1
|
Costa AC, Murillo BR, Bessa R, Ribeiro R, Ferreira da Silva T, Porfírio-Rodrigues P, Martins GG, Brites P, Kneussel M, Misgeld T, Brill MS, Sousa MM. Axon-specific microtubule regulation drives asymmetric regeneration of sensory neuron axons. eLife 2025; 13:RP104069. [PMID: 39992313 PMCID: PMC11850000 DOI: 10.7554/elife.104069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
Sensory dorsal root ganglion (DRG) neurons have a unique pseudo-unipolar morphology in which a stem axon bifurcates into a peripheral and a central axon, with different regenerative abilities. Whereas peripheral DRG axons regenerate, central axons are unable to regrow. Central axon regeneration can however be elicited by a prior conditioning lesion to the peripheral axon. How DRG axon asymmetry is established remains unknown. Here we developed a rodent in vitro system replicating DRG pseudo-unipolarization and asymmetric axon regeneration. Using this model, we observed that from early development, central DRG axons have a higher density of growing microtubules. This asymmetry was also present in vivo and was abolished by a conditioning lesion that decreased microtubule polymerization of central DRG axons. An axon-specific microtubule-associated protein (MAP) signature, including the severases spastin and katanin and the microtubule regulators CRMP5 and tau, was found and shown to adapt upon conditioning lesion. Supporting its significance, interfering with the DRG MAP signature either in vitro or in vivo readily abolished central-peripheral asymmetries in microtubule dynamics and regenerative ability. In summary, our data unveil that axon-specific microtubule regulation drives asymmetric regeneration of sensory neuron axons.
Collapse
Affiliation(s)
- Ana Catarina Costa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of PortoPortoPortugal
- Graduate Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar, University of PortoPortoPortugal
| | - Blanca R Murillo
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of PortoPortoPortugal
| | - Rita Bessa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of PortoPortoPortugal
| | - Ricardo Ribeiro
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of PortoPortoPortugal
| | - Tiago Ferreira da Silva
- Neurolipid Biology Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of PortoPortoPortugal
| | | | - Gabriel G Martins
- Advanced Imaging Unit, Instituto Gulbenkian de CiênciaLisboaPortugal
| | - Pedro Brites
- Neurolipid Biology Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of PortoPortoPortugal
| | - Matthias Kneussel
- Institute of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg, ZMNH, University Medical Centre Hamburg-EppendorfHamburgGermany
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Monika S Brill
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Monica M Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of PortoPortoPortugal
| |
Collapse
|
2
|
Castillo C, Martinez JC, Longart M, García L, Hernández M, Carballo J, Rojas H, Matteo L, Casique L, Escalona JL, Rodríguez Y, Rodriguez J, Hernández D, Balbi D, Villegas R. Extracellular Application of CRMP2 Increases Cytoplasmic Calcium through NMDA Receptors. Neuroscience 2019; 376:204-223. [PMID: 29555037 DOI: 10.1016/j.neuroscience.2018.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/27/2022]
Abstract
Collapsin Response Mediator Protein 2 (CRMP2) is an intracellular protein involved in axon and dendrite growth and specification. In this study, CRMP2 was identified in a conditioned media derived from degenerated sciatic nerves (CM). On cultured rat hippocampal neurons, acute extracellular application of CM or partially purified recombinant CRMP2 produced an increase in cytoplasmic calcium. The increase in cytoplasmic calcium was mostly mediated through NMDA receptors, with a minor contribution of N-type VDCC, and it was maintained as long as CM was present. By using live-labeling of CRMP2, Ca2+ channel binding domain 3 (CBD3) peptide derived from CRMP2, and recombinant CRMP2, we demonstrated that that this effect was mediated by an action on the extracellular side of the NMDA receptor. This is the first report of an extracellular action of CRMP2. Prolonged exposure to extracellular CRMP2, may contribute to neuronal calcium dysregulation and neuronal damage.
Collapse
Affiliation(s)
- Cecilia Castillo
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela.
| | - Juan Carlos Martinez
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Marines Longart
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Lisbeth García
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Marianela Hernández
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Jeismar Carballo
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Héctor Rojas
- Instituto de Inmunología, Facultad de Medicina, Universidad Central de Venezuela, Caracas 1051, Venezuela
| | - Lorena Matteo
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Liliana Casique
- Depto. de Biología Celular, Universidad Simón Bolívar, Caracas 1080, Venezuela
| | | | - Yuryanni Rodríguez
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Jessica Rodriguez
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Deyanell Hernández
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Domingo Balbi
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Raimundo Villegas
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| |
Collapse
|
3
|
Aiki H, Wada T, Iba K, Oki G, Sohma H, Yamashita T, Kokai Y. Proteomics analysis of site- and stage-specific protein expression after peripheral nerve injury. J Orthop Sci 2018; 23:1070-1078. [PMID: 30100211 DOI: 10.1016/j.jos.2018.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 06/14/2018] [Accepted: 07/18/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND The peripheral nervous system has greater regenerative potential than the CNS. This fact suggests the existence of molecules that act as key factors in nerve regeneration during molecular changes in the peripheral nervous system. METHODS The right sciatic nerve of female Sprague-Dawley rats was exposed and transected at the mid-thigh level. Animals were sacrificed at 5, 10 or 35 days after nerve transection. Proximal and distal nerve segments (1-cm in length) were dissected. We then sought to observe overall molecular changes after peripheral nerve injury using a proteomic approach. For an overview of the identified proteins, each protein was classified according to its biological and molecular functions. We identified a number of proteins showing site- and stage-specific patterns of expression. RESULTS Both proximal and distal molecular changes at 5, 10 and 35 days after nerve transection were investigated, and a total of 2353 proteins were identified. Among the various expression patterns observed, aFGF and GAP-43 were found to increase in the proximal stump at 10 days after transection, and PN-1, RPL9 and prosaposin increased in the distal stump at 5 days after transection. Among these proteins, aFGF, GAP-43, PN-1 and prosaposin were found to be associated with nerve regeneration. CONCLUSION We demonstrated that aFGF, GAP-43, PN-1 and prosaposin expression increased at specific stages and in specific sites, such as the proximal or distal stump, after nerve transection by comprehensive measurement using proteomics analysis. We believe that these specific expression patterns might play important roles during regeneration after nerve injury.
Collapse
Affiliation(s)
- Hikono Aiki
- Department of Biomedical Engineering, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takuro Wada
- Division of Orthopaedic Surgery, Saiseikai Otaru Hospital, Otaru, Japan
| | - Kousuke Iba
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Gosuke Oki
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hitoshi Sohma
- Department of Educational Development, Sapporo Medical University Center for Medical Education, Sapporo, Japan
| | - Toshihiko Yamashita
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasuo Kokai
- Department of Biomedical Engineering, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
4
|
Nascimento AI, Mar FM, Sousa MM. The intriguing nature of dorsal root ganglion neurons: Linking structure with polarity and function. Prog Neurobiol 2018; 168:86-103. [PMID: 29729299 DOI: 10.1016/j.pneurobio.2018.05.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 11/26/2022]
Abstract
Dorsal root ganglion (DRG) neurons are the first neurons of the sensory pathway. They are activated by a variety of sensory stimuli that are then transmitted to the central nervous system. An important feature of DRG neurons is their unique morphology where a single process -the stem axon- bifurcates into a peripheral and a central axonal branch, with different functions and cellular properties. Distinctive structural aspects of the two DRG neuron branches may have important implications for their function in health and disease. However, the link between DRG axonal branch structure, polarity and function has been largely neglected in the field, and relevant information is rather scattered across the literature. In particular, ultrastructural differences between the two axonal branches are likely to account for the higher transport and regenerative ability of the peripheral DRG neuron axon when compared to the central one. Nevertheless, the cell intrinsic factors contributing to this central-peripheral asymmetry are still unknown. Here we critically review the factors that may underlie the functional asymmetry between the peripheral and central DRG axonal branches. Also, we discuss the hypothesis that DRG neurons may assemble a structure resembling the axon initial segment that may be responsible, at least in part, for their polarity and electrophysiological features. Ultimately, we suggest that the clarification of the axonal ultrastructure of DRG neurons using state-of-the-art techniques will be crucial to understand the physiology of this peculiar cell type.
Collapse
Affiliation(s)
- Ana Isabel Nascimento
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar-ICBAS, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Fernando Milhazes Mar
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Mónica Mendes Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| |
Collapse
|
5
|
Cadmium effects on DNA and protein metabolism in oyster (Crassostrea gigas) revealed by proteomic analyses. Sci Rep 2017; 7:11716. [PMID: 28916745 PMCID: PMC5601910 DOI: 10.1038/s41598-017-11894-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/31/2017] [Indexed: 12/15/2022] Open
Abstract
Marine molluscs, including oysters, can concentrate high levels of cadmium (Cd) in their soft tissues, but the molecular mechanisms of Cd toxicity remain speculative. In this study, Pacific oysters (Crassostrea gigas) were exposed to Cd for 9 days and their gills were subjected to proteomic analysis, which were further confirmed with transcriptomic analysis. A total of 4,964 proteins was quantified and 515 differentially expressed proteins were identified in response to Cd exposure. Gene Ontology enrichment analysis revealed that excess Cd affected the DNA and protein metabolism. Specifically, Cd toxicity resulted in the inhibition of DNA glycosylase and gap-filling and ligation enzymes expressions in base excision repair pathway, which may have decreased DNA repair capacity. At the protein level, Cd induced the heat shock protein response, initiation of protein refolding as well as degradation by ubiquitin proteasome pathway, among other effects. Excess Cd also induced antioxidant responses, particularly glutathione metabolism, which play important roles in Cd chelation and anti-oxidation. This study provided the first molecular mechanisms of Cd toxicity on DNA and protein metabolism at protein levels, and identified molecular biomarkers for Cd toxicity in oysters.
Collapse
|
6
|
Boubakar L, Falk J, Ducuing H, Thoinet K, Reynaud F, Derrington E, Castellani V. Molecular Memory of Morphologies by Septins during Neuron Generation Allows Early Polarity Inheritance. Neuron 2017; 95:834-851.e5. [DOI: 10.1016/j.neuron.2017.07.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 05/23/2017] [Accepted: 07/24/2017] [Indexed: 01/22/2023]
|
7
|
Kobeissy FH, Guingab-Cagmat JD, Zhang Z, Moghieb A, Glushakova OY, Mondello S, Boutté AM, Anagli J, Rubenstein R, Bahmad H, Wagner AK, Hayes RL, Wang KKW. Neuroproteomics and Systems Biology Approach to Identify Temporal Biomarker Changes Post Experimental Traumatic Brain Injury in Rats. Front Neurol 2016; 7:198. [PMID: 27920753 PMCID: PMC5118702 DOI: 10.3389/fneur.2016.00198] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/28/2016] [Indexed: 01/15/2023] Open
Abstract
Traumatic brain injury (TBI) represents a critical health problem of which diagnosis, management, and treatment remain challenging. TBI is a contributing factor in approximately one-third of all injury-related deaths in the United States. The Centers for Disease Control and Prevention estimate that 1.7 million people suffer a TBI in the United States annually. Efforts continue to focus on elucidating the complex molecular mechanisms underlying TBI pathophysiology and defining sensitive and specific biomarkers that can aid in improving patient management and care. Recently, the area of neuroproteomics–systems biology is proving to be a prominent tool in biomarker discovery for central nervous system injury and other neurological diseases. In this work, we employed the controlled cortical impact (CCI) model of experimental TBI in rat model to assess the temporal–global proteome changes after acute (1 day) and for the first time, subacute (7 days), post-injury time frame using the established cation–anion exchange chromatography-1D SDS gel electrophoresis LC–MS/MS platform for protein separation combined with discrete systems biology analyses to identify temporal biomarker changes related to this rat TBI model. Rather than focusing on any one individual molecular entity, we used in silico systems biology approach to understand the global dynamics that govern proteins that are differentially altered post-injury. In addition, gene ontology analysis of the proteomic data was conducted in order to categorize the proteins by molecular function, biological process, and cellular localization. Results show alterations in several proteins related to inflammatory responses and oxidative stress in both acute (1 day) and subacute (7 days) periods post-TBI. Moreover, results suggest a differential upregulation of neuroprotective proteins at 7 days post-CCI involved in cellular functions such as neurite growth, regeneration, and axonal guidance. Our study is among the first to assess temporal neuroproteome changes in the CCI model. Data presented here unveil potential neural biomarkers and therapeutic targets that could be used for diagnosis, for treatment and, most importantly, for temporal prognostic assessment following brain injury. Of interest, this work relies on in silico bioinformatics approach to draw its conclusion; further work is conducted for functional studies to validate and confirm the omics data obtained.
Collapse
Affiliation(s)
- Firas H Kobeissy
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | | | - Zhiqun Zhang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Ahmed Moghieb
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Olena Y Glushakova
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine , Richmond, VA , USA
| | - Stefania Mondello
- Department of Neurosciences, University of Messina , Messina , Italy
| | - Angela M Boutté
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, MD , USA
| | - John Anagli
- NeuroTheranostics Inc., Detroit, MI, USA; Henry Ford Health System, Detroit, MI, USA
| | - Richard Rubenstein
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, NY, USA; Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Hisham Bahmad
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon; Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Amy K Wagner
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald L Hayes
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Quach TT, Lerch JK, Honnorat J, Khanna R, Duchemin AM. Neuronal networks in mental diseases and neuropathic pain: Beyond brain derived neurotrophic factor and collapsin response mediator proteins. World J Psychiatry 2016; 6:18-30. [PMID: 27014595 PMCID: PMC4804265 DOI: 10.5498/wjp.v6.i1.18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/24/2015] [Accepted: 01/07/2016] [Indexed: 02/05/2023] Open
Abstract
The brain is a complex network system that has the capacity to support emotion, thought, action, learning and memory, and is characterized by constant activity, constant structural remodeling, and constant attempt to compensate for this remodeling. The basic insight that emerges from complex network organization is that substantively different networks can share common key organizational principles. Moreover, the interdependence of network organization and behavior has been successfully demonstrated for several specific tasks. From this viewpoint, increasing experimental/clinical observations suggest that mental disorders are neural network disorders. On one hand, single psychiatric disorders arise from multiple, multifactorial molecular and cellular structural/functional alterations spreading throughout local/global circuits leading to multifaceted and heterogeneous clinical symptoms. On the other hand, various mental diseases may share functional deficits across the same neural circuit as reflected in the overlap of symptoms throughout clinical diagnoses. An integrated framework including experimental measures and clinical observations will be necessary to formulate a coherent and comprehensive understanding of how neural connectivity mediates and constraints the phenotypic expression of psychiatric disorders.
Collapse
|
9
|
Rubakhin SS, Ulanov A, Sweedler JV. Mass Spectrometry Imaging and GC-MS Profiling of the Mammalian Peripheral Sensory-Motor Circuit. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:958-66. [PMID: 25822927 PMCID: PMC4425624 DOI: 10.1007/s13361-015-1128-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 05/09/2023]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has evolved to become an effective discovery tool in science and clinical diagnostics. Here, chemical imaging approaches are applied to well-defined regions of the mammalian peripheral sensory-motor system, including the dorsal root ganglia (DRG) and adjacent nerves. By combining several MSI approaches, analyte coverage is increased and 195 distinct molecular features are observed. Principal component analysis suggests three chemically different regions within the sensory-motor system, with the DRG and adjacent nerve regions being the most distinct. Investigation of these regions using gas chromatography-mass spectrometry corroborate these findings and reveal important metabolic markers related to the observed differences. The heterogeneity of the structurally, physiologically, and functionally connected regions demonstrates the intricate chemical and spatial regulation of their chemical composition.
Collapse
Affiliation(s)
- Stanislav S. Rubakhin
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Alexander Ulanov
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence: Professor Jonathan V. Sweedler, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, , phone: 217-244-4359, fax: 217-265-6290
| |
Collapse
|
10
|
Lu J, Yao I, Shimojo M, Katano T, Uchida H, Setou M, Ito S. Identification of nitrated tyrosine residues of protein kinase G-Iα by mass spectrometry. Anal Bioanal Chem 2014; 406:1387-96. [PMID: 24452741 DOI: 10.1007/s00216-013-7535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 10/29/2013] [Accepted: 11/22/2013] [Indexed: 10/25/2022]
Abstract
The nitration of tyrosine to 3-nitrotyrosine is an oxidative modification of tyrosine by nitric oxide and is associated with many diseases, and targeting of protein kinase G (PKG)-I represents a potential therapeutic strategy for pulmonary hypertension and chronic pain. The direct assignment of tyrosine residues of PKG-I has remained to be made due to the low sensitivity of the current proteomic approach. In order to assign modified tyrosine residues of PKG-I, we nitrated purified PKG-Iα expressed in insect Sf9 cells by use of peroxynitrite in vitro and analyzed the trypsin-digested fragments by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and liquid chromatography-tandem mass spectrometry. Among the 21 tyrosine residues of PKG-Iα, 16 tyrosine residues were assigned in 13 fragments; and six tyrosine residues were nitrated, those at Y71, Y141, Y212, Y336, Y345, and Y567, in the peroxynitrite-treated sample. Single mutation of tyrosine residues at Y71, Y212, and Y336 to phenylalanine significantly reduced the nitration of PKG-Iα; and four mutations at Y71, Y141, Y212, and Y336 (Y4F mutant) reduced it additively. PKG-Iα activity was inhibited by peroxynitrite in a concentration-dependent manner from 30 μM to 1 mM, and this inhibition was attenuated in the Y4F mutant. These results demonstrated that PKG-Iα was nitrated at multiple tyrosine residues and that its activity was reduced by nitration of these residues.
Collapse
Affiliation(s)
- Jingshan Lu
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Niederberger E, Kühlein H, Geisslinger G. Update on the pathobiology of neuropathic pain. Expert Rev Proteomics 2014; 5:799-818. [DOI: 10.1586/14789450.5.6.799] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
|
13
|
Detection of autoantibodies against heat shock proteins and collapsin response mediator proteins in autoimmune retinopathy. BMC Ophthalmol 2013; 13:48. [PMID: 24066722 PMCID: PMC3851198 DOI: 10.1186/1471-2415-13-48] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/06/2013] [Indexed: 11/18/2022] Open
Abstract
Background Autoimmune retinopathy (AR) and Cancer-Associated Retinopathy (CAR) are associated with a diverse repertoire of anti-retinal autoantibodies (AAbs) but not all antigenic targets have been characterized. Identification of new AAbs may help with clinical diagnosis and prognosis of retinal dysfunction in AR. The goal was to identify frequently targeted retinal autoantigens within the 60-70-kDa molecular weight range. Methods Human retinal proteins were separated by SDS-PAGE and 2D gel electrophoresis (2-DE) and sera from AR patients with and without cancer were used to identify immunoreactive proteins by Western blotting. Proteins were identified following separation by electrophoresis, Coomassie staining using in-gel trypsin digestion and mass spectrometric analysis. Circulating serum hsp60 and anti-hsp60 antibody levels were determined by quantitative ELISA. Results Retrospective evaluation of 819 patients with anti-retinal AAbs showed that 29% patients had AAbs targeted proteins between 60-70-kDa. Shotgun mass spectrometry of human retinal proteins present in 1D-gel found 66 species within this range. To identify the immunoreactive proteins, we performed Western blots of 2-DE gels and showed a group of heat shock proteins (hsps), including hsp60 and CRMP proteins that were frequently recognized by AR patient AAbs, irrespective of cancer status. These results were validated by immunostaining of purified hsp60 and CRMP2 proteins. ELISA results revealed that patients with AR and CAR had significantly increased levels of serum anti-hsp60 antibodies compared to control healthy subjects (p < 0.0001). However, circulating hsp60 protein was not significantly elevated in sera of either patient group. Conclusions Different anti-retinal antibodies frequently co-exist in a single patient, creating antibody-arrays related to the syndrome. Hsps and CRMP-2 are newly identified autoantigens in AR. A frequent co-association of anti-hsp antibodies with other anti-retinal AAbs may augment pathogenic processes, leading to retinal degeneration.
Collapse
|
14
|
Tat-Collapsin Response Mediator Protein 2 (CRMP2) Increases the Survival of Neurons After NMDA Excitotoxity by Reducing the Cleavage of CRMP2. Neurochem Res 2013; 38:2095-104. [DOI: 10.1007/s11064-013-1118-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 07/22/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
|
15
|
|
16
|
Lu J, Katano T, Nishimura W, Fujiwara S, Miyazaki S, Okasaki I, Aritake K, Urade Y, Minami T, Ito S. Proteomic analysis of cerebrospinal fluid before and after intrathecal injection of steroid into patients with postherpetic pain. Proteomics 2012; 12:3105-12. [PMID: 22936653 DOI: 10.1002/pmic.201200125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 07/21/2012] [Accepted: 07/27/2012] [Indexed: 11/11/2022]
Abstract
Postherpetic neuralgia (PHN) is the most frequent complication of herpes zoster, and the risk of it increases with age. By comparing proteomes of the cerebrospinal fluid (CSF) before and after the treatment, it may be possible to identify proteins that play a role in PHN and to predict responses to various treatments. To address this issue, we enrolled eight outpatients with PHN over 55 years of age and treated them with intrathecal methylprednisolone and lidocaine four times every week, collecting CSF samples before the treatment at each visit. We used 2D DIGE to investigate differentially expressed proteins in the CSF before and after repetitive treatments individually. Of 145 differentially expressed spots, the levels of nine proteins were decreased by the treatment including lipocalin-type prostaglandin D synthase (L-PGDS), and five were increased by it. The time course of alterations in the L-PGDS concentration in the CSF of each patient, detected by a pairwise and sandwich ELISA by SPR constructed here was well correlated with that by 1DE Western blots with anti-L-PGDS antibody, but was not related with that of the pain relief. The present study demonstrates that the real-time ELISA was precise and sensitive enough to measure L-PGDS in the CSF and that the steroid treatment decreased the L-PGDS concentration in CSF.
Collapse
Affiliation(s)
- Jingshan Lu
- Department of Medical Chemistry, Kansai Medical University, Moriguchi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Identification of differentially expressed proteins in the spinal cord of neuropathic pain models with PKCgamma silence by proteomic analysis. Brain Res 2012; 1440:34-46. [PMID: 22284620 DOI: 10.1016/j.brainres.2011.12.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 12/29/2022]
Abstract
In order to elucidate the mechanisms that PKCγ regulates neuropathic pain (NP), and detect proteins that are associated with the function of PKCγ in NP, we exploited a chronic constriction injury (CCI)-induced neuropathic pain rat (CCI-NP rat) model in which PKCγ knockdown in the spinal cord was successfully carried out with stable RNA interference (RNAi). The spinal cords (L4-L5) were surgically obtained from CCI-NP rats with and without PKCγ knockdown, for comparative proteomic analysis. The total proteins from the spinal cords (L4-L5) were extracted and were separated with two-dimensional gel electrophoresis (2DGE). 2D gel images were analyzed with PDQuest software. Nineteen differential gel-spots were identified with spot-volume increased and 17 spots with spot-volume decreased. Among them, eighteen differentially expressed proteins (DEPs) were identified with matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) between CCI-NP rats with and without PKCγ knockout. Those DEPs are involved in transmission and modulation of noxious information; cellular homeostasis and metabolism; antioxidant proteins, heat shock proteins and chaperones; membrane receptor trafficking; and cytoskeleton. Three DEPs (SNAP-25, TERA and AR) were validated with Western blot analysis, and confirmed the DEP data. Further study showed that AR-selective inhibitor epalrestat totally turned over the upregulated expression of AR in CCI-NP rats. Those DEP data are extensively associated with the function of PKCγ that regulates NP, and would contribute to the clarification of the mechanisms of PKCγ in NP.
Collapse
|
18
|
Vasileiou I, Giaginis C, Klonaris C, Theocharis S. Insight into pain-inducing and -related gene expression: a challenge for development of novel targeted therapeutic approaches. Fundam Clin Pharmacol 2011; 25:48-62. [PMID: 20070377 DOI: 10.1111/j.1472-8206.2009.00809.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The multidimensional issue of pain in relation to the need for efficient treatment has been the focus of extensive research. Gaining insight into the molecular mechanisms of pain and identifying specific genes and proteins as possible drug targets is strongly required considering that not all patients can be adequately treated with the currently available drugs. This up-to-date review aimed to summarize the findings of recent proteomic and genomic approaches in different types of pain to comment on their potential role in pain signaling pathways and to evaluate their possible contribution to the development of novel and possibly more targeted pain therapeutic strategies. Although pain treatment strategies have been greatly improved during the past century, no ideal targeted pain treatment has been developed. The development of modern and accurate platforms of technology for the study of genetics and physiology of pain has led to the identification of an increased number of altered genes and proteins that are involved in pain-related pathways. Through genomics and proteomics, pain-related genes and proteins, respectively, may be identified as diagnostic markers or drug targets improving therapeutic strategies. Furthermore, such molecular mediators of pain may reveal novel strategies for individualized pain management. The utilization of unique experimental approaches (through specific animal models) as well as powered genetic association studies conducted on appropriate populations is more than essential.
Collapse
Affiliation(s)
- Ioanna Vasileiou
- Department of Forensic Medicine & Toxicology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | | | | | | |
Collapse
|
19
|
Shinkai-Ouchi F, Yamakawa Y, Hara H, Tobiume M, Nishijima M, Hanada K, Hagiwara K. Identification and structural analysis of C-terminally truncated collapsin response mediator protein-2 in a murine model of prion diseases. Proteome Sci 2010; 8:53. [PMID: 20961402 PMCID: PMC2978134 DOI: 10.1186/1477-5956-8-53] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 10/20/2010] [Indexed: 12/16/2022] Open
Abstract
Background Prion diseases are fatal neurodegenerative disorders that accompany an accumulation of the disease-associated form(s) of prion protein (PrPSc) in the central nervous system. The neuropathological changes in the brain begin with focal deposits of PrPSc, followed by pathomorphological abnormalities of axon terminal degeneration, synaptic loss, atrophy of dendritic trees, and eventual neuronal cell death in the lesions. However, the underlying molecular basis for these neuropathogenic abnormalities is not fully understood. Results In a proteomic analysis of soluble proteins in the brains of mice challenged intracerebrally with scrapie prion (Obihiro I strain), we found that the amount of the full-length form of collapsin response mediator protein-2 (CRMP-2; 61 kDa) decreased in the late stages of the disease, while the amount of its truncated form (56 kDa) increased to comparable levels observed for the full-length form. Detailed analysis by liquid chromatography-electrospray ionization-tandem mass spectrometry showed that the 56-kDa form (named CRMP-2-ΔC) lacked the sequence from serine518 to the C-terminus, including the C-terminal phosphorylation sites important for the regulation of axonal growth and axon-dendrite specification in developing neurons. The invariable size of the mRNA transcript in Northern blot analysis suggested that the truncation was due to post-translational proteolysis. By overexpression of CRMP-2-ΔC in primary cultured neurons, we observed the augmentation of the development of neurite branch tips to the same levels as for CRMP-2T514A/T555A, a non-phosphorylated mimic of the full-length protein. This suggests that the increased level of CRMP-2-ΔC in the brain modulates the integrity of neurons, and may be involved in the pathogenesis of the neuronal abnormalities observed in the late stages of the disease. Conclusions We identified the presence of CRMP-2-ΔC in the brain of a murine model of prion disease. Of note, C-terminal truncations of CRMP-2 have been recently observed in models for neurodegenerative disorders such as ischemia, traumatic brain injury, and Wallerian degeneration. While the structural identity of CRMP-2-ΔC in those models remains unknown, the present study should provide clues to the molecular pathology of degenerating neurons in prion diseases in connection with other neurodegenerative disorders.
Collapse
Affiliation(s)
- Fumiko Shinkai-Ouchi
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Sun F, Cavalli V. Neuroproteomics approaches to decipher neuronal regeneration and degeneration. Mol Cell Proteomics 2010; 9:963-75. [PMID: 20019051 PMCID: PMC2871427 DOI: 10.1074/mcp.r900003-mcp200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/14/2009] [Indexed: 01/02/2023] Open
Abstract
Given the complexity of brain and nerve tissues, systematic approaches are essential to understand normal physiological conditions and functional alterations in neurological diseases. Mass spectrometry-based proteomics is increasingly used in neurosciences to determine both basic and clinical differential protein expression, protein-protein interactions, and post-translational modifications. Proteomics approaches are especially useful to understand the mechanisms of nerve regeneration and degeneration because changes in axons following injury or in disease states often occur without the contribution of transcriptional events in the cell body. Indeed, the current understanding of axonal function in health and disease emphasizes the role of proteolysis, local axonal protein synthesis, and a broad range of post-translational modifications. Deciphering how axons regenerate and degenerate has thus become a postgenomics problem, which depends in part on proteomics approaches. This review focuses on recent proteomics approaches designed to uncover the mechanisms and molecules involved in neuronal regeneration and degeneration. It emerges that the principal degenerative mechanisms converge to oxidative stress, dysfunctions of axonal transport, mitochondria, chaperones, and the ubiquitin-proteasome systems. The mechanisms regulating nerve regeneration also impinge on axonal transport, cytoskeleton, and chaperones in addition to changes in signaling pathways. We also discuss the major challenges to proteomics work in the nervous system given the complex organization of the brain and nerve tissue at the anatomical, cellular, and subcellular levels.
Collapse
Affiliation(s)
- Faneng Sun
- From the Department of Anatomy and Neurobiology, Washington University, St. Louis, Missouri 63110
| | - Valeria Cavalli
- From the Department of Anatomy and Neurobiology, Washington University, St. Louis, Missouri 63110
| |
Collapse
|
21
|
Long form collapsin response mediator protein-1 (LCRMP-1) expression is associated with clinical outcome and lymph node metastasis in non-small cell lung cancer patients. Lung Cancer 2010; 67:93-100. [PMID: 19362386 DOI: 10.1016/j.lungcan.2009.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 02/23/2009] [Accepted: 03/06/2009] [Indexed: 11/22/2022]
Abstract
Collapsin response mediator protein (CRMP) family proteins are cytosolic phosphoproteins involved in semaphorin 3A-mediated neuronal cell growth cone collapse and cancer invasion. We identified a novel human isoform of CRMP family proteins named long form CRMP-1 (LCRMP-1), which was different from the known invasion suppressor, CRMP-1, in its molecular weight and the N-terminal exon-1. This study was aimed to elucidate the clinical significance of LCRMP-1 in non-small cell lung cancer (NSCLC) patients. Full-length human LCRMP-1 was cloned from lung adenocarcinoma based on the Expressed Sequence Tags (EST) database. We generated LCRMP-1 specific antibody and subsequent in vitro and in vivo invasion assays showed positive correlations between LCRMP-1 expression and lung cancer cell invasiveness. We further demonstrated that high LCRMP-1 mRNA expressions were associated with poor overall and disease-free survivals (P=0.004 and 0.006, respectively, log-rank test) in 72 NSCLC patients. The results were confirmed in an independent cohort of 54 NSCLC patients by immunohistochemistry (P=0.032, log-rank test). The metastatic lymph nodes showed higher LCRMP-1 expressions as compared with the paired primary lung tumors (P=0.012, McNemar's test). In conclusion, LCRMP-1 was a cancer invasion enhancer that could be a novel prognostic biomarker in NSCLC.
Collapse
|
22
|
Michaelevski I, Medzihradszky KF, Lynn A, Burlingame AL, Fainzilber M. Axonal transport proteomics reveals mobilization of translation machinery to the lesion site in injured sciatic nerve. Mol Cell Proteomics 2009; 9:976-87. [PMID: 19955087 DOI: 10.1074/mcp.m900369-mcp200] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Investigations of the molecular mechanisms underlying responses to nerve injury have highlighted the importance of axonal transport systems. To obtain a comprehensive view of the protein ensembles associated with axonal transport in injured axons, we analyzed the protein compositions of axoplasm concentrated at ligatures following crush injury of rat sciatic nerve. LC-MS/MS analyses of iTRAQ-labeled peptides from axoplasm distal and proximal to the ligation sites revealed protein ensembles transported in both anterograde and retrograde directions. Variability of replicates did not allow straightforward assignment of proteins to functional transport categories; hence, we performed principal component analysis and factor analysis with subsequent clustering to determine the most prominent injury-related transported proteins. This strategy circumvented experimental variability and allowed the extraction of biologically meaningful information from the quantitative neuroproteomics experiments. 299 proteins were highlighted by principal component analysis and factor analysis, 145 of which correlate with retrograde and 154 of which correlate with anterograde transport after injury. The analyses reveal extensive changes in both anterograde and retrograde transport proteomes in injured peripheral axons and emphasize the importance of RNA binding and translational machineries in the axonal response to injury.
Collapse
Affiliation(s)
- Izhak Michaelevski
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | | | | | | | | |
Collapse
|
23
|
Lu J, Katano T, Okuda-Ashitaka E, Oishi Y, Urade Y, Ito S. Involvement of S-nitrosylation of actin in inhibition of neurotransmitter release by nitric oxide. Mol Pain 2009; 5:58. [PMID: 19785772 PMCID: PMC2762960 DOI: 10.1186/1744-8069-5-58] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 09/29/2009] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The role of the diffusible messenger nitric oxide (NO) in the regulation of pain transmission is still a debate of matter, pro-nociceptive and/or anti-nociceptive. S-Nitrosylation, the reversible post-translational modification of selective cysteine residues in proteins, has emerged as an important mechanism by which NO acts as a signaling molecule. The occurrence of S-nitrosylation in the spinal cord and its targets that may modulate pain transmission remain unclarified. The "biotin-switch" method and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were employed for identifying S-nitrosylated proteins. RESULTS Here we show that actin was a major protein S-nitrosylated in the spinal cord by the NO donor, S-nitroso-N-acetyl-DL-penicillamine (SNAP). Interestingly, actin was S-nitrosylated, more in the S2 fraction than in the P2 fraction of the spinal homogenate. Treatment of PC12 cells with SNAP caused rapid S-nitrosylation of actin and inhibited dopamine release from the cells. Just like cytochalasin B, which depolymerizes actin, SNAP decreased the amount of filamentous actin cytoskeleton just beneath the membrane. The inhibition of dopamine release was not attenuated by inhibitors of soluble guanylyl cyclase and cGMP-dependent protein kinase. CONCLUSION The present study demonstrates that actin is a major S-nitrosylated protein in the spinal cord and suggests that NO directly regulates neurotransmitter release by S-nitrosylation in addition to the well-known phosphorylation by cGMP-dependent protein kinase.
Collapse
Affiliation(s)
- Jingshan Lu
- Department of Medical Chemistry, Kansai Medical University, Moriguchi, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Hamza M, Dionne RA. 2020 Foresight: Envisioning Therapeutic Innovations for Pain. DRUG DISCOVERY TODAY. THERAPEUTIC STRATEGIES 2009; 6:113-119. [PMID: 21712969 PMCID: PMC3123531 DOI: 10.1016/j.ddstr.2010.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- May Hamza
- National Institute of Nursing Research, NIH Bethesda, MD
- Dept. of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
25
|
Katano T, Furue H, Okuda-Ashitaka E, Tagaya M, Watanabe M, Yoshimura M, Ito S. N-ethylmaleimide-sensitive fusion protein (NSF) is involved in central sensitization in the spinal cord through GluR2 subunit composition switch after inflammation. Eur J Neurosci 2008; 27:3161-70. [DOI: 10.1111/j.1460-9568.2008.06293.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
Rogemond V, Auger C, Giraudon P, Becchi M, Auvergnon N, Belin MF, Honnorat J, Moradi-Améli M. Processing and nuclear localization of CRMP2 during brain development induce neurite outgrowth inhibition. J Biol Chem 2008; 283:14751-61. [PMID: 18332147 DOI: 10.1074/jbc.m708480200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collapsin response mediator proteins (CRMPs) are believed to play a crucial role in neuronal differentiation and axonal outgrowth. Among them, CRMP2 mediates axonal guidance by collapsing growth cones during development. This activity is correlated with the reorganization of cytoskeletal proteins. CRMP2 is implicated in the regulation of several intracellular signaling pathways. Two subtypes, A and B, and multiple cytosolic isoforms of CRMP2B with apparent masses between 62 and 66 kDa have previously been reported. Here, we show a new short isoform of 58 kDa, expressed during brain development, derived from C-terminal processing of the CRMP2B subtype. Although full-length CRMP2 is restricted to the cytoplasm, using transfection experiments, we demonstrate that a part of the short isoform is found in the nucleus. Interestingly, at the tissue level, this short CRMP2 is also found in a nuclear fraction of brain extract. By mutational analysis, we demonstrate, for the first time, that nuclear translocation occurs via nuclear localization signal (NLS) within residues Arg(471)-Lys(472) in CRMP2 sequence. The NLS may be unmasked after C-terminal processing; thereby, this motif may be surface-exposed. This short CRMP2 induces neurite outgrowth inhibition in neuroblastoma cells and suppressed axonal growth in cultured cortical neurons, whereas full-length CRMP2 promotes neurite elongation. The NLS-mutated short isoform, restricted to the cytoplasm, abrogates both neurite outgrowth and axon growth inhibition, indicating that short nuclear CRMP2 acts as a dominant signal. Therefore, post-transcriptional processing of CRMP2 together with its nuclear localization may be an important key in the regulation of neurite outgrowth in brain development.
Collapse
|
27
|
Touma E, Kato S, Fukui K, Koike T. Calpain-mediated cleavage of collapsin response mediator protein(CRMP)-2 during neurite degeneration in mice. Eur J Neurosci 2007; 26:3368-81. [PMID: 18052987 DOI: 10.1111/j.1460-9568.2007.05943.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Axon or dendrite degeneration involves activation of the ubiquitin-proteasome system, failure to maintain neuritic ATP levels, microtubule fragmentation and a mitochondrial permeability transition that occur independently of the somal death programs. To gain further insight into the neurite degeneration mechanims we have compared two-dimensional gel electrophoresis patterns of neurite proteins from suprior cervical ganglia during degeneration caused by nerve growth factor (NGF) deprivation. We show here that collapsin response mediator protein (CRMP)-2 and CMRP-4 protein patterns were altered during beading formation, an early hallmark of neurite degeneration, prior to neurite fragmentation, the final stage of degeneration. Western blotting using a monoclonal antibody against CRMP-2 shows that the native form (64 kDa) was cleaved to generate a truncated form (58 kDa). No cleavage of CRMP-2 or -4 occurred in NGF-deprived neurites from Wld(s) (Wallerian degeneration slow) mutant mice in which neurite degeneration is markedly delayed. Using different protease inhibitors, purified calpain 1 protein and calpain 1-specific siRNA, we have demonstrated that CRMP-2 is a substrate for calpain 1. Indeed, caplain activity was activated at an early phase of neuronal degeneration in cerebellar granule neurons, and down-regulation of caplain 1 expression suppressed CRMP-2 cleavage. Furthermore, this cleavage occurred after vinblastine treatment or in vitro Wallerian degeneration, suggesting that it represents a common step in the process of dying neurites. CRMP-2 and -4 play a pivotal role in axonal growth and transport, and the C-terminus region of CRMP-2 is essential for its binding to kinesin-1. Hence, this cleavage will render them dysfunctional and subject to autophagic processing associated with beading formation, as evidenced by the finding that the truncated form was localized in the beadings.
Collapse
Affiliation(s)
- Ekatherina Touma
- Molecular Neurobiology Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
28
|
Stenmark P, Ogg D, Flodin S, Flores A, Kotenyova T, Nyman T, Nordlund P, Kursula P. The structure of human collapsin response mediator protein 2, a regulator of axonal growth. J Neurochem 2006; 101:906-17. [PMID: 17250651 DOI: 10.1111/j.1471-4159.2006.04401.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Axonal growth cone guidance is a central process in nervous system development and repair. Collapsin response mediator protein 2 (CRMP-2) is a neurite extension-promoting neuronal cytosolic molecule involved in the signalling of growth inhibitory cues from external stimuli, such as semaphorin 3A and the myelin-associated glycoprotein. We have determined the crystal structure of human tetrameric CRMP-2, which is structurally related to the dihydropyriminidases; however, the active site is not conserved. The wealth of earlier functional mapping data for CRMP-2 are discussed in light of the three-dimensional structure of the protein. The differences in oligomerisation interfaces between CRMP-1 and CRMP-2 are used to model CRMP-1/2 heterotetramers.
Collapse
Affiliation(s)
- Pål Stenmark
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|