawley rats (250-400 g) produced frequency-dependent increases in arterial blood pressure and heart rate. These responses were not altered by the vasopressin receptor antagonist (β-mercapto-β,β-cyclopentamethylenepropionyl1,O-me-Tyr2,Arg8)-vasopressin but eliminated by the ganglionic blocker chlorisondamine. Second, optogenetic activation of OVLT neurons significantly elevated renal, splanchnic, and lumbar sympathetic nerve activity. Third, single-unit recordings revealed optogenetic activation of the OVLT significantly increased the discharge of bulbospinal, sympathetic neurons in the rostral ventrolateral medulla. Lastly, chronic chemogenetic activation of OVLT neurons for 7 days significantly increased 24-hour fluid intake and mean arterial blood pressure. When the 24-hour fluid intake was clamped at baseline intakes, chemogenetic activation of OVLT neurons still produced a similar increase in arterial blood pressure. Neurogenic pressor activity assessed by the ganglionic blocker chlorisondamine was greater at 7 days of OVLT activation versus baseline. Collectively, these findings indicate that acute or chronic activation of OVLT neurons produces a sympathetically mediated hypertension.
Collapse
Affiliation(s)
- Sean D. Stocker
- Department of Neurobiology, University of Pittsburgh School of Medicine
| | - Megan M. Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware
| | | | | |
Collapse
|
7
|
Yang X, Fu Y, Wu L, Li A, Ji L, Li H, Peng Y, Zhang J, Zhou D, Zhou H. The dopamine receptor D4 regulates the proliferation of pulmonary arteries smooth muscle in broilers by downregulating AT1R. ANIMAL DISEASES 2021. [DOI: 10.1186/s44149-021-00012-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AbstractThe major cause of pulmonary vascular remodeling in broilers is abnormal proliferation of vascular smooth muscle cells (VSMCs), and one of the main causes of pulmonary hypertension syndrome (PHS) in broilers is pulmonary artery vascular remodeling. Forty Arbor Acres (AA) broilers were randomly divided into four groups (n = 10): a control group (deionized water, 0 g/L NaCl), a freshwater group (FW, deionized water + 1 g/L NaCl), highly salinized freshwater group 1 (H-SFW-1, deionized water + 2.5 g/L NaCl) and highly salinized freshwater group 2 (H-SFW-2, deionized water + 5 g/L NaCl). The results of in vivo experiments showed that vascular smooth muscle of the broilers could be significantly proliferated by intake of high-salinity fresh water (H-SFW-1 & H-SFW-2), which significantly increased the content of angiotensin II (Ang II) and the expression of angiotensin II type 1 (AT1) receptor protein. Meanwhile, it significantly decreased the expression of dopamine receptor D4 (DRD4) protein. The results of in vitro experiments showed that exogenous Ang II induced the proliferation of primary VSMCs in broilers, which could be significantly inhibited by DRD4 agonists (D4A, HY-101384A) and enhanced by DRD4 inhibitors (D4I, HY-B0965). In addition, the results of immunoblotting and fluorescence quantitative PCR showed that AT1 receptors could be negatively regulated by DRD4 in VSMCs of broilers, either at the transcriptional or translational level. At the same time, the expression of AT1 receptor could be increased by DRD4 inhibition by D4I and decreased by DRD4 activation by D4A. The negative regulatory effect of DRD4 on AT1 receptor occurred in a dose-dependent manner. These results indicate that long-term intake of highly salinized fresh water can cause PHS in broilers, accompanied by varying degrees of proliferation of pulmonary artery smooth muscle. This mechanism may involve response of its receptor being induced by increased Ang II, while DRD4 can negatively regulate it.
Collapse
|
8
|
Pestana-Oliveira N, Nahey DB, Hartson R, Weber B, Johnson TJ, Collister JP. DOCA-salt hypertension and the role of the OVLT-sympathetic-gut microbiome axis. Clin Exp Pharmacol Physiol 2021; 48:490-497. [PMID: 33462863 PMCID: PMC11078564 DOI: 10.1111/1440-1681.13457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/02/2020] [Accepted: 12/19/2020] [Indexed: 11/29/2022]
Abstract
Hypertension is a multifaceted condition influenced by genetic and environmental factors and estimated to cause 9.4 million deaths globally every year. Recently, there has been growing interest in understanding the gut microbe-host interaction in the maintenance of health or disease states, but relatively few studies have shown an association between the gut microbiome and specific types of hypertension. The deoxycorticosterone acetate (DOCA)-salt model of hypertension in rats is known to have a neurogenic component linked to increased sympathetic nervous system activity. As such, our lab has recently shown the hypertensive response in DOCA treated rats requires an intact organum vasculosum of the lamina terminalis (OVLT), a central hypothalamic circumventricular organ. Currently, we hypothesize the OVLT mediates changes in the gut microbiome associated with concomitant hypertension. Herein, we report that the hypertensive effects of DOCA-salt treatment were significantly attenuated throughout the 24-hour day/night cycle in OLVT lesioned rats on days 1, 3, and 9-21 of DOCA treatment compared with sham rats. Increased blood pressure (BP) in DOCA-salt treated rats was accompanied by specific changes in regional gut microbial populations yet was mitigated and offset by lesion of the OVLT. Furthermore, bacterial populations in OVLT-lesioned rats with attenuated hypertension more closely resembled those in normal control rats. We conclude that DOCA-salt hypertension is associated with specific microbiome changes in the gut, and the attenuated hypertensive effects of DOCA-salt in OVLT-lesioned rats is mediated in part through counteracting changes in these bacterial populations.
Collapse
Affiliation(s)
- Nayara Pestana-Oliveira
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - David B Nahey
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Rochelle Hartson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Bonnie Weber
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - John P Collister
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
9
|
DeLalio LJ, Sved AF, Stocker SD. Sympathetic Nervous System Contributions to Hypertension: Updates and Therapeutic Relevance. Can J Cardiol 2020; 36:712-720. [PMID: 32389344 DOI: 10.1016/j.cjca.2020.03.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
The sympathetic nervous system plays a pivotal role in the long-term regulation of arterial blood pressure through the ability of the central nervous system to integrate neurohumoral signals and differentially regulate sympathetic neural input to specific end organs. Part 1 of this review will discuss neural mechanisms of salt-sensitive hypertension, obesity-induced hypertension, and the ability of prior experiences to sensitize autonomic networks. Part 2 of this review focuses on new therapeutic advances to treat resistant hypertension including renal denervation and carotid baroactivation. Both advances lower arterial blood pressure by reducing sympathetic outflow. We discuss potential mechanisms and areas of future investigation to target the sympathetic nervous system.
Collapse
Affiliation(s)
- Leon J DeLalio
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan F Sved
- Department of Neuroscience, University of Pittsburgh, Pennsylvania, USA
| | - Sean D Stocker
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
10
|
Collister JP, Nahey DB, Hartson R, Wiedmeyer CE, Banek CT, Osborn JW. Lesion of the OVLT markedly attenuates chronic DOCA-salt hypertension in rats. Am J Physiol Regul Integr Comp Physiol 2018; 315:R568-R575. [PMID: 29897819 PMCID: PMC6172631 DOI: 10.1152/ajpregu.00433.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 11/22/2022]
Abstract
Lesions of the anteroventral third ventricle (AV3V region) are known to prevent many forms of experimental hypertension, including mineralocorticoid [deoxycorticosterone acetate (DOCA)-salt] hypertension in the rat. However, AV3V lesions include the organum vasculosum of the lamina terminalis (OVLT), portions of the median preoptic nucleus, and efferent fibers from the subfornical organ (SFO), thereby limiting the ability to define the individual contribution of these structures to the prevention of experimental hypertension. Having previously reported that the SFO does not play a significant role in the development of DOCA-salt hypertension, the present study was designed to test the hypothesis that the OVLT is necessary for DOCA-salt hypertension in the rat. In uninephrectomized OVLT-lesioned (OVLTx; n = 6) and sham-operated ( n = 4) Sprague-Dawley rats consuming a 0.1% NaCl diet and 0.9% NaCl drinking solution, 24-h mean arterial pressure (MAP) was recorded telemetrically 5 days before and 21 days after DOCA implantation (100 mg sc per rat). No differences in control MAP were observed between groups. The chronic pressor response to DOCA was attenuated in OVLTx rats such that MAP increased to 133 ± 3 mmHg in sham-operated rats by day 21 of DOCA compared with 120 ± 4 mmHg (means ± SE) in OVLTx rats. These results support the hypothesis that the OVLT is an important brain site of action for the pathogenesis of DOCA-salt hypertension in the rat.
Collapse
Affiliation(s)
- John P Collister
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota , St. Paul, Minnesota
| | - David B Nahey
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota , St. Paul, Minnesota
| | - Rochelle Hartson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota , St. Paul, Minnesota
| | - Charles E Wiedmeyer
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri , Columbia, Missouri
| | - Christopher T Banek
- Department of Integrative Biology and Physiology, University of Minnesota Medical School , Minneapolis, Minnesota
| | - John W Osborn
- Department of Integrative Biology and Physiology, University of Minnesota Medical School , Minneapolis, Minnesota
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The central nervous system plays a pivotal role in the regulation of extracellular fluid volume and consequently arterial blood pressure. Key hypothalamic regions sense and integrate neurohumoral signals to subsequently alter intake (thirst and salt appetite) and output (renal excretion via neuroendocrine and autonomic function). Here, we review recent findings that provide new insight into such mechanisms that may represent new therapeutic targets. RECENT FINDINGS Implementation of cutting edge neuroscience approaches such as opto- and chemogenetics highlight pivotal roles of circumventricular organs to impact body fluid homeostasis. Key signaling mechanisms within these areas include the N-terminal variant of transient receptor potential vannilloid type-1, NaX, epithelial sodium channel, brain electroneutral transporters, and non-classical actions of vasopressin. Despite the identification of several new mechanisms, future studies need to better define the neurochemical phenotype and molecular profiles of neurons within circumventricular organs for future therapeutic potential.
Collapse
|
12
|
Kinsman BJ, Browning KN, Stocker SD. NaCl and osmolarity produce different responses in organum vasculosum of the lamina terminalis neurons, sympathetic nerve activity and blood pressure. J Physiol 2017; 595:6187-6201. [PMID: 28678348 DOI: 10.1113/jp274537] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 06/21/2017] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS Changes in extracellular osmolarity stimulate thirst and vasopressin secretion through a central osmoreceptor; however, central infusion of hypertonic NaCl produces a greater sympathoexcitatory and pressor response than infusion of hypertonic mannitol/sorbitol. Neurons in the organum vasculosum of the lamina terminalis (OVLT) sense changes in extracellular osmolarity and NaCl. In this study, we discovered that intracerebroventricular infusion or local OVLT injection of hypertonic NaCl increases lumbar sympathetic nerve activity, adrenal sympathetic nerve activity and arterial blood pressure whereas equi-osmotic mannitol/sorbitol did not alter any variable. In vitro whole-cell recordings demonstrate the majority of OVLT neurons are responsive to hypertonic NaCl or mannitol. However, hypertonic NaCl stimulates a greater increase in discharge frequency than equi-osmotic mannitol. Intracarotid or intracerebroventricular infusion of hypertonic NaCl evokes a greater increase in OVLT neuronal discharge frequency than equi-osmotic sorbitol. Collectively, these novel data suggest that subsets of OVLT neurons respond differently to hypertonic NaCl versus osmolarity and subsequently regulate body fluid homeostasis. These responses probably reflect distinct cellular mechanisms underlying NaCl- versus osmo-sensing. ABSTRACT Systemic or central infusion of hypertonic NaCl and other osmolytes readily stimulate thirst and vasopressin secretion. In contrast, central infusion of hypertonic NaCl produces a greater increase in arterial blood pressure (ABP) than equi-osmotic mannitol/sorbitol. Although these responses depend on neurons in the organum vasculosum of the lamina terminalis (OVLT), these observations suggest OVLT neurons may sense or respond differently to hypertonic NaCl versus osmolarity. The purpose of this study was to test this hypothesis in Sprague-Dawley rats. First, intracerebroventricular (icv) infusion (5 μl/10 min) of 1.0 m NaCl produced a significantly greater increase in lumbar sympathetic nerve activity (SNA), adrenal SNA and ABP than equi-osmotic sorbitol (2.0 osmol l-1 ). Second, OVLT microinjection (20 nl) of 1.0 m NaCl significantly raised lumbar SNA, adrenal SNA and ABP. Equi-osmotic sorbitol did not alter any variable. Third, in vitro whole-cell recordings demonstrate that 50% (18/36) of OVLT neurons display an increased discharge to both hypertonic NaCl (+7.5 mm) and mannitol (+15 mm). Of these neurons, 56% (10/18) displayed a greater discharge response to hypertonic NaCl vs mannitol. Fourth, in vivo single-unit recordings revealed that intracarotid injection of hypertonic NaCl produced a concentration-dependent increase in OVLT cell discharge, lumbar SNA and ABP. The responses to equi-osmotic infusions of hypertonic sorbitol were significantly smaller. Lastly, icv infusion of 0.5 m NaCl produced significantly greater increases in OVLT discharge and ABP than icv infusion of equi-osmotic sorbitol. Collectively, these findings indicate NaCl and osmotic stimuli produce different responses across OVLT neurons and may represent distinct cellular processes to regulate thirst, vasopressin secretion and autonomic function.
Collapse
Affiliation(s)
- Brian J Kinsman
- Department of Medicine, Division of Renal-Electrolyte, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.,Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Sean D Stocker
- Department of Medicine, Division of Renal-Electrolyte, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| |
Collapse
|
13
|
Chronic high-sodium diet intake after weaning lead to neurogenic hypertension in adult Wistar rats. Sci Rep 2017; 7:5655. [PMID: 28720883 PMCID: PMC5515999 DOI: 10.1038/s41598-017-05984-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/06/2017] [Indexed: 02/07/2023] Open
Abstract
In this study, we investigated some mechanisms involved in sodium-dependent hypertension of rats exposed to chronic salt (NaCl) intake from weaning until adult age. Weaned male Wistar rats were placed under high (0.90% w/w, HS) or regular (0.27% w/w, Cont) sodium diets for 12 weeks. Water consumption, urine output and sodium excretion were higher in HS rats compared to control. Blood pressure (BP) was directly measured by the arterial catheter and found 13.8% higher in HS vs Cont rats. Ganglionic blockade with hexamethonium caused greater fall in the BP of HS rats (33%), and central antagonism of AT1 receptors (losartan) microinjected into the lateral ventricle reduced BP level of HS, but not of Cont group. Heart rate variability analysis revealed sympathetic prevalence on modulation of the systolic interval. HS diet did not affect creatinine clearance. Kidney histological analysis revealed no significant change in renal corpuscle structure. Sodium and potassium concentrations in CSF were found higher in HS rats despite no change in plasma concentration of these ions. Taken together, data suggest that animals exposed to chronic salt intake to a level close to that reported for human' diet since weaning lead to hypertension, which appears to rely on sodium-driven neurogenic mechanisms.
Collapse
|
14
|
Kinsman BJ, Simmonds SS, Browning KN, Stocker SD. Organum Vasculosum of the Lamina Terminalis Detects NaCl to Elevate Sympathetic Nerve Activity and Blood Pressure. Hypertension 2016; 69:163-170. [PMID: 27895193 DOI: 10.1161/hypertensionaha.116.08372] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/07/2016] [Accepted: 10/31/2016] [Indexed: 02/05/2023]
Abstract
High-salt diet elevates NaCl concentrations in the cerebrospinal fluid to increase sympathetic nerve activity (SNA) in salt-sensitive hypertension. The organum vasculosum of the lamina terminalis (OVLT) resides along the rostral wall of the third ventricle, lacks a complete blood-brain barrier, and plays a pivotal role in body fluid homeostasis. Therefore, the present study used a multifaceted approach to examine whether OVLT neurons of Sprague-Dawley rats are intrinsically sensitive to changes in extracellular NaCl concentrations and mediate the sympathoexcitatory responses to central NaCl loading. Using in vitro whole-cell recordings, step-wise increases in extracellular NaCl concentrations (2.5-10 mmol/L) produced concentration-dependent excitation of OVLT neurons. Additionally, these excitatory responses were intrinsic to OVLT neurons because hypertonic NaCl evoked inward currents, despite pharmacological synaptic blockade. In vivo single-unit recordings demonstrate that the majority of OVLT neurons (72%, 13/19) display concentration-dependent increases in neuronal discharge to intracarotid (50 μL/15 s) or intracerebroventricular infusion (5 μL/10 minutes) of hypertonic NaCl. Microinjection of hypertonic NaCl (30 nL/60 s) into the OVLT, but not adjacent areas, increased lumbar SNA, adrenal SNA, and arterial blood pressure in a concentration-dependent manner. Renal SNA decreased and splanchnic SNA remained unaffected. Finally, local inhibition of OVLT neurons with the GABAA receptor agonist muscimol (24 nL/10 s) significantly attenuated the sympathoexcitatory and pressor responses to intracerebroventricular infusion of 0.5 mol/L or 1.0 mol/L NaCl. Collectively, these findings indicate that OVLT neurons detect changes in extracellular NaCl concentrations to selectively alter SNA and raise arterial blood pressure.
Collapse
Affiliation(s)
- Brian J Kinsman
- From the Department of Medicine, Division of Renal-Electrolyte, University of Pittsburgh School of Medicine, PA (B.J.K., S.D.S.); and Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA (B.J.K., S.S.S., K.N.B.)
| | - Sarah S Simmonds
- From the Department of Medicine, Division of Renal-Electrolyte, University of Pittsburgh School of Medicine, PA (B.J.K., S.D.S.); and Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA (B.J.K., S.S.S., K.N.B.)
| | - Kirsteen N Browning
- From the Department of Medicine, Division of Renal-Electrolyte, University of Pittsburgh School of Medicine, PA (B.J.K., S.D.S.); and Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA (B.J.K., S.S.S., K.N.B.)
| | - Sean D Stocker
- From the Department of Medicine, Division of Renal-Electrolyte, University of Pittsburgh School of Medicine, PA (B.J.K., S.D.S.); and Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA (B.J.K., S.S.S., K.N.B.).
| |
Collapse
|
15
|
Asirvatham-Jeyaraj N, Fink GD. Possible role for brain prostanoid pathways in the development of angiotensin II-salt hypertension in rats. Am J Physiol Regul Integr Comp Physiol 2016; 311:R232-42. [PMID: 27225954 DOI: 10.1152/ajpregu.00535.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/19/2016] [Indexed: 11/22/2022]
Abstract
Prostanoids generated by the cyclooxygenase (COX) pathway appear to contribute to the neurogenic hypertension (HTN) in rats. The first goal of this study was to establish the time frame during which prostanoids participate in ANG II-salt HTN. We induced HTN using ANG II (150 ng·kg(-1)·min(-1) sc) infusion for 14 days in rats on a high-salt (2% NaCl) diet. When ketoprofen pretreatment was combined with treatment during the first 7 days of ANG II infusion, development of HTN and increased neurogenic pressor activity (indexed by the depressor response to ganglion blockade) were significantly attenuated for the entire ANG II infusion period. This suggests that prostanoid generation caused by administration of ANG II and salt leads to an increase in neurogenic pressor activity and blood pressure (BP) via a mechanism that persists without the need for continuing prostanoid input. The second goal of this study was to determine whether prostanoid products specifically in the brain contribute to HTN development. Expression of prostanoid pathway genes was measured in brain regions known to affect neurogenic BP regulation. ANG II-treated rats exhibited changes in gene expression of phospholipase A2 (upregulated in organum vasculosum of the lamina terminalis, paraventricular nucleus, nucleus of the solitary tract, and middle cerebral artery) and lipocalin-type prostaglandin D synthase (upregulated in the organum vasculosum of the lamina terminalis). On the basis of our results, we propose that activation of the brain prostanoid synthesis pathway both upstream and downstream from COX at early stages plays an important role in the development of the neurogenic component of ANG II-salt HTN.
Collapse
Affiliation(s)
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
16
|
Collister JP, Taylor-Smith H, Drebes D, Nahey D, Tian J, Zimmerman MC. Angiotensin II-Induced Hypertension Is Attenuated by Overexpressing Copper/Zinc Superoxide Dismutase in the Brain Organum Vasculosum of the Lamina Terminalis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3959087. [PMID: 26881025 PMCID: PMC4736576 DOI: 10.1155/2016/3959087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/30/2015] [Indexed: 11/23/2022]
Abstract
Angiotensin II (AngII) can access the brain via circumventricular organs (CVOs), including the subfornical organ (SFO) and organum vasculosum of the lamina terminalis (OVLT), to modulate blood pressure. Previous studies have demonstrated a role for both the SFO and OVLT in the hypertensive response to chronic AngII, yet it is unclear which intracellular signaling pathways are involved in this response. Overexpression of copper/zinc superoxide dismutase (CuZnSOD) in the SFO has been shown to attenuate the chronic hypertensive effects of AngII. Presently, we tested the hypothesis that elevated levels of superoxide (O2 (∙-)) in the OVLT contribute to the hypertensive effects of AngII. To facilitate overexpression of superoxide dismutase, adenoviral vectors encoding human CuZnSOD or control adenovirus (AdEmpty) were injected directly into the OVLT of rats. Following 3 days of control saline infusion, rats were intravenously infused with AngII (10 ng/kg/min) for ten days. Blood pressure increased 33 ± 8 mmHg in AdEmpty rats (n = 6), while rats overexpressing CuZnSOD (n = 8) in the OVLT demonstrated a blood pressure increase of only 18 ± 5 mmHg after 10 days of AngII infusion. These results support the hypothesis that overproduction of O2 (∙-) in the OVLT plays an important role in the development of chronic AngII-dependent hypertension.
Collapse
Affiliation(s)
- John P. Collister
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Heather Taylor-Smith
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Donna Drebes
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - David Nahey
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Jun Tian
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew C. Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
17
|
Role of cerebrospinal fluid-contacting nucleus in sodium sensing and sodium appetite. Physiol Behav 2015; 147:291-9. [DOI: 10.1016/j.physbeh.2015.04.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 11/23/2022]
|
18
|
Averina VA, Othmer HG, Fink GD, Osborn JW. A mathematical model of salt-sensitive hypertension: the neurogenic hypothesis. J Physiol 2014; 593:3065-75. [PMID: 26173827 DOI: 10.1113/jphysiol.2014.278317] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/29/2014] [Accepted: 09/05/2014] [Indexed: 12/12/2022] Open
Abstract
Salt sensitivity of arterial pressure (salt-sensitive hypertension) is a serious global health issue. The causes of salt-sensitive hypertension are extremely complex and mathematical models can elucidate potential mechanisms that are experimentally inaccessible. Until recently, the only mathematical model for long-term control of arterial pressure was the model of Guyton and Coleman; referred to as the G-C model. The core of this model is the assumption that sodium excretion is driven by renal perfusion pressure, the so-called 'renal function curve'. Thus, the G-C model dictates that all forms of hypertension are due to a primary shift of the renal function curve to a higher operating pressure. However, several recent experimental studies in a model of hypertension produced by the combination of a high salt intake and administration of angiotensin II, the AngII-salt model, are inconsistent with the G-C model. We developed a new mathematical model that does not limit the cause of salt-sensitive hypertension solely to primary renal dysfunction. The model is the first known mathematical counterexample to the assumption that all salt-sensitive forms of hypertension require a primary shift of renal function: we show that in at least one salt-sensitive form of hypertension the requirement is not necessary. We will refer to this computational model as the 'neurogenic model'. In this Symposium Review we discuss how, despite fundamental differences between the G-C model and the neurogenic model regarding mechanisms regulating sodium excretion and vascular resistance, they generate similar haemodynamic profiles of AngII-salt hypertension. In addition, the steady-state relationships between arterial pressure and sodium excretion, a correlation that is often erroneously presented as the 'renal function curve', are also similar in both models. Our findings suggest that salt-sensitive hypertension is not due solely to renal dysfunction, as predicted by the G-C model, but may also result from neurogenic dysfunction.
Collapse
Affiliation(s)
- Viktoria A Averina
- Department of Mathematics, University of Minnesota, Minneapolis, MN, USA
| | - Hans G Othmer
- Department of Mathematics, University of Minnesota, Minneapolis, MN, USA
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - John W Osborn
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
19
|
Osborn JW, Olson DM, Guzman P, Toney GM, Fink GD. The neurogenic phase of angiotensin II-salt hypertension is prevented by chronic intracerebroventricular administration of benzamil. Physiol Rep 2014; 2:e00245. [PMID: 24744909 PMCID: PMC3966233 DOI: 10.1002/phy2.245] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/15/2014] [Accepted: 01/17/2014] [Indexed: 11/07/2022] Open
Abstract
Hypertension induced by chronic administration of angiotensin II (AngII) is exacerbated by high‐salt intake. Previous studies have demonstrated that this salt‐sensitive component is due to increased activity of the sympathetic nervous system, suggesting an interaction of plasma AngII with sodium‐sensitive regions of the brain. This study tested the hypothesis that the salt‐sensitive component of AngII‐induced hypertension would be prevented by intracerebroventricular (ICV) administration of the sodium channel/transporter blocker benzamil. Male Sprague Dawley rats were instrumented to measure mean arterial pressure (MAP) by radio telemetry and for ICV administration of benzamil or vehicle and placed in metabolic cages for measurement of sodium and water intake and excretion. In rats consuming a high‐salt diet (2.0% NaCl) and treated with ICV vehicle, administration of AngII (150 ng/kg/min, sc) for 13 days increased MAP by ~30 mmHg. ICV administration of benzamil (16 nmol/day) had no effect during the first 5 days of AngII, but returned MAP to control levels by Day 13. There were minimal or no differences between ICV vehicle or benzamil groups in regards to sodium and water balance. A lower dose of ICV benzamil administered ICV at 8 nmol/day had no effect on the MAP response to AngII in rats on a high‐salt diet. Finally, in contrast to rats on a high‐salt diet, AngII had negligible effects on MAP in rats consuming a low‐salt diet (0.1% NaCl) and there were no differences in any variable between ICV benzamil (16 nmol/day) and ICV vehicle‐treated groups. We conclude that the salt‐sensitive component of AngII‐induced hypertension is dependent on benzamil blockable sodium channels or transporters in the brain. Chronic intracerebroventricular infusion of benzamil at 16 nmol/day attenuates AngII–salt hypertension. This effect is not observed at a dose of 8 nmol/day.
Collapse
Affiliation(s)
- John W Osborn
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota
| | - Dalay M Olson
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota
| | - Pilar Guzman
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota
| | - Glenn M Toney
- Department of Physiology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|