1
|
Brant EJ, May D, Eid A, Altpeter F. Comparison of genotyping assays for detection of targeted CRISPR/Cas mutagenesis in highly polyploid sugarcane. Front Genome Ed 2024; 6:1505844. [PMID: 39726635 PMCID: PMC11669508 DOI: 10.3389/fgeed.2024.1505844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
Sugarcane (Saccharum spp.) is an important biofuel feedstock and a leading source of global table sugar. Saccharum hybrid cultivars are highly polyploid (2n = 100-130), containing large numbers of functionally redundant hom(e)ologs in their genomes. Genome editing with sequence-specific nucleases holds tremendous promise for sugarcane breeding. However, identification of plants with the desired level of co-editing within a pool of primary transformants can be difficult. While DNA sequencing provides direct evidence of targeted mutagenesis, it is cost-prohibitive as a primary screening method in sugarcane and most other methods of identifying mutant lines have not been optimized for use in highly polyploid species. In this study, non-sequencing methods of mutant screening, including capillary electrophoresis (CE), Cas9 RNP assay, and high-resolution melt analysis (HRMA), were compared to assess their potential for CRISPR/Cas9-mediated mutant screening in sugarcane. These assays were used to analyze sugarcane lines containing mutations at one or more of six sgRNA target sites. All three methods distinguished edited lines from wild type, with co-mutation frequencies ranging from 2% to 100%. Cas9 RNP assays were able to identify mutant sugarcane lines with as low as 3.2% co-mutation frequency, and samples could be scored based on undigested band intensity. CE was highlighted as the most comprehensive assay, delivering precise information on both mutagenesis frequency and indel size to a 1 bp resolution across all six targets. This represents an economical and comprehensive alternative to sequencing-based genotyping methods which could be applied in other polyploid species.
Collapse
Affiliation(s)
- Eleanor J. Brant
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS-Institute of Food and Agricultural Science, Gainesville, FL, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - David May
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS-Institute of Food and Agricultural Science, Gainesville, FL, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Ayman Eid
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS-Institute of Food and Agricultural Science, Gainesville, FL, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS-Institute of Food and Agricultural Science, Gainesville, FL, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| |
Collapse
|
2
|
Bradamante G, Nguyen VH, Incarbone M, Meir Z, Bente H, Donà M, Lettner N, Scheid OM, Gutzat R. Two ARGONAUTE proteins loaded with transposon-derived small RNAs are associated with the reproductive cell lineage in Arabidopsis. THE PLANT CELL 2024; 36:863-880. [PMID: 38060984 PMCID: PMC10980394 DOI: 10.1093/plcell/koad295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 11/23/2023] [Indexed: 04/01/2024]
Abstract
In sexually propagating organisms, genetic, and epigenetic mutations are evolutionarily relevant only if they occur in the germline and are hence transmitted to the next generation. In contrast to most animals, plants are considered to lack an early segregating germline, implying that somatic cells can contribute genetic information to progeny. Here we demonstrate that 2 ARGONAUTE proteins, AGO5 and AGO9, mark cells associated with sexual reproduction in Arabidopsis (Arabidopsis thaliana) throughout development. Both AGOs are loaded with dynamically changing small RNA populations derived from highly methylated, pericentromeric, long transposons. Sequencing of single stem cell nuclei revealed that many of these transposons are co-expressed within an AGO5/9 expression domain in the shoot apical meristem (SAM). Co-occurrence of transposon expression and specific ARGONAUTE (AGO) expression in the SAM is reminiscent of germline features in animals and supports the existence of an early segregating germline in plants. Our results open the path to investigating transposon biology and epigenome dynamics at cellular resolution in the SAM stem cell niche.
Collapse
Affiliation(s)
- Gabriele Bradamante
- Austrian Academy of Sciences, Vienna Biocenter (VBC), Gregor Mendel Institute of Molecular Plant Biology, 1030 Vienna, Austria
| | - Vu Hoang Nguyen
- Austrian Academy of Sciences, Vienna Biocenter (VBC), Gregor Mendel Institute of Molecular Plant Biology, 1030 Vienna, Austria
| | - Marco Incarbone
- Austrian Academy of Sciences, Vienna Biocenter (VBC), Gregor Mendel Institute of Molecular Plant Biology, 1030 Vienna, Austria
| | - Zohar Meir
- Faculty of Mathematics and Computer Science & Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Heinrich Bente
- Austrian Academy of Sciences, Vienna Biocenter (VBC), Gregor Mendel Institute of Molecular Plant Biology, 1030 Vienna, Austria
| | - Mattia Donà
- Austrian Academy of Sciences, Vienna Biocenter (VBC), Gregor Mendel Institute of Molecular Plant Biology, 1030 Vienna, Austria
| | - Nicole Lettner
- Austrian Academy of Sciences, Vienna Biocenter (VBC), Gregor Mendel Institute of Molecular Plant Biology, 1030 Vienna, Austria
| | - Ortrun Mittelsten Scheid
- Austrian Academy of Sciences, Vienna Biocenter (VBC), Gregor Mendel Institute of Molecular Plant Biology, 1030 Vienna, Austria
| | - Ruben Gutzat
- Austrian Academy of Sciences, Vienna Biocenter (VBC), Gregor Mendel Institute of Molecular Plant Biology, 1030 Vienna, Austria
| |
Collapse
|
3
|
Sagarbarria MGS, Caraan JAM, Layos AJG. Usefulness of current sgRNA design guidelines and in vitro cleavage assays for plant CRISPR/Cas genome editing: a case targeting the polyphenol oxidase gene family in eggplant (Solanum melongena L.). Transgenic Res 2023; 32:561-573. [PMID: 37874448 DOI: 10.1007/s11248-023-00371-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
The advent of genome editing platforms such as the CRISPR/Cas9 system ushers an unprecedented speed in the development of new crop varieties that can withstand the agricultural challenges of the 21st century. The CRISPR/Cas9 system depends on the specificity of engineered single guide RNAs (sgRNAs). However, sgRNA design in plants can be challenging due to the multitude of design tools to choose from, many of which use guidelines that are based on animal experiments yet allow the use of plant genomes. Upon choosing sgRNAs, it is also unclear whether an in vitro assay is needed to validate the targeting efficiency of a particular sgRNA before in vivo delivery of the CRISPR/Cas9 system. Here, we demonstrate the in vitro and in vivo activity of four different sgRNAs that we selected based on their ability to target multiple members of the eggplant polyphenol oxidase gene family. Some sgRNAs that have high in vitro cleavage activity did not produce edits in vivo, suggesting that an in vitro assay may not be a reliable basis to predict sgRNAs with highly efficient in vivo cleavage activity. Further analysis of our sgRNAs using other design algorithms suggest that plant-validated criteria such as the presence of necessary secondary structures and appropriate base-pairing may be the reason for the discrepancy between our observed in vitro and in vivo cleavage efficiencies. However, recent reports and our data suggests that there is no guaranteed way to ensure the in vivo cleavage of chosen sgRNAs.
Collapse
Affiliation(s)
- Mark Gabriel S Sagarbarria
- Genetics Laboratory, Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines, Los Baños, Laguna, Philippines.
| | - John Albert M Caraan
- Genetics Laboratory, Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines, Los Baños, Laguna, Philippines
| | - Angelo John G Layos
- Genetics Laboratory, Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines, Los Baños, Laguna, Philippines
| |
Collapse
|
4
|
Nawade B, Bosamia TC, Lee JH, Jang JH, Lee OR. Genome-wide characterization of the soybean DOMAIN OF UNKNOWN FUNCTION 679 membrane protein gene family highlights their potential involvement in growth and stress response. FRONTIERS IN PLANT SCIENCE 2023; 14:1216082. [PMID: 37745995 PMCID: PMC10514519 DOI: 10.3389/fpls.2023.1216082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023]
Abstract
The DMP (DUF679 membrane proteins) family is a plant-specific gene family that encodes membrane proteins. The DMP family genes are suggested to be involved in various programmed cell death processes and gamete fusion during double fertilization in Arabidopsis. However, their functional relevance in other crops remains unknown. This study identified 14 genes from the DMP family in soybean (Glycine max) and characterized their physiochemical properties, subcellular location, gene structure, and promoter regions using bioinformatics tools. Additionally, their tissue-specific and stress-responsive expressions were analyzed using publicly available transcriptome data. Phylogenetic analysis of 198 DMPs from monocots and dicots revealed six clades, with clade-I encoding senescence-related AtDMP1/2 orthologues and clade-II including pollen-specific AtDMP8/9 orthologues. The largest clade, clade-III, predominantly included monocot DMPs, while monocot- and dicot-specific DMPs were assembled in clade-IV and clade-VI, respectively. Evolutionary analysis suggests that soybean GmDMPs underwent purifying selection during evolution. Using 68 transcriptome datasets, expression profiling revealed expression in diverse tissues and distinct responses to abiotic and biotic stresses. The genes Glyma.09G237500 and Glyma.18G098300 showed pistil-abundant expression by qPCR, suggesting they could be potential targets for female organ-mediated haploid induction. Furthermore, cis-acting regulatory elements primarily related to stress-, hormone-, and light-induced pathways regulate GmDMPs, which is consistent with their divergent expression and suggests involvement in growth and stress responses. Overall, our study provides a comprehensive report on the soybean GmDMP family and a framework for further biological functional analysis of DMP genes in soybean or other crops.
Collapse
Affiliation(s)
- Bhagwat Nawade
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Tejas C. Bosamia
- Plant Omics Division, Council of Scientific and Industrial Research-Central Salt and Marine Chemical Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat, India
| | - Jae Hyun Lee
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Jin Hoon Jang
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Ok Ran Lee
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
5
|
Donà M, Bradamante G, Bogojevic Z, Gutzat R, Streubel S, Mosiolek M, Dolan L, Mittelsten Scheid O. A versatile CRISPR-based system for lineage tracing in living plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1169-1184. [PMID: 37403571 DOI: 10.1111/tpj.16378] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/09/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
Individual cells give rise to diverse cell lineages during the development of multicellular organisms. Understanding the contribution of these lineages to mature organisms is a central question of developmental biology. Several techniques to document cell lineages have been used, from marking single cells with mutations that express a visible marker to generating molecular bar codes by CRISPR-induced mutations and subsequent single-cell analysis. Here, we exploit the mutagenic activity of CRISPR to allow lineage tracing within living plants with a single reporter. Cas9-induced mutations are directed to correct a frameshift mutation that restores expression of a nuclear fluorescent protein, labelling the initial cell and all progenitor cells with a strong signal without modifying other phenotypes of the plants. Spatial and temporal control of Cas9 activity can be achieved using tissue-specific and/or inducible promoters. We provide proof of principle for the function of lineage tracing in two model plants. The conserved features of the components and the versatile cloning system, allowing for easy exchange of promoters, are expected to make the system widely applicable.
Collapse
Affiliation(s)
- Mattia Donà
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030, Vienna, Austria
| | - Gabriele Bradamante
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030, Vienna, Austria
| | - Zorana Bogojevic
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030, Vienna, Austria
| | - Ruben Gutzat
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030, Vienna, Austria
| | - Susanna Streubel
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030, Vienna, Austria
| | - Magdalena Mosiolek
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030, Vienna, Austria
| | - Liam Dolan
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030, Vienna, Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030, Vienna, Austria
| |
Collapse
|
6
|
Durut N, Kornienko AE, Schmidt HA, Lettner N, Donà M, Nordborg M, Mittelsten Scheid O. Long noncoding RNAs contribute to DNA damage resistance in Arabidopsis thaliana. Genetics 2023; 225:iyad135. [PMID: 37467473 PMCID: PMC10471225 DOI: 10.1093/genetics/iyad135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023] Open
Abstract
Efficient repair of DNA lesions is essential for the faithful transmission of genetic information between somatic cells and for genome integrity across generations. Plants have multiple, partially redundant, and overlapping DNA repair pathways, probably due to the less constricted germline and the inevitable exposure to light including higher energy wavelengths. Many proteins involved in DNA repair and their mode of actions are well described. In contrast, a role for DNA damage-associated RNA components, evident from many other organisms, is less well understood. Here, we have challenged young Arabidopsis thaliana plants with two different types of genotoxic stress and performed de novo assembly and transcriptome analysis. We identified three long noncoding RNAs (lncRNAs) that are lowly or not expressed under regular conditions but up-regulated or induced by DNA damage. We generated CRISPR/Cas deletion mutants and found that the absence of the lncRNAs impairs the recovery capacity of the plants from genotoxic stress. The genetic loci are highly conserved among world-wide distributed Arabidopsis accessions and within related species in the Brassicaceae group. Together, these results suggest that the lncRNAs have a conserved function in connection with DNA damage and provide a basis for mechanistic analysis of their role.
Collapse
Affiliation(s)
- Nathalie Durut
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Aleksandra E Kornienko
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Heiko A Schmidt
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC), Dr. Bohr Gasse 9, 1030 Vienna, Austria
| | - Nicole Lettner
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Mattia Donà
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
7
|
Gakuubi MM, Ching KC, Munusamy M, Wibowo M, Lim CT, Ma GL, Liang ZX, Kanagasundaram Y, Ng SB. CRISPR/Cas9 RNP-assisted validation of palmarumycin biosynthetic gene cluster in Lophiotrema sp. F6932. Front Microbiol 2022; 13:1012115. [PMID: 36246293 PMCID: PMC9556985 DOI: 10.3389/fmicb.2022.1012115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Lophiotrema is a genus of ascomycetous fungi within the family Lophiotremataceae. Members of this genus have been isolated as endophytes from a wide range of host plants and also from plant debris within terrestrial and marine habitats, where they are thought to function as saprobes. Lophiotrema sp. F6932 was isolated from white mangrove (Avicennia officinalis) in Pulau Ubin Island, Singapore. Crude extracts from the fungus exhibited strong antibacterial activity, and bioassay-guided isolation and structure elucidation of bioactive constituents led to the isolation of palmarumycin C8 and a new analog palmarumycin CP30. Whole-genome sequencing analysis resulted in the identification of a putative type 1 iterative PKS (iPKS) predicated to be involved in the biosynthesis of palmarumycins. To verify the involvement of palmarumycin (PAL) gene cluster in the biosynthesis of these compounds, we employed ribonucleoprotein (RNP)-mediated CRISPR-Cas9 to induce targeted deletion of the ketosynthase (KS) domain in PAL. Double-strand breaks (DSBs) upstream and downstream of the KS domain was followed by homology-directed repair (HDR) with a hygromycin resistance cassette flanked by a 50 bp of homology on both sides of the DSBs. The resultant deletion mutants displayed completely different phenotypes compared to the wild-type strain, as they had different colony morphology and were no longer able to produce palmarumycins or melanin. This study, therefore, confirms the involvement of PAL in the biosynthesis of palmarumycins, and paves the way for implementing a similar approach in the characterization of other gene clusters of interest in this largely understudied fungal strain.
Collapse
Affiliation(s)
- Martin Muthee Gakuubi
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kuan Chieh Ching
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Madhaiyan Munusamy
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mario Wibowo
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chun Teck Lim
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Guang-Lei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yoganathan Kanagasundaram
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- *Correspondence: Siew Bee Ng,
| |
Collapse
|
8
|
Thomson MJ, Biswas S, Tsakirpaloglou N, Septiningsih EM. Functional Allele Validation by Gene Editing to Leverage the Wealth of Genetic Resources for Crop Improvement. Int J Mol Sci 2022; 23:ijms23126565. [PMID: 35743007 PMCID: PMC9223900 DOI: 10.3390/ijms23126565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023] Open
Abstract
Advances in molecular technologies over the past few decades, such as high-throughput DNA marker genotyping, have provided more powerful plant breeding approaches, including marker-assisted selection and genomic selection. At the same time, massive investments in plant genetics and genomics, led by whole genome sequencing, have led to greater knowledge of genes and genetic pathways across plant genomes. However, there remains a gap between approaches focused on forward genetics, which start with a phenotype to map a mutant locus or QTL with the goal of cloning the causal gene, and approaches using reverse genetics, which start with large-scale sequence data and work back to the gene function. The recent establishment of efficient CRISPR-Cas-based gene editing promises to bridge this gap and provide a rapid method to functionally validate genes and alleles identified through studies of natural variation. CRISPR-Cas techniques can be used to knock out single or multiple genes, precisely modify genes through base and prime editing, and replace alleles. Moreover, technologies such as protoplast isolation, in planta transformation, and the use of developmental regulatory genes promise to enable high-throughput gene editing to accelerate crop improvement.
Collapse
|
9
|
Okada K, Aoki K, Tabei T, Sugio K, Imai K, Bonkohara Y, Kamachi Y. Key sequence features of CRISPR RNA for dual-guide CRISPR-Cas9 ribonucleoprotein complexes assembled with wild-type or HiFi Cas9. Nucleic Acids Res 2022; 50:2854-2871. [PMID: 35166844 PMCID: PMC8934663 DOI: 10.1093/nar/gkac100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/22/2022] Open
Abstract
Specific sequence features of the protospacer and protospacer-adjacent motif (PAM) are critical for efficient cleavage by CRISPR-Cas9, but current knowledge is largely derived from single-guide RNA (sgRNA) systems assessed in cultured cells. In this study, we sought to determine gRNA sequence features of a more native CRISPR-Cas9 ribonucleoprotein (RNP) complex with dual-guide RNAs (dgRNAs) composed of crRNA and tracrRNA, which has been used increasingly in recent CRISPR-Cas9 applications, particularly in zebrafish. Using both wild-type and HiFi SpCas9, we determined on-target cleavage efficiencies of 51 crRNAs in zebrafish embryos by assessing indel occurrence. Statistical analysis of these data identified novel position-specific mononucleotide features relevant to cleavage efficiencies throughout the protospacer sequence that may be unique to CRISPR-Cas9 RNPs pre-assembled with perfectly matched gRNAs. Overall features for wild-type Cas9 resembled those for HiFi Cas9, but specific differences were also observed. Mutational analysis of mononucleotide features confirmed their relevance to cleavage efficiencies. Moreover, the mononucleotide feature-based score, CRISPR-kp, correlated well with efficiencies of gRNAs reported in previous zebrafish RNP injection experiments, as well as independently tested crRNAs only in RNP format, but not with Cas9 mRNA co-injection. These findings will facilitate design of gRNA/crRNAs in genome editing applications, especially when using pre-assembled RNPs.
Collapse
Affiliation(s)
- Keita Okada
- School of Environmental Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan
| | - Kanae Aoki
- School of Environmental Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan
| | - Teruyuki Tabei
- School of Environmental Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan
| | - Kota Sugio
- School of Environmental Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan
| | - Katsunori Imai
- School of Environmental Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan
| | - Yuki Bonkohara
- School of Environmental Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan
| | - Yusuke Kamachi
- School of Environmental Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan
| |
Collapse
|
10
|
Bente H, Foerster AM, Lettner N, Mittelsten Scheid O. Polyploidy-associated paramutation in Arabidopsis is determined by small RNAs, temperature, and allele structure. PLoS Genet 2021; 17:e1009444. [PMID: 33690630 PMCID: PMC7978347 DOI: 10.1371/journal.pgen.1009444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/19/2021] [Accepted: 02/24/2021] [Indexed: 11/18/2022] Open
Abstract
Paramutation is a form of non-Mendelian inheritance in which the expression of a paramutable allele changes when it encounters a paramutagenic allele. This change in expression of the paramutable alleles is stably inherited even after segregation of both alleles. While the discovery of paramutation and studies of its underlying mechanism were made with alleles that change plant pigmentation, paramutation-like phenomena are known to modulate the expression of other traits and in other eukaryotes, and many cases have probably gone undetected. It is likely that epigenetic mechanisms are responsible for the phenomenon, as paramutation forms epialleles, genes with identical sequences but different expression states. This could account for the intergenerational inheritance of the paramutated allele, providing profound evidence that triggered epigenetic changes can be maintained over generations. Here, we use a case of paramutation that affects a transgenic selection reporter gene in tetraploid Arabidopsis thaliana. Our data suggest that different types of small RNA are derived from paramutable and paramutagenic epialleles. In addition, deletion of a repeat within the epiallele changes its paramutability. Further, the temperature during the growth of the epiallelic hybrids determines the degree and timing of the allelic interaction. The data further make it plausible why paramutation in this system becomes evident only in the segregating F2 population of tetraploid plants containing both epialleles. In summary, the results support a model for polyploidy-associated paramutation, with similarities as well as distinctions from other cases of paramutation.
Collapse
Affiliation(s)
- Heinrich Bente
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Andrea M. Foerster
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Nicole Lettner
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|