1
|
Zhu J, Wang Y, Cao Y, Shen J, Yu L. Diverse Roles of TgMIC1/4/6 in the Toxoplasma Infection. Front Microbiol 2021; 12:666506. [PMID: 34220751 PMCID: PMC8247436 DOI: 10.3389/fmicb.2021.666506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/25/2021] [Indexed: 11/23/2022] Open
Abstract
Toxoplasma gondii microneme is a specialized secretory organelle that discharges its contents at the apical tip of this apicomplexan parasite in a sequential and regulated manner. Increasing number of studies on microneme proteins (MICs) have shown them as a predominant and important role in host cell attachment, invasion, motility and pathogenesis. In this review, we summarize the research advances in one of the most important MICs complexes, TgMIC1/4/6, which will contribute to improve the understanding of the molecular mechanism of T. gondii infection and provide a theoretical basis for the effective control against T. gondii.
Collapse
Affiliation(s)
- Jinjin Zhu
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yang Wang
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yuanyuan Cao
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jilong Shen
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Li Yu
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Tagoe DNA, Drozda AA, Falco JA, Bechtel TJ, Weerapana E, Gubbels MJ. Ferlins and TgDOC2 in Toxoplasma Microneme, Rhoptry and Dense Granule Secretion. Life (Basel) 2021; 11:217. [PMID: 33803212 PMCID: PMC7999867 DOI: 10.3390/life11030217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/25/2022] Open
Abstract
The host cell invasion process of apicomplexan parasites like Toxoplasma gondii is facilitated by sequential exocytosis of the microneme, rhoptry and dense granule organelles. Exocytosis is facilitated by a double C2 domain (DOC2) protein family. This class of C2 domains is derived from an ancestral calcium (Ca2+) binding archetype, although this feature is optional in extant C2 domains. DOC2 domains provide combinatorial power to the C2 domain, which is further enhanced in ferlins that harbor 5-7 C2 domains. Ca2+ conditionally engages the C2 domain with lipids, membranes, and/or proteins to facilitating vesicular trafficking and membrane fusion. The widely conserved T. gondii ferlins 1 (FER1) and 2 (FER2) are responsible for microneme and rhoptry exocytosis, respectively, whereas an unconventional TgDOC2 is essential for microneme exocytosis. The general role of ferlins in endolysosmal pathways is consistent with the repurposed apicomplexan endosomal pathways in lineage specific secretory organelles. Ferlins can facilitate membrane fusion without SNAREs, again pertinent to the Apicomplexa. How temporal raises in Ca2+ combined with spatiotemporally available membrane lipids and post-translational modifications mesh to facilitate sequential exocytosis events is discussed. In addition, new data on cross-talk between secretion events together with the identification of a new microneme protein, MIC21, is presented.
Collapse
Affiliation(s)
- Daniel N A Tagoe
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Allison A Drozda
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Julia A Falco
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Tyler J Bechtel
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | | | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
3
|
He C, Kong L, Puthiyakunnon S, Wei HX, Zhou LJ, Peng HJ. iTRAQ-based phosphoproteomic analysis reveals host cell's specific responses to Toxoplasma gondii at the phases of invasion and prior to egress. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:202-212. [PMID: 30576742 DOI: 10.1016/j.bbapap.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022]
Abstract
Protein phosphorylation plays a key role in host cell-T. gondii interaction. However, the phosphoproteome data of host cell at various phases of T. gondii infection has not been thoroughly described. In this study, we assessed the host phosphoproteome data with isobaric tags for relative and absolute quantification (iTRAQ) method during the phases of T. gondii invasion (30 min post infection, PI) and prior to egress (28 h PI). Our iTRAQ analysis revealed a total of 665 phosphoproteins, among which the significantly regulated phosphoproteins in different between-group comparisons were further analyzed. Functional analysis of these significantly regulated phosphoproteins suggested that T. gondii modulated host cell processes through phosphorylation including cell cycle regulation, inducing apoptosis, blocking the synthesis of some inflammatory factors, mediating metabolism to support its proliferation at the infection phase prior to egress, and utilizing membrane and energy from host cell, reorganizing cytoskeleton to favor its invasion and PV formation at the phase of invasion. The phosphorylation level of Smad2, CTNNA1, and HSPB1 identified with western blot revealed a consistent trend of change with iTRAQ result. These newly identified and significantly regulated phosphoproteins from our phosphoproteome data may provide new clues to unravel the host cell's complex reaction against T. gondii infection and the interaction between the host cell and T. gondii.
Collapse
Affiliation(s)
- Cheng He
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Ling Kong
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Santhosh Puthiyakunnon
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hai-Xia Wei
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Li-Juan Zhou
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hong-Juan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
4
|
Woo YH, Ansari H, Otto TD, Klinger CM, Kolisko M, Michálek J, Saxena A, Shanmugam D, Tayyrov A, Veluchamy A, Ali S, Bernal A, del Campo J, Cihlář J, Flegontov P, Gornik SG, Hajdušková E, Horák A, Janouškovec J, Katris NJ, Mast FD, Miranda-Saavedra D, Mourier T, Naeem R, Nair M, Panigrahi AK, Rawlings ND, Padron-Regalado E, Ramaprasad A, Samad N, Tomčala A, Wilkes J, Neafsey DE, Doerig C, Bowler C, Keeling PJ, Roos DS, Dacks JB, Templeton TJ, Waller RF, Lukeš J, Oborník M, Pain A. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. eLife 2015; 4:e06974. [PMID: 26175406 PMCID: PMC4501334 DOI: 10.7554/elife.06974] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/16/2015] [Indexed: 12/18/2022] Open
Abstract
The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular parasites of humans and animals with immense socio-economic and health impacts. We sequenced nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic photosynthetic algae closely related to apicomplexans. Proteins from key metabolic pathways and from the endomembrane trafficking systems associated with a free-living lifestyle have been progressively and non-randomly lost during adaptation to parasitism. The free-living ancestor contained a broad repertoire of genes many of which were repurposed for parasitic processes, such as extracellular proteins, components of a motility apparatus, and DNA- and RNA-binding protein families. Based on transcriptome analyses across 36 environmental conditions, Chromera orthologs of apicomplexan invasion-related motility genes were co-regulated with genes encoding the flagellar apparatus, supporting the functional contribution of flagella to the evolution of invasion machinery. This study provides insights into how obligate parasites with diverse life strategies arose from a once free-living phototrophic marine alga. DOI:http://dx.doi.org/10.7554/eLife.06974.001 Single-celled parasites cause many severe diseases in humans and animals. The apicomplexans form probably the most successful group of these parasites and include the parasites that cause malaria. Apicomplexans infect a broad range of hosts, including humans, reptiles, birds, and insects, and often have complicated life cycles. For example, the malaria-causing parasites spread by moving from humans to female mosquitoes and then back to humans. Despite significant differences amongst apicomplexans, these single-celled parasites also share a number of features that are not seen in other living species. How and when these features arose remains unclear. It is known from previous work that apicomplexans are closely related to single-celled algae. But unlike apicomplexans, which depend on a host animal to survive, these algae live freely in their environment, often in close association with corals. Woo et al. have now sequenced the genomes of two photosynthetic algae that are thought to be close living relatives of the apicomplexans. These genomes were then compared to each other and to the genomes of other algae and apicomplexans. These comparisons reconfirmed that the two algae that were studied were close relatives of the apicomplexans. Further analyses suggested that thousands of genes were lost as an ancient free-living algae evolved into the apicomplexan ancestor, and further losses occurred as these early parasites evolved into modern species. The lost genes were typically those that are important for free-living organisms, but are either a hindrance to, or not needed in, a parasitic lifestyle. Some of the ancestor's genes, especially those that coded for the building blocks of flagella (structures which free-living algae use to move around), were repurposed in ways that helped the apicomplexans to invade their hosts. Understanding this repurposing process in greater detail will help to identify key molecules in these deadly parasites that could be targeted by drug treatments. It will also offer answers to one of the most fascinating questions in evolutionary biology: how parasites have evolved from free-living organisms. DOI:http://dx.doi.org/10.7554/eLife.06974.002
Collapse
Affiliation(s)
- Yong H Woo
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Hifzur Ansari
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Thomas D Otto
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | | | - Martin Kolisko
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Jan Michálek
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Alka Saxena
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Annageldi Tayyrov
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alaguraj Veluchamy
- Ecology and Evolutionary Biology Section, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197 INSERM U1024, Paris, France
| | - Shahjahan Ali
- Bioscience Core Laboratory, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Axel Bernal
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Javier del Campo
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Jaromír Cihlář
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | | | - Eva Hajdušková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jan Janouškovec
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | | | - Fred D Mast
- Seattle Biomedical Research Institute, Seattle, United States
| | - Diego Miranda-Saavedra
- Centro de Biología Molecular Severo Ochoa, CSIC/Universidad Autónoma de Madrid, Madrid, Spain
| | - Tobias Mourier
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Raeece Naeem
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mridul Nair
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Aswini K Panigrahi
- Bioscience Core Laboratory, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Neil D Rawlings
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Eriko Padron-Regalado
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Abhinay Ramaprasad
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nadira Samad
- School of Botany, University of Melbourne, Parkville, Australia
| | - Aleš Tomčala
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jon Wilkes
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniel E Neafsey
- Broad Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Christian Doerig
- Department of Microbiology, Monash University, Clayton, Australia
| | - Chris Bowler
- Ecology and Evolutionary Biology Section, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197 INSERM U1024, Paris, France
| | - Patrick J Keeling
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - David S Roos
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Thomas J Templeton
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, United States
| | - Ross F Waller
- School of Botany, University of Melbourne, Parkville, Australia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Arnab Pain
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
5
|
Lee WK, Ahn HJ, Baek JH, Lee CH, Yu YG, Nam HW. Comprehensive Proteome Analysis of the Excretory/Secretory Proteins of Toxoplasma gondii. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.10.3071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
A conserved apicomplexan microneme protein contributes to Toxoplasma gondii invasion and virulence. Infect Immun 2014; 82:4358-68. [PMID: 25092910 DOI: 10.1128/iai.01877-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The obligate intracellular parasite Toxoplasma gondii critically relies on host cell invasion during infection. Proteins secreted from the apical micronemes are central components for host cell recognition, invasion, egress, and virulence. Although previous work established that the sporozoite protein with an altered thrombospondin repeat (SPATR) is a micronemal protein conserved in other apicomplexan parasites, including Plasmodium, Neospora, and Eimeria, no genetic evidence of its contribution to invasion has been reported. SPATR contains a predicted epidermal growth factor domain and two thrombospondin type 1 repeats, implying a role in host cell recognition. In this study, we assess the contribution of T. gondii SPATR (TgSPATR) to T. gondii invasion by genetically ablating it and restoring its expression by genetic complementation. Δspatr parasites were ~50% reduced in invasion compared to parental strains, a defect that was reversed in the complemented strain. In mouse virulence assays, Δspatr parasites were significantly attenuated, with ~20% of mice surviving infection. Given the conservation of this protein among the Apicomplexa, we assessed whether the Plasmodium falciparum SPATR ortholog (PfSPATR) could complement the absence of the TgSPATR. Although PfSPATR showed correct micronemal localization, it did not reverse the invasion deficiency of Δspatr parasites, because of an apparent failure in secretion. Overall, the results suggest that TgSPATR contributes to invasion and virulence, findings that have implications for the many genera and life stages of apicomplexans that express SPATR.
Collapse
|
7
|
Camejo A, Gold DA, Lu D, McFetridge K, Julien L, Yang N, Jensen KDC, Saeij JPJ. Identification of three novel Toxoplasma gondii rhoptry proteins. Int J Parasitol 2013; 44:147-60. [PMID: 24070999 DOI: 10.1016/j.ijpara.2013.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 11/29/2022]
Abstract
The rhoptries are key secretory organelles from apicomplexan parasites that contain proteins involved in invasion and modulation of the host cell. Some rhoptry proteins are restricted to the posterior bulb (ROPs) and others to the anterior neck (RONs). As many rhoptry proteins have been shown to be key players in Toxoplasma invasion and virulence, it is important to identify, understand and characterise the biological function of the components of the rhoptries. In this report, we identified putative novel rhoptry genes by identifying Toxoplasma genes with similar cyclical expression profiles as known rhoptry protein encoding genes. Using this approach we identified two new rhoptry bulb (ROP47 and ROP48) and one new rhoptry neck protein (RON12). ROP47 is secreted and traffics to the host cell nucleus, RON12 was not detected at the moving junction during invasion. Deletion of ROP47 or ROP48 in a type II strain did not show major influence in in vitro growth or virulence in mice.
Collapse
Affiliation(s)
- Ana Camejo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel A Gold
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Diana Lu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kiva McFetridge
- Department of Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Lindsay Julien
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ninghan Yang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kirk D C Jensen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeroen P J Saeij
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
8
|
Possenti A, Fratini F, Fantozzi L, Pozio E, Dubey JP, Ponzi M, Pizzi E, Spano F. Global proteomic analysis of the oocyst/sporozoite of Toxoplasma gondii reveals commitment to a host-independent lifestyle. BMC Genomics 2013; 14:183. [PMID: 23496850 PMCID: PMC3616887 DOI: 10.1186/1471-2164-14-183] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 03/07/2013] [Indexed: 12/02/2022] Open
Abstract
Background Toxoplasmosis is caused by the apicomplexan parasite Toxoplasma gondii and can be acquired either congenitally or via the oral route. In the latter case, transmission is mediated by two distinct invasive stages, i.e., bradyzoites residing in tissue cysts or sporozoites contained in environmentally resistant oocysts shed by felids in their feces. The oocyst plays a central epidemiological role, yet this stage has been scarcely investigated at the molecular level and the knowledge of its expressed proteome is very limited. Results Using one-dimensional gel electrophoresis coupled to liquid chromatography-linked tandem mass spectrometry, we analysed total or fractionated protein extracts of partially sporulated T. gondii oocysts, producing a dataset of 1304 non reduntant proteins (~18% of the total predicted proteome), ~59% of which were classified according to the MIPS functional catalogue database. Notably, the comparison of the oocyst dataset with the extensively covered proteome of T. gondii tachyzoite, the invasive stage responsible for the clinical signs of toxoplasmosis, identified 154 putative oocyst/sporozoite-specific proteins, some of which were validated by Western blot. The analysis of this protein subset showed that, compared to tachyzoites, oocysts have a greater capability of de novo amino acid biosynthesis and are well equipped to fuel the Krebs cycle with the acetyl-CoA generated through fatty acid β-oxidation and the degradation of branched amino acids. Conclusions The study reported herein significantly expanded our knowledge of the proteome expressed by the oocyst/sporozoite of T. gondii, shedding light on a stage-specifc subset of proteins whose functional profile is consistent with the adaptation of T. gondii oocysts to the nutrient-poor and stressing extracellular environment.
Collapse
Affiliation(s)
- Alessia Possenti
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Rodriguez JB, Szajnman SH. New antibacterials for the treatment of toxoplasmosis; a patent review. Expert Opin Ther Pat 2012; 22:311-33. [PMID: 22404108 DOI: 10.1517/13543776.2012.668886] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Toxoplasma gondii is an opportunistic protozoan parasite responsible for toxoplasmosis. T. gondii is able to infect a wide range of hosts, particularly humans and warm-blooded animals. Toxoplasmosis can be considered as one of the most prevalent parasitic diseases affecting close to one billion people worldwide, but its current chemotherapy is still deficient and is only effective in the acute phase of the disease. AREAS COVERED This review covers different approaches to toxoplasmosis chemotherapy focused on the metabolic differences between the host and the parasite. Selective action on different targets such as the isoprenoid pathway, dihydrofolate reductase, T. gondii adenosine kinase, different antibacterials, T. gondii histone deacetylase and calcium-dependent protein kinases is discussed. EXPERT OPINION A new and safe chemotherapy is needed, as T. gondii causes serious morbidity and mortality in pregnant women and immunodeficient patients undergoing chemotherapy. A particular drawback of the available treatments is the lack of efficacy against the tissue cyst of the parasite. During this review a broad scope of several attractive targets for drug design have been presented. In this context, the isoprenoid pathway, dihydrofolate reductase, T. gondii histone deacetylase are promising molecular targets.
Collapse
Affiliation(s)
- Juan Bautista Rodriguez
- Universidad de Buenos Aires, Química Orgánica & UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Pab 2, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina.
| | | |
Collapse
|
10
|
Zhang H, Lee EG, Yu L, Kawano S, Huang P, Liao M, Kawase O, Zhang G, Zhou J, Fujisaki K, Nishikawa Y, Xuan X. Identification of the cross-reactive and species-specific antigens between Neospora caninum and Toxoplasma gondii tachyzoites by a proteomics approach. Parasitol Res 2011; 109:899-911. [PMID: 21461729 DOI: 10.1007/s00436-011-2332-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
Abstract
The characterization of the cross-reactive and species-specific antigens of Neospora caninum and Toxoplasma gondii is important in the exploration to determine the common mechanisms of parasite-host interaction and to improve the serological diagnosis; it is also useful for the selection of the cross-reactive antigens that could be used in the development of vaccines or drugs for controlling the diseases caused by these two parasites. In this study, cross-reactive and species-specific antigens between N. caninum and T. gondii tachyzoites were comprehensively investigated using a proteomics approach with the application of two-dimensional gel electrophoresis, immunoblot analysis, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF-MS), and MALDI-TOF/TOF-MS analysis. Immunoblotting and mass spectrometry analysis revealed that at least 42 individual protein spots of N. caninum were reacted with the anti-N. caninum serum, among which at least 18 protein spots were cross-reacted with the anti-T. gondii serum. Moreover, at least 31 protein spots of T. gondii were reacted with the anti-T. gondii serum, among which at least 19 protein spots were cross-reacted with the anti-N. caninum serum. Furthermore, some new specific proteins were also identified in the N. caninum protein profile by searching Toxoplasma sequences or sequences from other organisms. This study substantiates the usefulness of proteomics in the immunoscreening of the cross-reactive or species-specific antigens of both parasites. In addition, the present study showed that there was significant homology in the antigenic proteome profiles between the two parasites. These observations have implications for the design of multicomponent common vaccines against both parasite infections.
Collapse
Affiliation(s)
- Houshuang Zhang
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhou DH, Yuan ZG, Zhao FR, Li HL, Zhou Y, Lin RQ, Zou FC, Song HQ, Xu MJ, Zhu XQ. Modulation of mouse macrophage proteome induced by Toxoplasma gondii tachyzoites in vivo. Parasitol Res 2011; 109:1637-46. [PMID: 21584632 DOI: 10.1007/s00436-011-2435-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/27/2011] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite, which can invade and multiply within the macrophages of humans and most warm-blooded animals. Macrophages are important effector cells for the control and killing of intracellular T. gondii, and they may also serve as long-term host cells for the replication and survival of the parasite. In the present study, we explored the proteomic profile of macrophages of the specific pathogen-free Kunming mice at 24 h after infection with tachyzoites of the virulent T. gondii RH strain using two-dimensional gel electrophoresis combined with matrix-assisted laser desorption ionization time-of-flight (TOF)/TOF tandem mass spectrometry. Totally, 60 differentially expressed protein spots were identified. Among them, 52 spots corresponded to 38 proteins matching to proteins of the mouse, including actin, enolase, calumenin, vimentin, plastin 2, annexin A1, cathepsin S, arginase-1, arachidonate 12-lipoxygenase, and aminoacylase-1. Functional prediction using Gene Ontology database showed that these proteins were mainly involved in metabolism, structure, protein fate, and immune responses. The findings provided an insight into the interactive relationship between T. gondii and the host macrophages, and will shed new lights on the understanding of molecular mechanisms of T. gondii pathogenesis.
Collapse
Affiliation(s)
- D H Zhou
- Department of Parasitology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yamagishi J, Wakaguri H, Ueno A, Goo YK, Tolba M, Igarashi M, Nishikawa Y, Sugimoto C, Sugano S, Suzuki Y, Watanabe J, Xuan X. High-resolution characterization of Toxoplasma gondii transcriptome with a massive parallel sequencing method. DNA Res 2010; 17:233-43. [PMID: 20522451 PMCID: PMC2920756 DOI: 10.1093/dnares/dsq013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
For the last couple of years, a method that permits the collection of precise positional information of transcriptional start sites (TSSs) together with digital information of the gene-expression levels in a high-throughput manner was established. We applied this novel method, ‘tss-seq’, to elucidate the transcriptome of tachyzoites of the Toxoplasma gondii, which resulted in the identification of 124 000 TSSs, and they were clustered into 10 000 transcription regions (TRs) with a statistics-based analysis. The TRs and annotated ORFs were paired, resulting in the identification of 30% of the TRs and 40% of the ORFs without their counterparts, which predicted undiscovered genes and stage-specific transcriptions, respectively. The massive data for TSSs make it possible to execute the first systematic analysis of the T. gondii core promoter structure, and the information showed that T. gondii utilized an initiator-like motif for their transcription in the major and novel motif, the downstream thymidine cluster, which was similar to the Y patch observed in plants. This encyclopaedic analysis also suggested that the TATA box, and the other well-known core promoter elements were hardly utilized.
Collapse
Affiliation(s)
- Junya Yamagishi
- 1National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Characterization of a novel thrombospondin-related protein in Toxoplasma gondii. Parasitol Int 2010; 59:211-6. [DOI: 10.1016/j.parint.2010.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 01/22/2010] [Accepted: 02/02/2010] [Indexed: 11/17/2022]
|
14
|
Parussini F, Coppens I, Shah PP, Diamond SL, Carruthers VB. Cathepsin L occupies a vacuolar compartment and is a protein maturase within the endo/exocytic system of Toxoplasma gondii. Mol Microbiol 2010; 76:1340-57. [PMID: 20444089 PMCID: PMC2909120 DOI: 10.1111/j.1365-2958.2010.07181.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Regulated exocytosis allows the timely delivery of proteins and other macromolecules precisely when they are needed to fulfil their functions. The intracellular parasite Toxoplasma gondii has one of the most extensive regulated exocytic systems among all unicellular organisms, yet the basis of protein trafficking and proteolytic modification in this system is poorly understood. We demonstrate that a parasite cathepsin protease, TgCPL, occupies a newly recognized vacuolar compartment (VAC) that undergoes dynamic fragmentation during T. gondii replication. We also provide evidence that within the VAC or late endosome this protease mediates the proteolytic maturation of proproteins targeted to micronemes, regulated secretory organelles that deliver adhesive proteins to the parasite surface during cell invasion. Our findings suggest that processing of microneme precursors occurs within intermediate endocytic compartments within the exocytic system, indicating an extensive convergence of the endocytic and exocytic pathways in this human parasite.
Collapse
Affiliation(s)
- Fabiola Parussini
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405 U.S.A
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology Johns Hopkins University School of Public Health , Baltimore, Maryland 21205 U.S.A
| | - Parag P. Shah
- Institute for Medicine and Engineering, Penn Center for Molecular Discovery, University of Pennsylvania, Philadelphia, Pennsylvania 19104 U.S.A
| | - Scott L. Diamond
- Institute for Medicine and Engineering, Penn Center for Molecular Discovery, University of Pennsylvania, Philadelphia, Pennsylvania 19104 U.S.A
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109 U.S.A
| |
Collapse
|
15
|
Hencken CP, Jones-Brando L, Bordón C, Stohler R, Mott BT, Yolken R, Posner GH, Woodard LE. Thiazole, oxadiazole, and carboxamide derivatives of artemisinin are highly selective and potent inhibitors of Toxoplasma gondii. J Med Chem 2010; 53:3594-601. [PMID: 20373807 PMCID: PMC2865576 DOI: 10.1021/jm901857d] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have prepared 23 new dehydroartemisinin (DART) trioxane derivatives (11 thiazoles, 2 oxadiazoles, and 10 carboxamides) and have screened them for in vitro activity in the Toxoplasma lytic cycle. Fifteen (65%) of the derivatives were noncytotoxic to host cells (TD(50) > or = 320 microM). Eight thiazole derivatives and two carboxamide derivatives displayed effective inhibition of Toxoplasma growth (IC(50) = 0.25-0.42 microM), comparable in potency to artemether (IC(50) = 0.31 microM) and >100 times more inhibitory than the currently employed front-line drug trimethoprim (IC(50) = 46 microM). The thiazoles as a group were more effective than the other derivatives at inhibiting growth of extracellular as well as intracellular parasites. Unexpectedly, two thiazole trioxanes (5 and 6) were parasiticidal; both inhibited parasite replication irreversibly after parasite exposure to 10 microM of drug for 24 h, whereas the standard trioxane drugs artemisinin and artemether were not parasiticidal. Some of the new derivatives of artemisinin described here represent effective anti-Toxoplasma trioxanes as well as molecular probes for elucidating the mechanism of action of the DART class of artemisinin derivatives.
Collapse
Affiliation(s)
- Christopher P Hencken
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Distinct external signals trigger sequential release of apical organelles during erythrocyte invasion by malaria parasites. PLoS Pathog 2010; 6:e1000746. [PMID: 20140184 PMCID: PMC2816683 DOI: 10.1371/journal.ppat.1000746] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 12/31/2009] [Indexed: 11/24/2022] Open
Abstract
The invasion of erythrocytes by Plasmodium merozoites requires specific interactions between host receptors and parasite ligands. Parasite proteins that bind erythrocyte receptors during invasion are localized in apical organelles called micronemes and rhoptries. The regulated secretion of microneme and rhoptry proteins to the merozoite surface to enable receptor binding is a critical step in the invasion process. The sequence of these secretion events and the external signals that trigger release are not known. We have used time-lapse video microscopy to study changes in intracellular calcium levels in Plasmodium falciparum merozoites during erythrocyte invasion. In addition, we have developed flow cytometry based methods to measure relative levels of cytosolic calcium and study surface expression of apical organelle proteins in P. falciparum merozoites in response to different external signals. We demonstrate that exposure of P. falciparum merozoites to low potassium ion concentrations as found in blood plasma leads to a rise in cytosolic calcium levels through a phospholipase C mediated pathway. Rise in cytosolic calcium triggers secretion of microneme proteins such as the 175 kD erythrocyte binding antigen (EBA175) and apical membrane antigen-1 (AMA-1) to the merozoite surface. Subsequently, interaction of EBA175 with glycophorin A (glyA), its receptor on erythrocytes, restores basal cytosolic calcium levels and triggers release of rhoptry proteins. Our results identify for the first time the external signals responsible for the sequential release of microneme and rhoptry proteins during erythrocyte invasion and provide a starting point for the dissection of signal transduction pathways involved in regulated exocytosis of these key apical organelles. Signaling pathway components involved in apical organelle discharge may serve as novel targets for drug development since inhibition of microneme and rhoptry secretion can block invasion and limit blood-stage parasite growth. Malaria remains a major public health problem in many parts of the tropical world. All the clinical symptoms of malaria are attributed to the blood stage of the parasite life cycle during which Plasmodium merozoites invade and multiply within host erythrocytes. Invasion by Plasmodium merozoites is a complex process that requires multiple molecular interactions between the invading parasite and target erythrocyte. Parasite proteins that mediate such interactions are localized in membrane bound internal organelles at the apical end of merozoites called micronemes and rhoptries. The timely secretion of microneme and rhoptry proteins to the merozoite surface to allow receptor binding is a crucial step in the invasion process. In this study, we demonstrate that exposure of Plasmodium falciparum merozoites to low potassium ion concentrations as found in blood plasma provides the natural signal that triggers a rise in intracellular calcium, which in turn triggers secretion of microneme proteins to the merozoite surface. Subsequently, binding of released microneme proteins with erythrocyte receptors provides the signal for release of rhoptry proteins. These studies open the path for analysis of signal transduction pathways involved in apical organelle secretion. A clear understanding of these pathways will enable development of inhibitors that block secretion of key parasite proteins required for receptor-binding. Such inhibitors will block erythrocyte invasion and inhibit parasite growth, providing promising leads for development of novel drugs against malaria.
Collapse
|
17
|
Abstract
Toxoplasma gondii is a ubiquitous, Apicomplexan parasite that, in humans, can cause several clinical syndromes, including encephalitis, chorioretinitis and congenital infection. T. gondii was described a little over 100 years ago in the tissues of the gundi (Ctenodoactylus gundi). There are a large number of applicable experimental techniques available for this pathogen and it has become a model organism for the study of intracellular pathogens. With the completion of the genomes for a type I (GT-1), type II (ME49) and type III (VEG) strains, proteomic studies on this organism have been greatly facilitated. Several subcellular proteomic studies have been completed on this pathogen. These studies have helped elucidate specialized invasion organelles and their composition, as well as proteins associated with the cytoskeleton. Global proteomic studies are leading to improved strategies for genome annotation in this organism and an improved understanding of protein regulation in this pathogen. Web-based resources, such as EPIC-DB and ToxoDB, provide proteomic data and support for studies on T. gondii. This review will summarize the current status of proteomic research on T. gondii.
Collapse
Affiliation(s)
- Louis M Weiss
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 504, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
18
|
Tagging of endogenous genes in a Toxoplasma gondii strain lacking Ku80. EUKARYOTIC CELL 2009; 8:530-9. [PMID: 19218426 DOI: 10.1128/ec.00358-08] [Citation(s) in RCA: 402] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As with other organisms with a completed genome sequence, opportunities for performing large-scale studies, such as expression and localization, on Toxoplasma gondii are now much more feasible. We present a system for tagging genes endogenously with yellow fluorescent protein (YFP) in a Deltaku80 strain. Ku80 is involved in DNA strand repair and nonhomologous DNA end joining; previous studies in other organisms have shown that in its absence, random integration is eliminated, allowing the insertion of constructs with homologous sequences into the proper loci. We generated a vector consisting of YFP and a dihydrofolate reductase-thymidylate synthase selectable marker. The YFP is preceded by a ligation-independent cloning (LIC) cassette, which allows the insertion of PCR products containing complementary LIC sequences. We demonstrated that the Deltaku80 strain is more effective and efficient in integrating the YFP-tagged constructs into the correct locus than wild-type strain RH. We then selected several hypothetical proteins that were identified by a proteomic screen of excreted-secreted antigens and that displayed microarray expression profiles similar to known micronemal proteins, with the thought that these could potentially be new proteins with roles in cell invasion. We localized these hypothetical proteins by YFP fluorescence and showed expression by immunoblotting. Our findings demonstrate that the combination of the Deltaku80 strain and the pYFP.LIC constructs reduces both the time and cost required to determine localization of a new gene of interest. This should allow the opportunity for performing larger-scale studies of novel T. gondii genes.
Collapse
|
19
|
Morahan BJ, Wang L, Coppel RL. No TRAP, no invasion. Trends Parasitol 2008; 25:77-84. [PMID: 19101208 DOI: 10.1016/j.pt.2008.11.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 11/06/2008] [Accepted: 11/07/2008] [Indexed: 11/19/2022]
Abstract
Host-cell invasion by apicomplexan parasites is a unique process that is powered by the gliding motility motor and requires a transmembrane link between the parasite cytoskeleton and the host cell. The thrombospondin-related anonymous protein (TRAP) from Plasmodium plays such a part during sporozoite invasion by linking to actin through its cytoplasmic tail while binding to hepatocytes via its extracellular portion. In recent years, there have been major advances in the identification and characterization of TRAP-family proteins in the other invasive stages of Plasmodium as well as other Apicomplexa. This review summarizes the recent experimental data on these TRAP-family proteins, focusing on their structure and function.
Collapse
Affiliation(s)
- Belinda J Morahan
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
20
|
Chen Z, Harb OS, Roos DS. In silico identification of specialized secretory-organelle proteins in apicomplexan parasites and in vivo validation in Toxoplasma gondii. PLoS One 2008; 3:e3611. [PMID: 18974850 PMCID: PMC2575384 DOI: 10.1371/journal.pone.0003611] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 10/06/2008] [Indexed: 12/04/2022] Open
Abstract
Apicomplexan parasites, including the human pathogens Toxoplasma gondii and Plasmodium falciparum, employ specialized secretory organelles (micronemes, rhoptries, dense granules) to invade and survive within host cells. Because molecules secreted from these organelles function at the host/parasite interface, their identification is important for understanding invasion mechanisms, and central to the development of therapeutic strategies. Using a computational approach based on predicted functional domains, we have identified more than 600 candidate secretory organelle proteins in twelve apicomplexan parasites. Expression in transgenic T. gondii of eight proteins identified in silico confirms that all enter into the secretory pathway, and seven target to apical organelles associated with invasion. An in silico approach intended to identify possible host interacting proteins yields a dataset enriched in secretory/transmembrane proteins, including most of the antigens known to be engaged by apicomplexan parasites during infection. These domain pattern and projected interactome approaches significantly expand the repertoire of proteins that may be involved in host parasite interactions.
Collapse
Affiliation(s)
- ZhongQiang Chen
- Department of Biology, Penn Genomic Frontiers Institute, and the Graduate Program in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Omar S. Harb
- Department of Biology, Penn Genomic Frontiers Institute, and the Graduate Program in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (DSR); (OSH)
| | - David S. Roos
- Department of Biology, Penn Genomic Frontiers Institute, and the Graduate Program in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (DSR); (OSH)
| |
Collapse
|
21
|
Kats LM, Cooke BM, Coppel RL, Black CG. Protein Trafficking to Apical Organelles of Malaria Parasites - Building an Invasion Machine. Traffic 2007; 9:176-86. [PMID: 18047549 DOI: 10.1111/j.1600-0854.2007.00681.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lev M Kats
- NHMRC Program in Malaria, Department of Microbiology, Monash University, Victoria 3800, Australia
| | | | | | | |
Collapse
|