1
|
Baca Cabrera JC, Vanderborght J, Boursiac Y, Behrend D, Gaiser T, Nguyen TH, Lobet G. Decreased root hydraulic traits in German winter wheat cultivars over 100 years of breeding. PLANT PHYSIOLOGY 2025; 198:kiaf166. [PMID: 40329876 PMCID: PMC12053364 DOI: 10.1093/plphys/kiaf166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
Wheat (Triticum aestivum L.) plays a vital role in global food security, and understanding its root traits is essential for improving water uptake under varying environmental conditions. This study investigated how over a century of breeding has influenced root morphological and hydraulic properties in 6 German winter wheat cultivars released between 1895 and 2002. Field and hydroponic experiments were used to measure root diameter, root number, branching density, and whole root system hydraulic conductance (Krs). The results showed a significant decline in root axes number and Krs with release year, while root diameter remained stable across cultivars. Additionally, dynamic functional-structural modeling using the whole-plant model CPlantBox was employed to simulate Krs development with root system growth, revealing that older cultivars consistently had higher hydraulic conductance than modern ones. The combined approach of field phenotyping and modeling provided a comprehensive view of the changes in root traits arising from breeding. These findings suggest that breeding may have unintentionally favored cultivars with smaller root systems and more conservative water uptake strategies under the high-input, high-density conditions of modern agriculture. The results of this study may inform future breeding efforts aimed at optimizing wheat root systems, helping to develop cultivars with water uptake strategies better tailored to locally changing environmental conditions.
Collapse
Affiliation(s)
- Juan C Baca Cabrera
- Institute of Bio- and Geoscience, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., Jülich 52428, Germany
| | - Jan Vanderborght
- Institute of Bio- and Geoscience, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., Jülich 52428, Germany
| | - Yann Boursiac
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | - Dominik Behrend
- Institute of Crop Science and Resources Conservation, University of Bonn, Katzenburgweg 5, Bonn 53115, Germany
| | - Thomas Gaiser
- Institute of Crop Science and Resources Conservation, University of Bonn, Katzenburgweg 5, Bonn 53115, Germany
| | - Thuy Huu Nguyen
- Institute of Crop Science and Resources Conservation, University of Bonn, Katzenburgweg 5, Bonn 53115, Germany
| | - Guillaume Lobet
- Institute of Bio- and Geoscience, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., Jülich 52428, Germany
- Earth and Life Institute, UC-Louvain, Croix du sud, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Rickard W, Hossain I, Zhang X, Cooper HV, Mooney SJ, Hawkesford MJ, Whalley WR. Field plants strategically regulate water uptake from different soil depths by spatiotemporally adjusting their radial root hydraulic conductivity. THE NEW PHYTOLOGIST 2025. [PMID: 40104889 DOI: 10.1111/nph.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/23/2025] [Indexed: 03/20/2025]
Abstract
Plants modify their root hydraulics to maintain water status and strategically use soil water, but how they achieve this in the field conditions remains elusive. We developed a method to measure and calculate daily root water uptake, root water potential, and radial root water permeability at different depths in a wheat (Triticum aestivum L.) field and a permanent grassland dominated by ryegrass (Lolium perenne L.). During the drying processes, both plant systems reduced the radial water permeability of their shallow roots to limit topsoil water uptake, while increasing the radial water permeability of their roots in the subsoil to enhance water extraction. Conversely, after the topsoil was rewetted, both plant systems increased the radial water permeability of their shallow roots to enhance water extraction, while reducing the radial water permeability of their roots in the subsoil to limit water uptake. Root water uptake in the subsoil was more influenced by the topsoil water than by the subsoil water. The topsoil water serves both as a resource and a signal, coordinating optimal water uptake from different soil depths. These findings have important implications for understanding how plants cope with periodic water stress in the field and for screening drought-tolerant crop varieties.
Collapse
Affiliation(s)
- William Rickard
- Sustainable Crops and Soils, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Imrul Hossain
- Sustainable Crops and Soils, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - Xiaoxian Zhang
- Sustainable Crops and Soils, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - Hannah V Cooper
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Sacha J Mooney
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Malcolm J Hawkesford
- Sustainable Crops and Soils, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - W Richard Whalley
- Sustainable Crops and Soils, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| |
Collapse
|
3
|
Fichtl L, Leitner D, Schnepf A, Schmidt D, Kahlen K, Friedel M. A Field-to-Parameter Pipeline for Analyzing and Simulating Root System Architecture of Woody Perennials: Application to Grapevine Rootstocks. PLANT PHENOMICS (WASHINGTON, D.C.) 2024; 6:0280. [PMID: 39664087 PMCID: PMC11633832 DOI: 10.34133/plantphenomics.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/09/2024] [Accepted: 11/16/2024] [Indexed: 12/13/2024]
Abstract
Understanding root system architecture (RSA) is essential for improving crop resilience to climate change, yet assessing root systems of woody perennials under field conditions remains a challenge. This study introduces a pipeline that combines field excavation, in situ 3-dimensional digitization, and transformation of RSA data into an interoperable format to analyze and model the growth and water uptake of grapevine rootstock genotypes. Eight root systems of each of 3 grapevine rootstock genotypes ("101-14", "SO4", and "Richter 110") were excavated and digitized 3 and 6 months after planting. We validated the precision of the digitization method, compared in situ and ex situ digitization, and assessed root loss during excavation. The digitized RSA data were converted to root system markup language (RSML) format and imported into the CPlantBox modeling framework, which we adapted to include a static initial root system and a probabilistic tropism function. We then parameterized it to simulate genotype-specific growth patterns of grapevine rootstocks and integrated root hydraulic properties to derive a standard uptake fraction (SUF) for each genotype. Results demonstrated that excavation and in situ digitization accurately reflected the spatial structure of root systems, despite some underestimation of fine root length. Our experiment revealed significant genotypic variations in RSA over time and provided new insights into genotype-specific water acquisition capabilities. Simulated RSA closely resembled the specific features of the field-grown and digitized root systems. This study provides a foundational methodology for future research aimed at utilizing RSA models to improve the sustainability and productivity of woody perennials under changing climatic conditions.
Collapse
Affiliation(s)
- Lukas Fichtl
- Department of General and Organic Viticulture,
Hochschule Geisenheim University, Geisenheim, Germany
| | - Daniel Leitner
- Forschungszentrum Juelich GmbH, Agrosphere (IBG-3), Juelich, Germany
| | - Andrea Schnepf
- Forschungszentrum Juelich GmbH, Agrosphere (IBG-3), Juelich, Germany
| | - Dominik Schmidt
- Department of Modeling and Systems Analysis,
Hochschule Geisenheim University, Geisenheim, Germany
| | - Katrin Kahlen
- Department of Modeling and Systems Analysis,
Hochschule Geisenheim University, Geisenheim, Germany
| | - Matthias Friedel
- Department of General and Organic Viticulture,
Hochschule Geisenheim University, Geisenheim, Germany
| |
Collapse
|
4
|
Yu P, Li C, Li M, He X, Wang D, Li H, Marcon C, Li Y, Perez-Limón S, Chen X, Delgado-Baquerizo M, Koller R, Metzner R, van Dusschoten D, Pflugfelder D, Borisjuk L, Plutenko I, Mahon A, Resende MFR, Salvi S, Akale A, Abdalla M, Ahmed MA, Bauer FM, Schnepf A, Lobet G, Heymans A, Suresh K, Schreiber L, McLaughlin CM, Li C, Mayer M, Schön CC, Bernau V, von Wirén N, Sawers RJH, Wang T, Hochholdinger F. Seedling root system adaptation to water availability during maize domestication and global expansion. Nat Genet 2024; 56:1245-1256. [PMID: 38778242 DOI: 10.1038/s41588-024-01761-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
The maize root system has been reshaped by indirect selection during global adaptation to new agricultural environments. In this study, we characterized the root systems of more than 9,000 global maize accessions and its wild relatives, defining the geographical signature and genomic basis of variation in seminal root number. We demonstrate that seminal root number has increased during maize domestication followed by a decrease in response to limited water availability in locally adapted varieties. By combining environmental and phenotypic association analyses with linkage mapping, we identified genes linking environmental variation and seminal root number. Functional characterization of the transcription factor ZmHb77 and in silico root modeling provides evidence that reshaping root system architecture by reducing the number of seminal roots and promoting lateral root density is beneficial for the resilience of maize seedlings to drought.
Collapse
Affiliation(s)
- Peng Yu
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
| | - Chunhui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Meng Li
- Department of Plant Science, The Pennsylvania State University, State College, PA, USA
| | - Xiaoming He
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Danning Wang
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Hongjie Li
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Caroline Marcon
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Yu Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Sergio Perez-Limón
- Department of Plant Science, The Pennsylvania State University, State College, PA, USA
| | - Xinping Chen
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University (SWU), Chongqing, PR China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Sevilla, Spain
| | - Robert Koller
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Ralf Metzner
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Dagmar van Dusschoten
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Daniel Pflugfelder
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Ljudmilla Borisjuk
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Iaroslav Plutenko
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Audrey Mahon
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Marcio F R Resende
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Silvio Salvi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Asegidew Akale
- Chair of Root-Soil Interactions, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mohanned Abdalla
- Chair of Root-Soil Interactions, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mutez Ali Ahmed
- Chair of Root-Soil Interactions, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Felix Maximilian Bauer
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andrea Schnepf
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Guillaume Lobet
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
- Earth and Life Institute, Université catholique de Louvain, UCLouvain, Belgium
| | - Adrien Heymans
- Earth and Life Institute, Université catholique de Louvain, UCLouvain, Belgium
| | - Kiran Suresh
- Institute of Cellular and Molecular Botany (IZMB), Department of Ecophysiology, University of Bonn, Bonn, Germany
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany (IZMB), Department of Ecophysiology, University of Bonn, Bonn, Germany
| | - Chloee M McLaughlin
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, State College, PA, USA
| | - Chunjian Li
- Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Ministry of Education, China Agricultural University, Beijing, PR China
| | - Manfred Mayer
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Vivian Bernau
- North Central Regional Plant Introduction Station, USDA-Agriculture Research Service and Iowa State University, Ames, IA, USA
| | - Nicolaus von Wirén
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ruairidh J H Sawers
- Department of Plant Science, The Pennsylvania State University, State College, PA, USA.
| | - Tianyu Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China.
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
| |
Collapse
|
5
|
Sidhu JS, Ajmera I, Arya S, Lynch JP. RootSlice-A novel functional-structural model for root anatomical phenotypes. PLANT, CELL & ENVIRONMENT 2023; 46:1671-1690. [PMID: 36708192 DOI: 10.1111/pce.14552] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Root anatomy is an important determinant of root metabolic costs, soil exploration, and soil resource capture. Root anatomy varies substantially within and among plant species. RootSlice is a multicellular functional-structural model of root anatomy developed to facilitate the analysis and understanding of root anatomical phenotypes. RootSlice can capture phenotypically accurate root anatomy in three dimensions of different root classes and developmental zones, of both monocotyledonous and dicotyledonous species. Several case studies are presented illustrating the capabilities of the model. For maize nodal roots, the model illustrated the role of vacuole expansion in cell elongation; and confirmed the individual and synergistic role of increasing root cortical aerenchyma and reducing the number of cortical cell files in reducing root metabolic costs. Integration of RootSlice for different root zones as the temporal properties of the nodal roots in the whole-plant and soil model OpenSimRoot/maize enabled the multiscale evaluation of root anatomical phenotypes, highlighting the role of aerenchyma formation in enhancing the utility of cortical cell files for improving plant performance over varying soil nitrogen supply. Such integrative in silico approaches present avenues for exploring the fitness landscape of root anatomical phenotypes.
Collapse
Affiliation(s)
- Jagdeep Singh Sidhu
- Department of Plant Science, The Pennsylvania State University, University Park, State College, Pennsylvania, USA
| | - Ishan Ajmera
- Department of Plant Science, The Pennsylvania State University, University Park, State College, Pennsylvania, USA
| | - Sankalp Arya
- Department of Plant Science, The Pennsylvania State University, University Park, State College, Pennsylvania, USA
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, State College, Pennsylvania, USA
| |
Collapse
|
6
|
Bauget F, Protto V, Pradal C, Boursiac Y, Maurel C. A root functional-structural model allows assessment of the effects of water deficit on water and solute transport parameters. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1594-1608. [PMID: 36515073 PMCID: PMC10010609 DOI: 10.1093/jxb/erac471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Root water uptake is driven by a combination of hydrostatic and osmotic forces. Water transport was characterized in primary roots of maize seedlings grown hydroponically under standard and water deficit (WD) conditions, as induced by addition of 150 g l-1 polyethylene glycol 8000 (water potential= -0.336 MPa). Flow measurements were performed using the pressure chamber technique in intact roots or on progressively cut root system architectures. To account for the concomitant transport of water and solutes in roots under WD, we developed within realistic root system architectures a hydraulic tree model integrating both solute pumping and leak. This model explains the high spontaneous sap exudation of roots grown in standard conditions, the non-linearity of pressure-flow relationships, and negative fluxes observed under WD conditions at low external hydrostatic pressure. The model also reveals the heterogeneity of driving forces and elementary radial flows throughout the root system architecture, and how this heterogeneity depends on both plant treatment and water transport mode. The full set of flow measurement data obtained from individual roots grown under standard or WD conditions was used in an inverse modeling approach to determine their respective radial and axial hydraulic conductivities. This approach allows resolution of the dramatic effects of WD on these two components.
Collapse
Affiliation(s)
- Fabrice Bauget
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Virginia Protto
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Christophe Pradal
- CIRAD, UMR AGAP Institute, Montpellier, France
- Inria & LIRMM, Univ Montpellier, CNRS, Montpellier, France
| | - Yann Boursiac
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | |
Collapse
|
7
|
Kawa D, Brady SM. Root cell types as an interface for biotic interactions. TRENDS IN PLANT SCIENCE 2022; 27:1173-1186. [PMID: 35792025 DOI: 10.1016/j.tplants.2022.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 05/27/2023]
Abstract
Root responses to environmental stresses show a high level of cell type and developmental stage specificity. Interactions with beneficial and pathogenic organisms - including microbes and parasites - elicit a set of transcriptional responses unique to each root cell type, often dependent on their differentiation state. Localized changes to the cell wall and to the integrity of root cell types can serve as a physical barrier for a range of pests. Conversely, certain microorganisms weaken existing barriers within root cell types. Interactions with microorganisms vary between roots of different developmental origins and cellular architectures. Here we provide an overview of the molecular, architectural, and structural properties of root cell types crucial to both maintaining beneficial interactions and protecting from pathogens.
Collapse
Affiliation(s)
- Dorota Kawa
- Department of Plant Biology and Genome Center, University of California, Davis, CA 95616, USA.
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
8
|
Schneider HM. Functional implications of multiseriate cortical sclerenchyma for soil resource capture and crop improvement. AOB PLANTS 2022; 14:plac050. [PMID: 36545297 PMCID: PMC9762723 DOI: 10.1093/aobpla/plac050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/17/2022] [Indexed: 06/09/2023]
Abstract
Suboptimal nutrient and water availability are primary constraints to crop growth. Global agriculture requires crops with greater nutrient and water efficiency. Multiseriate cortical sclerenchyma (MCS), a root anatomical trait characterized by small cells with thick cell walls encrusted with lignin in the outer cortex, has been shown to be an important trait for adaptation in maize and wheat in mechanically impeded soils. However, MCS has the potential to improve edaphic stress tolerance in a number of different crop taxa and in a number of different environments. This review explores the functional implications of MCS as an adaptive trait for water and nutrient acquisition and discusses future research perspectives on this trait for incorporation into crop breeding programs. For example, MCS may influence water and nutrient uptake, resistance to pests, symbiotic interactions, microbial interactions in the rhizosphere and soil carbon deposition. Root anatomical phenotypes are underutilized; however, important breeding targets for the development of efficient, productive and resilient crops urgently needed in global agriculture.
Collapse
|
9
|
Boursiac Y, Pradal C, Bauget F, Lucas M, Delivorias S, Godin C, Maurel C. Phenotyping and modeling of root hydraulic architecture reveal critical determinants of axial water transport. PLANT PHYSIOLOGY 2022; 190:1289-1306. [PMID: 35708646 PMCID: PMC9516777 DOI: 10.1093/plphys/kiac281] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/15/2022] [Indexed: 05/26/2023]
Abstract
Water uptake by roots is a key adaptation of plants to aerial life. Water uptake depends on root system architecture (RSA) and tissue hydraulic properties that, together, shape the root hydraulic architecture. This work investigates how the interplay between conductivities along radial (e.g. aquaporins) and axial (e.g. xylem vessels) pathways determines the water transport properties of highly branched RSAs as found in adult Arabidopsis (Arabidopsis thaliana) plants. A hydraulic model named HydroRoot was developed, based on multi-scale tree graph representations of RSAs. Root water flow was measured by the pressure chamber technique after successive cuts of a same root system from the tip toward the base. HydroRoot model inversion in corresponding RSAs allowed us to concomitantly determine radial and axial conductivities, providing evidence that the latter is often overestimated by classical evaluation based on the Hagen-Poiseuille law. Organizing principles of Arabidopsis primary and lateral root growth and branching were determined and used to apply the HydroRoot model to an extended set of simulated RSAs. Sensitivity analyses revealed that water transport can be co-limited by radial and axial conductances throughout the whole RSA. The number of roots that can be sectioned (intercepted) at a given distance from the base was defined as an accessible and informative indicator of RSA. The overall set of experimental and theoretical procedures was applied to plants mutated in ESKIMO1 and previously shown to have xylem collapse. This approach will be instrumental to dissect the root water transport phenotype of plants with intricate alterations in root growth or transport functions.
Collapse
Affiliation(s)
| | | | | | | | - Stathis Delivorias
- Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier 34060, France
| | | | | |
Collapse
|
10
|
Shoaib M, Banerjee BP, Hayden M, Kant S. Roots' Drought Adaptive Traits in Crop Improvement. PLANTS (BASEL, SWITZERLAND) 2022; 11:2256. [PMID: 36079644 PMCID: PMC9460784 DOI: 10.3390/plants11172256] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Drought is one of the biggest concerns in agriculture due to the projected reduction of global freshwater supply with a concurrent increase in global food demand. Roots can significantly contribute to improving drought adaptation and productivity. Plants increase water uptake by adjusting root architecture and cooperating with symbiotic soil microbes. Thus, emphasis has been given to root architectural responses and root-microbe relationships in drought-resilient crop development. However, root responses to drought adaptation are continuous and complex processes and involve additional root traits and interactions among themselves. This review comprehensively compiles and discusses several of these root traits such as structural, physiological, molecular, hydraulic, anatomical, and plasticity, which are important to consider together, with architectural changes, when developing drought resilient crop varieties. In addition, it describes the significance of root contribution in improving soil structure and water holding capacity and its implication on long-term resilience to drought. In addition, various drought adaptive root ideotypes of monocot and dicot crops are compared and proposed for given agroclimatic conditions. Overall, this review provides a broader perspective of understanding root structural, physiological, and molecular regulators, and describes the considerations for simultaneously integrating multiple traits for drought tolerance and crop improvement, under specific growing environments.
Collapse
Affiliation(s)
- Mirza Shoaib
- Agriculture Victoria, Grains Innovation Park, 110 Natimuk Road, Horsham, VIC 3400, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Melbourne, VIC 3083, Australia
| | - Bikram P. Banerjee
- Agriculture Victoria, Grains Innovation Park, 110 Natimuk Road, Horsham, VIC 3400, Australia
| | - Matthew Hayden
- School of Applied Systems Biology, La Trobe University, Bundoora, Melbourne, VIC 3083, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Melbourne, VIC 3083, Australia
| | - Surya Kant
- Agriculture Victoria, Grains Innovation Park, 110 Natimuk Road, Horsham, VIC 3400, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Melbourne, VIC 3083, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Melbourne, VIC 3083, Australia
| |
Collapse
|
11
|
Schnepf A, Leitner D, Bodner G, Javaux M. Editorial: Benchmarking 3D-Models of Root Growth, Architecture and Functioning. FRONTIERS IN PLANT SCIENCE 2022; 13:902587. [PMID: 35720543 PMCID: PMC9199489 DOI: 10.3389/fpls.2022.902587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Andrea Schnepf
- Institute of Bio-Geosciences (IBG-3, Agrosphere), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Daniel Leitner
- Simulationswerkstatt – Services in Computational Sciences, Linz, Austria
| | - Gernot Bodner
- Department of Crop Sciences, Division of Agronomy, University of Natural Resources and Life Sciences BOKU Vienna, Tulln an der Donau, Austria
| | - Mathieu Javaux
- Institute of Bio-Geosciences (IBG-3, Agrosphere), Forschungszentrum Jülich GmbH, Jülich, Germany
- Earth and Life Institute, Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
| |
Collapse
|
12
|
Cornelis S, Hazak O. Understanding the root xylem plasticity for designing resilient crops. PLANT, CELL & ENVIRONMENT 2022; 45:664-676. [PMID: 34971462 PMCID: PMC9303747 DOI: 10.1111/pce.14245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Xylem is the main route for transporting water, minerals and a myriad of signalling molecules within the plant. With its onset during early embryogenesis, the development of the xylem relies on hormone gradients, the activity of unique transcription factors, the distribution of mobile microRNAs, and receptor-ligand pathways. These regulatory mechanisms are often interconnected and together contribute to the plasticity of this water-conducting tissue. Environmental stresses, such as drought and salinity, have a great impact on xylem patterning. A better understanding of how the structural properties of the xylem are regulated in normal and stress conditions will be instrumental in developing crops of the future. In addition, vascular wilt pathogens that attack the xylem are becoming increasingly problematic. Further knowledge of xylem development in response to these pathogens will bring new solutions against these diseases. In this review, we summarize recent findings on the molecular mechanisms of xylem formation that largely come from Arabidopsis research with additional insights from tomato and monocot species. We emphasize the impact of abiotic factors and pathogens on xylem plasticity and the urgent need to uncover the underlying mechanisms. Finally, we discuss the multidisciplinary approach to model xylem capacities in crops.
Collapse
Affiliation(s)
- Salves Cornelis
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Ora Hazak
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
13
|
Boursiac Y, Protto V, Rishmawi L, Maurel C. Experimental and conceptual approaches to root water transport. PLANT AND SOIL 2022; 478:349-370. [PMID: 36277078 PMCID: PMC9579117 DOI: 10.1007/s11104-022-05427-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/03/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Root water transport, which critically contributes to the plant water status and thereby plant productivity, has been the object of extensive experimental and theoretical studies. However, root systems represent an intricate assembly of cells in complex architectures, including many tissues at distinct developmental stages. Our comprehension of where and how molecular actors integrate their function in order to provide the root with its hydraulic properties is therefore still limited. SCOPE Based on current literature and prospective discussions, this review addresses how root water transport can be experimentally measured, what is known about the underlying molecular actors, and how elementary water transport processes are scaled up in numerical/mathematical models. CONCLUSIONS The theoretical framework and experimental procedures on root water transport that are in use today have been established a few decades ago. However, recent years have seen the appearance of new techniques and models with enhanced resolution, down to a portion of root or to the tissue level. These advances pave the way for a better comprehension of the dynamics of water uptake by roots in the soil.
Collapse
Affiliation(s)
- Yann Boursiac
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Virginia Protto
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Louai Rishmawi
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Christophe Maurel
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| |
Collapse
|
14
|
Pou A, Hachez C, Couvreur V, Maistriaux LC, Ismail A, Chaumont F. Exposure to high nitrogen triggered a genotype-dependent modulation of cell and root hydraulics, which can involve aquaporin regulation. PHYSIOLOGIA PLANTARUM 2022; 174:e13640. [PMID: 35099809 DOI: 10.1111/ppl.13640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Root nitrogen acquisition has been proposed to be regulated by mass flow, a process by which water flow brings nutrients to the root surface, depending on a concerted regulation of the root hydraulic properties and stomatal conductance. As aquaporins play an important role in regulating transcellular water flow, we aimed at evaluating the short-term effect of high nitrogen (HN) availability on the dynamics of hydraulic parameters at both the root and cell level and the regulation of aquaporins. The effect of short-term HN (8 mM NO3 - ) treatment was investigated on 12 diverse 15-day-old maize genotypes. Root exposure to HN triggered a rapid (<4 h) increase in the root hydraulic conductivity (Lpr ) in seven genotypes while no Lpr variation was recorded for the others, allowing the separation of the genotypes into two groups (HN-responsive and HN-nonresponsive). A remarkable correlation between Lpr and the cortex cell hydraulic conductivity (Lpc ) was observed. However, while differences in gas exchange parameters were also observed, the variations were genotype-specific and not always correlated with the root hydraulic parameters. We then investigated whether HN-induced Lpr variations were linked to the activity and regulation of plasma membrane PIP aquaporins. While some changes in PIP mRNA levels were detected, this was not correlated with the protein levels. On the other hand, the rapid variation in Lpr observed in the B73 genotype was correlated with the PIP protein abundance in the plasma membrane, highlighting PIP posttranslational mechanisms in the short-term regulation of root hydraulic parameters in response to HN treatment.
Collapse
Affiliation(s)
- Alicia Pou
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Charles Hachez
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | | | - Laurie C Maistriaux
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Ahmed Ismail
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
15
|
Pascut FC, Couvreur V, Dietrich D, Leftley N, Reyt G, Boursiac Y, Calvo-Polanco M, Casimiro I, Maurel C, Salt DE, Draye X, Wells DM, Bennett MJ, Webb KF. Non-invasive hydrodynamic imaging in plant roots at cellular resolution. Nat Commun 2021; 12:4682. [PMID: 34344886 PMCID: PMC8333316 DOI: 10.1038/s41467-021-24913-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
A key impediment to studying water-related mechanisms in plants is the inability to non-invasively image water fluxes in cells at high temporal and spatial resolution. Here, we report that Raman microspectroscopy, complemented by hydrodynamic modelling, can achieve this goal - monitoring hydrodynamics within living root tissues at cell- and sub-second-scale resolutions. Raman imaging of water-transporting xylem vessels in Arabidopsis thaliana mutant roots reveals faster xylem water transport in endodermal diffusion barrier mutants. Furthermore, transverse line scans across the root suggest water transported via the root xylem does not re-enter outer root tissues nor the surrounding soil when en-route to shoot tissues if endodermal diffusion barriers are intact, thereby separating 'two water worlds'.
Collapse
Affiliation(s)
- Flavius C Pascut
- Optics & Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK.
| | - Valentin Couvreur
- Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| | - Daniela Dietrich
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Nicky Leftley
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Guilhem Reyt
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, UK
- Future Food Beacon of Excellence, University of Nottingham, Sutton Bonington, UK
| | - Yann Boursiac
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Monica Calvo-Polanco
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
- Excellence Unit AGRIENVIRONMENT, CIALE, University of Salamanca, Salamanca, Spain
| | - Ilda Casimiro
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, Facultad de Ciencias, Badajoz, Spain
| | - Christophe Maurel
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - David E Salt
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, UK
- Future Food Beacon of Excellence, University of Nottingham, Sutton Bonington, UK
| | - Xavier Draye
- Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Darren M Wells
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, UK
- Future Food Beacon of Excellence, University of Nottingham, Sutton Bonington, UK
| | - Malcolm J Bennett
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, UK
- Future Food Beacon of Excellence, University of Nottingham, Sutton Bonington, UK
| | - Kevin F Webb
- Optics & Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| |
Collapse
|