1
|
Saez Lancellotti TE, Avena MV, Funes AK, Bernal-López MR, Gómez-Huelgas R, Fornes MW. Exploring the impact of lipid stress on sperm cytoskeleton: insights and prospects. Nat Rev Urol 2025; 22:294-312. [PMID: 39528754 DOI: 10.1038/s41585-024-00952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The decline in male fertility correlates with the global rise in obesity and dyslipidaemia, representing significant public health challenges. High-fat diets induce metabolic alterations, including hypercholesterolaemia, hepatic steatosis and atherosclerosis, with detrimental effects on testicular function. Testicular tissue, critically dependent on lipids for steroidogenesis, is particularly vulnerable to these metabolic disruptions. Excessive lipid accumulation within the testes, including cholesterol, triglycerides and specific fatty acids, disrupts essential sperm production processes such as membrane formation, maturation, energy metabolism and cell signalling. This leads to apoptosis, impaired spermatogenesis, and abnormal sperm morphology and function, ultimately compromising male fertility. During spermiogenesis, round spermatids undergo extensive reorganization, including the formation of the acrosome, manchette and specialized filamentous structures, which are essential for defining the final sperm cell shape. In this Perspective, we examine the impact of high-fat diets on the cytoskeleton of spermatogenic cells and its consequences to identify the mechanisms underlying male infertility associated with dyslipidaemia. Understanding these processes may facilitate the development of therapeutic strategies, such as dietary interventions or natural product supplementation, that aim to address infertility in men with obesity and hypercholesterolaemia. The investigation of cytoskeleton response to lipid stress extends beyond male reproduction, offering insights with broader implications.
Collapse
Affiliation(s)
- Tania E Saez Lancellotti
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina.
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain.
| | - María V Avena
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Abi K Funes
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María-Rosa Bernal-López
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo Gómez-Huelgas
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel W Fornes
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
2
|
Sharma N, Baek K, Shimokawa N, Takagi M. Effect of temperature on raft-dependent endocytic cluster formation during activation of Jurkat T cells by concanavalin A. J Biosci Bioeng 2018; 127:479-485. [PMID: 30355461 DOI: 10.1016/j.jbiosc.2018.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 01/28/2023]
Abstract
Temperature plays an important role in the immune response. Acclimatization occurs when there are changes in ambient temperature over a long period. In this study, we used the human leukemic Jurkat T cell line to study the effect of temperature on the immune system using concanavalin A (ConA), a plant-derived immunostimulant, as a trigger for T-cell activation. Previously, we have reported endocytic intracellular cluster formation during T-cell activation by ConA with the aid of rafts and polymerization of the cytoskeleton (actin and microtubules). Here, we investigated the effect of temperature on cluster formation (with the aid of three-dimensional images of the cells) and on the stability of rafts, actin, and microtubules. When the temperature was changed between 23°C and 37°C (physiological temperature), clusters could be observed throughout this temperature range. Raft structure was stabilized at lower temperatures but destabilized at higher temperatures. Actin was stable when the temperature was higher than 27°C. When actin was depolymerized, clustering was not observed at 37°C but could be observed at 23°C. There were no changes in microtubules within this temperature range. Thus, raft clustering may be associated with raft stability at lower temperatures (<27°C) and with actin at higher temperatures (≥27°C). Hence, we provided insight into the associations between temperature, rafts, actin, and microtubules in the immune response.
Collapse
Affiliation(s)
- Neha Sharma
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - KeangOK Baek
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| |
Collapse
|
3
|
The Actin Cytoskeleton Is Involved in Glial Cell Line-Derived Neurotrophic Factor (GDNF)-Induced Ret Translocation into Lipid Rafts in Dopaminergic Neuronal Cells. Int J Mol Sci 2017; 18:ijms18091922. [PMID: 28880247 PMCID: PMC5618571 DOI: 10.3390/ijms18091922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 01/04/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF), a potential therapeutic factor for Parkinson’s disease (PD), exerts its biological effects through the Ret receptor tyrosine kinase. The redistribution of Ret into lipid rafts substantially influences Ret signaling, but the mechanisms underlying Ret translocation remain unclear. The purpose of our study was to further explore the signaling mechanisms of GDNF and to determine whether the actin cytoskeleton is involved in the GDNF-induced Ret translocation into lipid rafts. In MN9D dopaminergic neuronal cells, we used density gradient centrifugation and immunofluorescence confocal microscopy to separate and visualize lipid rafts, co-immunoprecipitation to analyze protein-protein interactions, and latrunculin B (Lat B) and jasplakinolide (Jas) to disrupt and enhance the polymerization of the actin cytoskeleton, respectively. The results showed that Ret translocated into lipid rafts and coimmunoprecipitated with actin in response to GDNF treatment. After Lat B or Jas treatment, the Ret–F-actin association induced by GDNF was impaired or enhanced respectively and then the levels of Ret translocated into lipid rafts were correspondingly inhibited or promoted. These data indicate that actin polymerization and cytoskeletal remodeling are integral to GDNF-induced cell signaling in dopaminergic cells and define a new role of the actin cytoskeleton in promoting Ret redistribution into lipid rafts.
Collapse
|
4
|
Simón L, Funes AK, Yapur MA, Cabrillana ME, Monclus MA, Boarelli PV, Vincenti AE, Saez Lancellotti TE, Fornés MW. Manchette-acrosome disorders during spermiogenesis and low efficiency of seminiferous tubules in hypercholesterolemic rabbit model. PLoS One 2017; 12:e0172994. [PMID: 28241054 PMCID: PMC5328279 DOI: 10.1371/journal.pone.0172994] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/13/2017] [Indexed: 12/31/2022] Open
Abstract
Hypercholesterolemia is a marker for several adult chronic diseases. Recently we demonstrated that sub/infertility is also associated to Hypercholesterolemia in rabbits. Seminal alterations included: abnormal sperm morphology, decreased sperm number and declined percentage of motile sperm, among others. In this work, our objective was to evaluate the effects of hypercholesterolemia on testicular efficiency and spermiogenesis, as the latter are directly related to sperm number and morphology respectively. Tubular efficiency was determined by comparing total number of spermatogenic cells with each cell type within the proliferation/differentiation compartments. We found lower testicular efficiency related to both a decrease in spermatogonial cells and an increase in germ cell apoptosis in hypercholesterolemic rabbits. On the other hand, spermiogenesis-the last step of spermatogenesis involved in sperm shaping-was detaily analyzed, particularly the acrosome-nucleus-manchette complex. The manchette is a microtubular-based temporary structure responsible in sperm cell elongation. We analyzed the contribution of actin filaments and raft microdomains in the arrangement of the manchette. Under fluorescence microscopy, spermatocyte to sperm cell development was followed in cells isolated from V to VIII tubular stages. In cells from hypercholesterolemic rabbits, abnormal development of acrosome, nucleus and inaccurate tail implantation were associated with actin-alpha-tubulin-GM1 sphingolipid altered distribution. Morphological alterations were also observed at electron microscopy. We demonstrated for the first time that GM1-enriched microdomains together with actin filaments and microtubules are involved in allowing the correct anchoring of the manchette complex. In conclusion, cholesterol enriched diets promote male fertility alterations by affecting critical steps in sperm development: spermatogenesis and spermiogenesis. It was also demonstrated that hypercholesterolemic rabbit model is a useful tool to study serum cholesterol increment linked to sub/infertility.
Collapse
Affiliation(s)
- Layla Simón
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). Instituto y Área de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo y Centro Científico Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de investigaciones. Facultad de Ciencias Médicas. Universidad del Aconcagua. Mendoza, Argentina
| | - Abi K. Funes
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). Instituto y Área de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo y Centro Científico Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Martín A. Yapur
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). Instituto y Área de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo y Centro Científico Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - María E. Cabrillana
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). Instituto y Área de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo y Centro Científico Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de investigaciones. Facultad de Ciencias Médicas. Universidad del Aconcagua. Mendoza, Argentina
| | - María A. Monclus
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). Instituto y Área de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo y Centro Científico Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de investigaciones. Facultad de Ciencias Médicas. Universidad del Aconcagua. Mendoza, Argentina
| | - Paola V. Boarelli
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). Instituto y Área de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo y Centro Científico Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de investigaciones. Facultad de Ciencias Médicas. Universidad del Aconcagua. Mendoza, Argentina
| | - Amanda E. Vincenti
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). Instituto y Área de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo y Centro Científico Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Tania E. Saez Lancellotti
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). Instituto y Área de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo y Centro Científico Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de investigaciones. Facultad de Ciencias Médicas. Universidad del Aconcagua. Mendoza, Argentina
| | - Miguel W. Fornés
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). Instituto y Área de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo y Centro Científico Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
- Instituto de investigaciones. Facultad de Ciencias Médicas. Universidad del Aconcagua. Mendoza, Argentina
- * E-mail:
| |
Collapse
|
5
|
Subedi KP, Ong HL, Ambudkar IS. Assembly of ER-PM Junctions: A Critical Determinant in the Regulation of SOCE and TRPC1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:253-276. [PMID: 29594865 DOI: 10.1007/978-3-319-55858-5_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Store-operated calcium entry (SOCE), a unique plasma membrane Ca2+ entry mechanism, is activated when ER-[Ca2+] is decreased. SOCE is mediated via the primary channel, Orai1, as well as others such as TRPC1. STIM1 and STIM2 are ER-Ca2+ sensor proteins that regulate Orai1 and TRPC1. SOCE requires assembly of STIM proteins with the plasma membrane channels which occurs within distinct regions in the cell that have been termed as endoplasmic reticulum (ER)-plasma membrane (PM) junctions. The PM and ER are in close proximity to each other within this region, which allows STIM1 in the ER to interact with and activate either Orai1 or TRPC1 in the plasma membrane. Activation and regulation of SOCE involves dynamic assembly of various components that are involved in mediating Ca2+ entry as well as those that determine the formation and stabilization of the junctions. These components include proteins in the cytosol, ER and PM, as well as lipids in the PM. Recent studies have also suggested that SOCE and its components are compartmentalized within ER-PM junctions and that this process might require remodeling of the plasma membrane lipids and reorganization of structural and scaffolding proteins. Such compartmentalization leads to the generation of spatially- and temporally-controlled Ca2+signals that are critical for regulating many downstream cellular functions.
Collapse
Affiliation(s)
- Krishna P Subedi
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - Hwei Ling Ong
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - Indu S Ambudkar
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA.
| |
Collapse
|
6
|
Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:532-45. [PMID: 23899502 DOI: 10.1016/j.bbamem.2013.07.018] [Citation(s) in RCA: 396] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/14/2013] [Accepted: 07/16/2013] [Indexed: 12/14/2022]
Abstract
The plasma membrane in eukaryotic cells contains microdomains that are enriched in certain glycosphingolipids, gangliosides, and sterols (such as cholesterol) to form membrane/lipid rafts (MLR). These regions exist as caveolae, morphologically observable flask-like invaginations, or as a less easily detectable planar form. MLR are scaffolds for many molecular entities, including signaling receptors and ion channels that communicate extracellular stimuli to the intracellular milieu. Much evidence indicates that this organization and/or the clustering of MLR into more active signaling platforms depends upon interactions with and dynamic rearrangement of the cytoskeleton. Several cytoskeletal components and binding partners, as well as enzymes that regulate the cytoskeleton, localize to MLR and help regulate lateral diffusion of membrane proteins and lipids in response to extracellular events (e.g., receptor activation, shear stress, electrical conductance, and nutrient demand). MLR regulate cellular polarity, adherence to the extracellular matrix, signaling events (including ones that affect growth and migration), and are sites of cellular entry of certain pathogens, toxins and nanoparticles. The dynamic interaction between MLR and the underlying cytoskeleton thus regulates many facets of the function of eukaryotic cells and their adaptation to changing environments. Here, we review general features of MLR and caveolae and their role in several aspects of cellular function, including polarity of endothelial and epithelial cells, cell migration, mechanotransduction, lymphocyte activation, neuronal growth and signaling, and a variety of disease settings. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
|
7
|
Chillà A, Magherini F, Margheri F, Laurenzana A, Gamberi T, Bini L, Bianchi L, Danza G, Mazzanti B, Serratì S, Modesti A, Del Rosso M, Fibbi G. Proteomic identification of VEGF-dependent protein enrichment to membrane caveolar-raft microdomains in endothelial progenitor cells. Mol Cell Proteomics 2013; 12:1926-38. [PMID: 23572564 DOI: 10.1074/mcp.m112.024638] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Endothelial cell caveolar-rafts are considered functional platforms that recruit several pro-angiogenic molecules to realize an efficient angiogenic program. Here we studied the differential caveolar-raft protein composition of endothelial colony-forming cells following stimulation with VEGF, which localizes in caveolae on interaction with its type-2 receptor. Endothelial colony-forming cells are a cell population identified in human umbilical blood that show all the properties of an endothelial progenitor cell and a high proliferative rate. Two-dimensional gel electrophoresis analysis was coupled with mass spectrometry to identify candidate proteins. The twenty-eight differentially expressed protein spots were grouped according to their function using Gene Ontology classification. In particular, functional categories relative to cell death inhibition and hydrogen peroxide metabolic processes resulted enriched. In these categories, Peroxiredoxin-2 and 6, that control hydrogen peroxide metabolic processes, are the main enriched molecules together with the anti-apoptotic 78 kDa glucose regulated protein. Some of the proteins we identified had never before identified as caveolar-raft components. Other identified proteins include calpain small subunit-1, known to mediates angiogenic response to VEGF, gelsolin, which regulates stress fiber assembly, and annexin A3, an angiogenic mediator that induces VEGF production. We validated the functional activity of the above proteins, showing that the siRNA silencing of these resulted in the inhibition of capillary morphogenesis. Overall, our data show that VEGF stimulation triggers the caveolar-raft recruitment of proteins that warrant a physiological amount of reactive oxygen species to maintain a proper angiogenic function of endothelial colony-forming cells and preserve the integrity of the actin cytoskeleton.
Collapse
Affiliation(s)
- Anastasia Chillà
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tassin A, Leroy B, Laoudj-Chenivesse D, Wauters A, Vanderplanck C, Le Bihan MC, Coppée F, Wattiez R, Belayew A. FSHD myotubes with different phenotypes exhibit distinct proteomes. PLoS One 2012; 7:e51865. [PMID: 23272181 PMCID: PMC3525578 DOI: 10.1371/journal.pone.0051865] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 11/08/2012] [Indexed: 12/12/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a progressive muscle disorder linked to a contraction of the D4Z4 repeat array in the 4q35 subtelomeric region. This deletion induces epigenetic modifications that affect the expression of several genes located in the vicinity. In each D4Z4 element, we identified the double homeobox 4 (DUX4) gene. DUX4 expresses a transcription factor that plays a major role in the development of FSHD through the initiation of a large gene dysregulation cascade that causes myogenic differentiation defects, atrophy and reduced response to oxidative stress. Because miRNAs variably affect mRNA expression, proteomic approaches are required to define the dysregulated pathways in FSHD. In this study, we optimized a differential isotope protein labeling (ICPL) method combined with shotgun proteomic analysis using a gel-free system (2DLC-MS/MS) to study FSHD myotubes. Primary CD56(+) FSHD myoblasts were found to fuse into myotubes presenting various proportions of an atrophic or a disorganized phenotype. To better understand the FSHD myogenic defect, our improved proteomic procedure was used to compare predominantly atrophic or disorganized myotubes to the same matching healthy control. FSHD atrophic myotubes presented decreased structural and contractile muscle components. This phenotype suggests the occurrence of atrophy-associated proteolysis that likely results from the DUX4-mediated gene dysregulation cascade. The skeletal muscle myosin isoforms were decreased while non-muscle myosin complexes were more abundant. In FSHD disorganized myotubes, myosin isoforms were not reduced, and increased proteins were mostly involved in microtubule network organization and myofibrillar remodeling. A common feature of both FSHD myotube phenotypes was the disturbance of several caveolar proteins, such as PTRF and MURC. Taken together, our data suggest changes in trafficking and in the membrane microdomains of FSHD myotubes. Finally, the adjustment of a nuclear fractionation compatible with mass spectrometry allowed us to highlight alterations of proteins involved in mRNA processing and stability.
Collapse
Affiliation(s)
- Alexandra Tassin
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Baptiste Leroy
- Department of Proteomics and Microbiology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Dalila Laoudj-Chenivesse
- INSERM U1046 Physiologie et Médecine expérimentale Cœur et Muscle, CHU A. de Villeneuve, Montpellier, France
| | - Armelle Wauters
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Céline Vanderplanck
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Marie-Catherine Le Bihan
- University Pierre et Marie Curie- Paris 6, UM 76, INSERM U974, CNRS UMR 7215, Institut de Myologie, Paris, France
| | - Frédérique Coppée
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Alexandra Belayew
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
- * E-mail:
| |
Collapse
|
9
|
Poussard S, Pires-Alves A, Diallo R, Dupuy JW, Dargelos E. A natural antioxidant pine bark extract, Oligopin®, regulates the stress chaperone HSPB1 in human skeletal muscle cells: a proteomics approach. Phytother Res 2012. [PMID: 23192879 DOI: 10.1002/ptr.4895] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gradual loss of muscle mass affecting all the elderly (sarcopenia) is most likely due to a decreased number and/or function of satellite cells. Accumulation of reactive oxygen species (ROS) has been clearly correlated to sarcopenia and could contribute to the impairment of satellite cell function. In this study, we analyzed the protective mechanism of action of a natural pine bark extract (Oligopin®) in human muscle satellite cells exposed to oxidative stress (H2O2). This polyphenol belongs to the flavonoid family and was able to abolish the H2 O2-induced apoptotic cell death. A large-scale proteomic strategy allowed us to identify several proteins that may function as early regulators of ROS-mediated events in muscle cells. Interestingly, we identified the stress chaperone heat shock protein beta-1, a main protector of muscle necrosis, as a target of Oligopin® and showed that this polyphenol was able to modulate its stress induced phosphorylation.
Collapse
Affiliation(s)
- Sylvie Poussard
- Univ. Bordeaux, CNRS, CBMN, UMR 5248, F-33600, Pessac, France
| | | | | | | | | |
Collapse
|
10
|
Brulé C, Dargelos E, Diallo R, Listrat A, Béchet D, Cottin P, Poussard S. Proteomic study of calpain interacting proteins during skeletal muscle aging. Biochimie 2010; 92:1923-33. [DOI: 10.1016/j.biochi.2010.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 09/03/2010] [Indexed: 01/08/2023]
|
11
|
Alakhova DY, Rapoport NY, Batrakova EV, Timoshin AA, Li S, Nicholls D, Alakhov VY, Kabanov AV. Differential metabolic responses to pluronic in MDR and non-MDR cells: a novel pathway for chemosensitization of drug resistant cancers. J Control Release 2009; 142:89-100. [PMID: 19815037 DOI: 10.1016/j.jconrel.2009.09.026] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 09/06/2009] [Accepted: 09/29/2009] [Indexed: 12/13/2022]
Abstract
A synthetic amphiphilic block copolymer, Pluronic, is a potent chemosensitizer of multidrug resistant (MDR) cancers that has shown promise in clinical trials. It has unique activities in MDR cells, which include a decrease in ATP pools and inhibition of P-glycoprotein (Pgp) resulting in increased drug accumulation in cells. This work demonstrates that Pluronic rapidly (15min) translocates into MDR cells and co-localizes with the mitochondria. It inhibits complex I and complex IV of the mitochondria respiratory chain, decreases oxygen consumption and causes ATP depletion in MDR cells. These effects are selective and pronounced for MDR cells compared to non-MDR counterparts and demonstrated for both drug-selected and Pgp-transfected cell models. Furthermore, inhibition of Pgp functional activity also abolishes the effects of Pluronic on intracellular ATP levels in MDR cells suggesting that Pgp contributes to increased responsiveness of molecular "targets" of Pluronic in the mitochondria of MDR cells. The Pluronic-caused impairment of respiration in mitochondria of MDR cells is accompanied with a decrease in mitochondria membrane potential, production of ROS, and release of cytochrome c. Altogether these effects eventually enhance drug-induced apoptosis and contribute to potent chemosensitization of MDR tumors by Pluronic.
Collapse
Affiliation(s)
- Daria Yu Alakhova
- Center for Drug Delivery and Nanomedicine and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-5830, United States
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Up-regulation of calcium-dependent proteolysis in human myoblasts under acute oxidative stress. Exp Cell Res 2009; 316:115-25. [PMID: 19651121 DOI: 10.1016/j.yexcr.2009.07.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/24/2009] [Accepted: 07/27/2009] [Indexed: 12/30/2022]
Abstract
The reduced regenerative potential of muscle fibres, most likely due to a decreased number and/or function of satellite cells, could play a significant role in the progression of muscle ageing. Accumulation of reactive oxygen species has been clearly correlated to sarcopenia and could contribute to the impairment of satellite cell function. In this work we have investigated the effect of oxidative stress generated by hydrogen peroxide in cultured human skeletal muscle satellite cells. We specifically focused on the activity and regulation of calpains. These calcium-dependent proteases are known to regulate many transduction pathways including apoptosis and play a critical role in satellite cell function. In our experimental conditions, which induce an increase in calcium concentration, protein oxidation and apoptotic cell death, a significant up-regulation of calpain expression and activity were observed and ATP synthase, a major component of the respiratory chain, was identified as a calpain target. Interestingly we were able to protect the cells from these H(2)O(2)-induced effects and prevent calpain up-regulation with a natural antioxidant extracted from pine bark (Oligopin). These data strongly suggest that oxidative stress could impair satellite cell functionality via calpain-dependent pathways and that an antioxidant such as Oligopin could prevent apoptosis and calpain activation.
Collapse
|
13
|
Yogi A, Callera GE, Tostes R, Touyz RM. Bradykinin regulates calpain and proinflammatory signaling through TRPM7-sensitive pathways in vascular smooth muscle cells. Am J Physiol Regul Integr Comp Physiol 2009; 296:R201-7. [DOI: 10.1152/ajpregu.90602.2008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transient receptor potential melastatin-7 (TRPM7) channels have recently been identified to be regulated by vasoactive agents acting through G protein-coupled receptors in vascular smooth muscle cells (VSMC). However, downstream targets and functional responses remain unclear. We investigated the subcellular localization of TRPM7 in VSMCs and questioned the role of TRPM7 in proinflammatory signaling by bradykinin. VSMCs from Wistar-Kyoto rats were studied. Cell fractionation by sucrose gradient and differential centrifugation demonstrated that in bradykinin-stimulated cells, TRPM7 localized in fractions corresponding to caveolae. Immunofluorescence confocal microscopy revealed that TRPM7 distributes along the cell membrane, that it has a reticular-type intracellular distribution, and that it colocalizes with flotillin-2, a marker of lipid rafts. Bradykinin increased expression of calpain, a TRPM7 target, and stimulated its cytosol/membrane translocation, an effect blocked by 2-APB (TRPM7 inhibitor) and U-73122 (phospholipase C inhibitor), but not by chelerythrine (PKC inhibitor). Expression of proinflammatory mediators VCAM-1 and cyclooxygenase-2 (COX-2) was time-dependently increased by bradykinin. This effect was blocked by Hoe-140 (B2 receptor blocker) and 2-APB. Our data demonstrate that in bradykinin-stimulated VSMCs: 1) TRPM7 is upregulated, 2) TRPM7 associates with cholesterol-rich microdomains, and 3) calpain and proinflammatory mediators VCAM-1 and COX2 are regulated, in part, via TRPM7- and phospholipase C-dependent pathways through B2 receptors. These findings identify a novel signaling pathway for bradykinin, which involves TRPM7. Such phenomena may play a role in bradykinin/B2 receptor-mediated inflammatory responses in vascular cells.
Collapse
|
14
|
Kolchinskaya LI, Тrikash IO, Gumenyuk VP, Malysheva MK. Effect of Lipids on the Activity of Calpain in Subcellular Fractions Obtained from the Rat Brain. NEUROPHYSIOLOGY+ 2009. [DOI: 10.1007/s11062-009-9077-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|