1
|
Menzel S, Koudelka T, Rissiek B, Haag F, Meyer-Schwesinger C, Tholey A, Koch-Nolte F. ADP-Ribosylation Regulates the Signaling Function of IFN-γ. Front Immunol 2021; 12:642545. [PMID: 33763084 PMCID: PMC7983947 DOI: 10.3389/fimmu.2021.642545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 01/22/2023] Open
Abstract
Murine T cells express the GPI-anchored ADP-ribosyltransferase 2.2 (ARTC2.2) on the cell surface. In response to T cell activation or extracellular NAD+ or ATP-mediated gating of the P2X7 ion channel ARTC2.2 is shed from the cell surface as a soluble enzyme. Shedding alters the target specificity of ARTC2.2 from cell surface proteins to secreted proteins. Here we demonstrate that shed ARTC2.2 potently ADP-ribosylates IFN-γ in addition to other cytokines. Using mass spectrometry, we identify arginine 128 as the target site of ADP-ribosylation. This residue has been implicated to play a key role in binding of IFN-γ to the interferon receptor 1 (IFNR1). Indeed, binding of IFN-γ to IFNR1 blocks ADP-ribosylation of IFN-γ. Moreover, ADP-ribosylation of IFN-γ inhibits the capacity of IFN-γ to induce STAT1 phosphorylation in macrophages and upregulation of the proteasomal subunit ß5i and the proteasomal activator PA28-α in podocytes. Our results show that ADP-ribosylation inhibits the signaling functions of IFN-γ and point to a new regulatory mechanism for controlling signaling by IFN-γ.
Collapse
Affiliation(s)
- Stephan Menzel
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tomas Koudelka
- Institute of Experimental Medicine, AG Systematic Proteome Research and Bioanalytics, Christian-Albrechts-Universität, Kiel, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Tholey
- Institute of Experimental Medicine, AG Systematic Proteome Research and Bioanalytics, Christian-Albrechts-Universität, Kiel, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Koehler S, Kuczkowski A, Kuehne L, Jüngst C, Hoehne M, Grahammer F, Eddy S, Kretzler M, Beck BB, Höhfeld J, Schermer B, Benzing T, Brinkkoetter PT, Rinschen MM. Proteome Analysis of Isolated Podocytes Reveals Stress Responses in Glomerular Sclerosis. J Am Soc Nephrol 2020; 31:544-559. [PMID: 32047005 DOI: 10.1681/asn.2019030312] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Understanding podocyte-specific responses to injury at a systems level is difficult because injury leads to podocyte loss or an increase of extracellular matrix, altering glomerular cellular composition. Finding a window into early podocyte injury might help identify molecular pathways involved in the podocyte stress response. METHODS We developed an approach to apply proteome analysis to very small samples of purified podocyte fractions. To examine podocytes in early disease states in FSGS mouse models, we used podocyte fractions isolated from individual mice after chemical induction of glomerular disease (with Doxorubicin or LPS). We also applied single-glomerular proteome analysis to tissue from patients with FSGS. RESULTS Transcriptome and proteome analysis of glomeruli from patients with FSGS revealed an underrepresentation of podocyte-specific genes and proteins in late-stage disease. Proteome analysis of purified podocyte fractions from FSGS mouse models showed an early stress response that includes perturbations of metabolic, mechanical, and proteostasis proteins. Additional analysis revealed a high correlation between the amount of proteinuria and expression levels of the mechanosensor protein Filamin-B. Increased expression of Filamin-B in podocytes in biopsy samples from patients with FSGS, in single glomeruli from proteinuric rats, and in podocytes undergoing mechanical stress suggests that this protein has a role in detrimental stress responses. In Drosophila, nephrocytes with reduced filamin homolog Cher displayed altered filtration capacity, but exhibited no change in slit diaphragm structure. CONCLUSIONS We identified conserved mechanisms of the podocyte stress response through ultrasensitive proteome analysis of human glomerular FSGS tissue and purified native mouse podocytes during early disease stages. This approach enables systematic comparisons of large-scale proteomics data and phenotype-to-protein correlation.
Collapse
Affiliation(s)
- Sybille Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Alexander Kuczkowski
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Lucas Kuehne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christian Jüngst
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Martin Hoehne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Eppendorf, Hamburg, Germany
| | - Sean Eddy
- Division of Nephrology, Department of Internal Medicine, and
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, and.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Bodo B Beck
- Department of Human Genetics, University Hospital Cologne, Cologne, Germany
| | - Jörg Höhfeld
- Cell Biology, University of Bonn, Bonn, Germany; and
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Paul T Brinkkoetter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany;
| | - Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
3
|
Damiano S, Lombari P, Salvi E, Papale M, Giordano A, Amenta M, Ballistreri G, Fabroni S, Rapisarda P, Capasso G, Forte IM, Barone D, Ciarcia R. A red orange and lemon by-products extract rich in anthocyanins inhibits the progression of diabetic nephropathy. J Cell Physiol 2019; 234:23268-23278. [PMID: 31140616 DOI: 10.1002/jcp.28893] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022]
Abstract
The major cause of end-stage renal disease is the diabetic nephropathy. Oxidative stress contributes to the development of type II diabetes mellitus (T2DM). In this study we have evaluated the effect of a diet with a new standardized of red orange and lemon extract (RLE) rich in anthocyanins (ANT) in the progression of the kidney disease on Zucker diabetic fatty rats. Oxidative stress and renal function were analyzed. In diabetic rats, the RLE restored the blood glucose levels, body weight, and normalized the reactive oxygen species (ROS) total pathways. The kidney inflammation, in diabetic rats, has not shown significant change, showing that the oxidative stress rather than to inflammatory processes is a triggering factor in the renal complication associated with T2DM. Therefore, the administration of the RLE prevents this complication and this effect could be related to the inhibition of ROS production.
Collapse
Affiliation(s)
- Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Napoli, Italy
| | - Patrizia Lombari
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Erika Salvi
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Massimo Papale
- Department of Emergency and Organ Transplantation - Division of Nephrology, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Margherita Amenta
- Council for Agricultural Research and Economics, Research Center for Olive, Citrus and Tree Fruit, Acireale, Italy
| | - Gabriele Ballistreri
- Council for Agricultural Research and Economics, Research Center for Olive, Citrus and Tree Fruit, Acireale, Italy
| | - Simona Fabroni
- Council for Agricultural Research and Economics, Research Center for Olive, Citrus and Tree Fruit, Acireale, Italy
| | - Paolo Rapisarda
- Council for Agricultural Research and Economics, Research Center for Olive, Citrus and Tree Fruit, Acireale, Italy
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Iris Maria Forte
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Napoli, Italy
| | - Daniela Barone
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Napoli, Italy
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Napoli, Italy
| |
Collapse
|
4
|
Li J, Wang B, Zhou G, Yan X, Zhang Y. Tetrahydroxy Stilbene Glucoside Alleviates High Glucose-Induced MPC5 Podocytes Injury Through Suppression of NLRP3 Inflammasome. Am J Med Sci 2018; 355:588-596. [PMID: 29891042 DOI: 10.1016/j.amjms.2018.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Tetrahydroxy stilbene glucoside (TSG) is an active ingredient of Heshouwu and is an antioxidant. The underlying mechanisms of the renoprotective effect of TSG in diabetic nephropathy have not been previously reported. In this study, we investigated the mechanisms of TSG in preventing podocytes injury in high glucose (HG) condition. METHODS Cultured mouse podocytes (MPC5) were incubated in HG (30mmol/L) plus various concentration of TSG (0.1, 1 and 10μM) for 48 hours. Reactive oxygen species (ROS) production, malondialdehyde (MDA) levels, terminal deoxynucleotidyl-transferase (TdT)-mediated dUTP-biotin nick end-labeling (TUNEL) fluorescence intensity, caspase-3 activity and the mRNA expression of nephrin in cultured podocytes were determined. The protein expression of Nod-like receptor protein 3 (NLRP3) inflammsome, interleukin-1β (IL-1β) and nephrin was detected by Western blot. RESULTS When the podocytes were incubated with various concentrations of TSG under HG conditions for 48 hours, TSG decreased ROS production, MDA levels, TUNEL fluorescence intensity and caspase-3 activity, but increased cell viability and the expression of nephrin in HG-induced podocytes in a dose-dependent manner. Subsequently, the podocytes treated with TSG at 10 μΜ decreased the expression of NLRP3 inflammasome and IL-1β compared with that of control. Furthermore, the podocytes transfected with NLRP3- small interfering RNA (siRNA) exhibited a significant decrease in the expression of caspase-1 and IL-1β, but exhibited a significant increase in the expression of nephrin. Eventually, TSG significantly increased the expression of nephrin in IL-1β-treated podocytes. CONCLUSIONS TSG attenuates high glucose-induced cell apoptosis in vitro partly through the suppression of NLRP3 inflammasome signaling.
Collapse
Affiliation(s)
- Jinfeng Li
- Department of Pharmacy, Weihai Municipal Hospital, 264200, Weihai, Shandong Province, China
| | - Bing Wang
- Department of Pharmacy, Weihai Municipal Hospital, 264200, Weihai, Shandong Province, China
| | - Guangjie Zhou
- Department of Pharmacy, Weihai Municipal Hospital, 264200, Weihai, Shandong Province, China
| | - Xiujuan Yan
- Department of Pharmacy, Weihai Municipal Hospital, 264200, Weihai, Shandong Province, China
| | - Yuan Zhang
- Department of Pharmacy, Weihai Municipal Hospital, 264200, Weihai, Shandong Province, China.
| |
Collapse
|
5
|
Aluksanasuwan S, Khamchun S, Thongboonkerd V. Targeted functional investigations guided by integrative proteome network analysis revealed significant perturbations of renal tubular cell functions induced by high glucose. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/09/2017] [Accepted: 06/23/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Siripat Aluksanasuwan
- Medical Proteomics Unit, Office for Research and Development; and Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science; Mahidol University; Bangkok Thailand
| | - Supaporn Khamchun
- Medical Proteomics Unit, Office for Research and Development; and Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science; Mahidol University; Bangkok Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development; and Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science; Mahidol University; Bangkok Thailand
| |
Collapse
|
6
|
Aluksanasuwan S, Sueksakit K, Fong-Ngern K, Thongboonkerd V. Role of HSP60 (HSPD1) in diabetes-induced renal tubular dysfunction: regulation of intracellular protein aggregation, ATP production, and oxidative stress. FASEB J 2017; 31:2157-2167. [PMID: 28196897 DOI: 10.1096/fj.201600910rr] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/23/2017] [Indexed: 12/28/2022]
Abstract
Because underlying mechanisms of diabetic nephropathy/tubulopathy remained poorly understood, we aimed to define a key protein involving in hyperglycemia-induced renal tubular dysfunction. All altered renal proteins identified from previous large-scale proteome studies were subjected to global protein network analysis, which revealed heat shock protein 60 (HSP60, also known as HSPD1) as the central node of protein-protein interactions. Functional validation was performed using small interfering RNA (siRNA) to knock down HSP60 (siHSP60). At 48 h after exposure to high glucose (HG) (25 mM), Madin-Darby canine kidney (MDCK) renal tubular cells transfected with controlled siRNA (siControl) had significantly increased level of HSP60 compared to normal glucose (NG) (5.5 mM), whereas siHSP60-transfected cells showed a dramatically decreased HSP60 level. siHSP60 modestly increased intracellular protein aggregates in both NG and HG conditions. Luciferin-luciferase assay showed that HG modestly increased intracellular ATP, and siHSP60 further enhanced such an increase. OxyBlot assay showed significantly increased level of oxidized proteins in HG-treated siControl-transfected cells, whereas siHSP60 caused marked increase of oxidized proteins under the NG condition. However, the siHSP60-induced accumulation of oxidized proteins was abolished by HG. In summary, our data demonstrated that HSP60 plays roles in regulation of intracellular protein aggregation, ATP production, and oxidative stress in renal tubular cells. Its involvement in HG-induced tubular cell dysfunction was most likely via regulation of intracellular ATP production.-Aluksanasuwan, S., Sueksakit, K., Fong-ngern, K., Thongboonkerd, V. Role of HSP60 (HSPD1) in diabetes-induced renal tubular dysfunction: regulation of intracellular protein aggregation, ATP production, and oxidative stress.
Collapse
Affiliation(s)
- Siripat Aluksanasuwan
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Kanyarat Sueksakit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Kedsarin Fong-Ngern
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; .,Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Xu L, Zhang P, Guan H, Huang Z, He X, Wan X, Xiao H, Li Y. Vitamin D and its receptor regulate lipopolysaccharide-induced transforming growth factor-β, angiotensinogen expression and podocytes apoptosis through the nuclear factor-κB pathway. J Diabetes Investig 2016; 7:680-8. [PMID: 27180929 PMCID: PMC5009129 DOI: 10.1111/jdi.12505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/13/2016] [Accepted: 02/20/2016] [Indexed: 12/01/2022] Open
Abstract
AIMS/INTRODUCTION To investigate the effects of vitamin D and its receptor on cytokines expression and podocytes apoptosis. MATERIALS AND METHODS Cultured mouse podocytes were pre-incubated with vitamin D or transiently transfected with small interfering ribonucleic acid (RNA) to knock down the vitamin D receptor. Lipopolysaccharide was used to mimic the inflammation status of diabetes. RESULTS In a lipopolysaccharide-induced state, expressions of transforming growth factor-β, angiotensinogen and vascular endothelial growth factor were similarly increased. Transforming growth factor-β and angiotensinogen levels originally elevated by lipopolysaccharide challenge were distinctly reduced after pre-incubation with vitamin D. Whereas after vitamin D receptor small interfering (si)RNA transfection, the aforementioned cytokines had opposite changes as expected. However, neither vitamin D pretreatment nor vitamin D receptor siRNA transfection influenced the previously increased vascular endothelial growth factor expression at messenger RNA or protein levels. When pretreated with vitamin D, decreases were observed for phosphorylated inhibitor-κB and the inhibitor kinase proteins. After siRNA transfection, those proteins levels were further elevated. The originally increased transforming growth factor-β and angiotensinogen levels as a result of lipopolysaccharide stimulation were reduced at both the messenger RNA and protein levels after the specific inhibition of the nuclear factor-κB pathway with pyrrolidine dithiocarbamate. The apoptosis rate of podocytes was decreased in a parallel manner after vitamin D pre-incubation, and increased after siRNA transfection, which was also suppressed by pyrrolidine dithiocarbamate. CONCLUSIONS Vitamin D and its receptor might be involved in the progression of diabetic nephropathy by regulating transforming growth factor-β, angiotensinogen expression and apoptosis of podocytes. The processes are mediated through the signaling of nuclear factor-κB pathway.
Collapse
Affiliation(s)
- Lijuan Xu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Pengyuan Zhang
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongyu Guan
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhimin Huang
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoying He
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuesi Wan
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Rinschen MM, Benzing T, Limbutara K, Pisitkun T. Proteomic analysis of the kidney filtration barrier--Problems and perspectives. Proteomics Clin Appl 2015; 9:1053-68. [PMID: 25907645 DOI: 10.1002/prca.201400201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/21/2015] [Accepted: 04/20/2015] [Indexed: 12/12/2022]
Abstract
Diseases of the glomerular filter of the kidney are a leading cause of end-stage renal failure. The kidney filter is localized within the renal glomeruli, small microvascular units that are responsible for ultrafiltration of about 180 liters of primary urine every day. The renal filter consists of three layers, fenestrated endothelial cells, glomerular basement membrane, and the podocytes, terminally differentiated, arborized epithelial cells. This review demonstrates the use of proteomics to generate insights into the regulation of the renal filtration barrier at a molecular level. The advantages and disadvantages of different glomerular purification methods are examined, and the technical limitations that have been significantly improved by in silico or biochemical approaches are presented. We also comment on phosphoproteomic studies that have generated considerable molecular-level understanding of the physiological regulation of the kidney filter. Lastly, we conclude with an analysis of urinary exosomes as a potential filter-derived resource for the noninvasive discovery of glomerular disease mechanisms.
Collapse
Affiliation(s)
- Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Kavee Limbutara
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Hwang PT, Kwon OD, Kim HJ, Kim BG, Kim SH, Jang YW, Kim PK, Han GY, Kim CW. Hyperglycemia decreases the expression of ATP synthase β subunit and enolase 2 in glomerular epithelial cells. TOHOKU J EXP MED 2014; 231:45-56. [PMID: 24042457 DOI: 10.1620/tjem.231.45] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glomerular epithelial cells (GECs) are known to play a key role in maintaining the structure and function of the glomerulus. GEC injury induced by hyperglycemia is present in early-stage diabetic nephropathy (DN), which is the most common cause of renal failure. In an attempt to identify target proteins involved in the pathogenesis of GEC injury at early DN, we performed the proteomic analysis using primary cultures of GECs, prepared from the dissected rat glomeruli. The protein expression profiles in the two-dimensional electrophoresis gels were compared between GECs treated for three days with normal glucose (5 mM) and those with high glucose (30 mM) concentrations. These concentrations correspond to blood glucose concentrations under normoglycemia and hyperglycemia, respectively. Proteins with differential expression levels were identified using ESI-Q-TOF tandem mass spectrometry. The primary GECs cultured in hyperglycemic conditions showed cellular hypertrophy and increased production of reactive oxygen species, both of which reflect the GEC injury. Our proteomic analysis identified eight proteins with differential expression profiles, depending on glucose concentrations. Among them, we selected ATP synthase β subunit and enolase 2 that are related to energy metabolism and are down-regulated under hyperglycemia, and confirmed that hyperglycemia decreased the expression levels of ATP synthase β subunit and enolase 2 proteins by western blotting analysis. Hyperglycemia may impair mitochondrial function and alter glycolysis in GECs by down-regulating the expression of ATP synthase β subunit and enolase 2. The present study may provide a better understanding of the pathogenic mechanisms of GEC injury in early DN.
Collapse
|
10
|
Proteomics and diabetic nephropathy: what have we learned from a decade of clinical proteomics studies? J Nephrol 2014; 27:221-8. [PMID: 24567069 DOI: 10.1007/s40620-014-0044-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/15/2013] [Indexed: 02/02/2023]
Abstract
Diabetic nephropathy (DN) has become the most frequent cause of chronic kidney disease worldwide due to the constant increase of the incidence of type 2 diabetes mellitus in developed and developing countries. The understanding of the pathophysiological mechanisms of human diseases through a large-scale characterization of the protein content of a biological sample is the key feature of the proteomics approach to the study of human disease. We discuss the main results of over 10 years of tissue and urine proteomics studies applied to DN in order to understand how far we have come and how far we still have to go before obtaining a full comprehension of the molecular mechanisms involved in the pathogenesis of DN and identifying reliable biomarkers for accurate management of patients.
Collapse
|
11
|
Liu X, Fan Q, Yang G, Liu N, Chen D, Jiang Y, Wang L. Isolating glomeruli from mice: A practical approach for beginners. Exp Ther Med 2013; 5:1322-1326. [PMID: 23737872 PMCID: PMC3671739 DOI: 10.3892/etm.2013.1000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/26/2013] [Indexed: 12/29/2022] Open
Abstract
A modified procedure for Dynabead perfusion was developed to provide a practical methodology for obtaining large quantities of glomeruli from mice with a high purity. The glomeruli may be useful in exploring the mechanism behind glomerular diseases in conjunction with proteomics. The aim of the study was to save on costs and help researchers, particularly beginners, in the practical application of this method in their studies. Kidneys of C57BL/6 mice were perfused via two different techniques with Dynabeads. The purity and structures of the isolated glomeruli were investigated. The amounts of glomerular protein were measured and the costs of kidney and heart perfusions were compared. There was a 100% success rate at all stages involved in separating the glomeruli of mice via kidney perfusion. The isolated glomeruli remained intact and the purity was 96.7±1.2%. The average amounts of protein in the isolated glomeruli of 8- and 20-week-old mice were 45.6±13.4 and 55.8±17.0 μg, respectively. The cost of glomerular isolation via kidney perfusion was one-fortieth of the cost of isolation via heart perfusion. The described procedure is practical and has a high success rate. The isolated glomeruli of mice were intact and pure and a large quantity was obtained at a lower cost.
Collapse
Affiliation(s)
- Xiaodan Liu
- Department of Nephrology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | | | | | | | | | | | | |
Collapse
|
12
|
Starkey JM, Tilton RG. Proteomics and systems biology for understanding diabetic nephropathy. J Cardiovasc Transl Res 2012; 5:479-90. [PMID: 22581264 DOI: 10.1007/s12265-012-9372-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 05/01/2012] [Indexed: 01/07/2023]
Abstract
Like many diseases, diabetic nephropathy is defined in a histopathological context and studied using reductionist approaches that attempt to ameliorate structural changes. Novel technologies in mass spectrometry-based proteomics have the ability to provide a deeper understanding of the disease beyond classical histopathology, redefine the characteristics of the disease state, and identify novel approaches to reduce renal failure. The goal is to translate these new definitions into improved patient outcomes through diagnostic, prognostic, and therapeutic tools. Here, we review progress made in studying the proteomics of diabetic nephropathy and provide an introduction to the informatics tools used in the analysis of systems biology data, while pointing out statistical issues for consideration. Novel bioinformatics methods may increase biomarker identification, and other tools, including selective reaction monitoring, may hasten clinical validation.
Collapse
Affiliation(s)
- Jonathan M Starkey
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555-1060, USA
| | | |
Collapse
|
13
|
Osmolarity and glucose differentially regulate aldose reductase activity in cultured mouse podocytes. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:278963. [PMID: 22253613 PMCID: PMC3255165 DOI: 10.1155/2011/278963] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/05/2011] [Accepted: 09/23/2011] [Indexed: 12/04/2022]
Abstract
Podocyte injury is associated with progression of many renal diseases, including diabetic nephropathy. In this study we examined whether aldose reductase (AR), the enzyme implicated in diabetic complications in different tissues, is modulated by high glucose and osmolarity in podocyte cells. AR mRNA, protein expression, and activity were measured in mouse podocytes cultured in both normal and high glucose and osmolarity for 6 hours to 5 days. Hyperosmolarity acutely stimulated AR expression and activity, with subsequent increase of AR expression but decrease of activity. High glucose also elevated AR protein level; however, this was not accompanied by respective enzyme activation. Furthermore, high glucose appeared to counteract the osmolarity-dependent activation of AR. In conclusion, in podocytes AR is modulated by high glucose and increased osmolarity in a different manner. Posttranslational events may affect AR activity independent of enzyme protein amount. Activation of AR in podocytes may be implicated in diabetic podocytopathy.
Collapse
|
14
|
Liu Y, Echtermeyer F, Thilo F, Theilmeier G, Schmidt A, Schülein R, Jensen BL, Loddenkemper C, Jankowski V, Marcussen N, Gollasch M, Arendshorst WJ, Tepel M. The proteoglycan syndecan 4 regulates transient receptor potential canonical 6 channels via RhoA/Rho-associated protein kinase signaling. Arterioscler Thromb Vasc Biol 2011; 32:378-85. [PMID: 22155451 DOI: 10.1161/atvbaha.111.241018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Syndecan 4 (Sdc4) modulates signal transduction and regulates activity of protein channels. Sdc4 is essential for the regulation of cellular permeability. We hypothesized that Sdc4 may regulate transient receptor potential canonical 6 (TRPC6) channels, a determinant of glomerular permeability, in a RhoA/Rho-associated protein kinase-dependent manner. METHODS AND RESULTS Sdc4 knockout (Sdc4(-/-)) mice showed increased glomerular filtration rate and ameliorated albuminuria under baseline conditions and after bovine serum albumin overload (each P<0.05). Using reverse transcription-polymerase chain reaction and immunoblotting, Sdc4(-/-) mice showed reduced TRPC6 mRNA by 79% and TRPC6 protein by 82% (each P<0.05). Sdc4(-/-) mice showed an increased RhoA activity by 87% and increased phosphorylation of ezrin in glomeruli by 48% (each P<0.05). Sdc4 knockdown in cultured podocytes reduced TRPC6 gene expression and reduced the association of TRPC6 with plasma membrane and TRPC6-mediated calcium influx and currents. Sdc4 knockdown inactivated negative regulatory protein Rho GTPase activating protein by 33%, accompanied by a 41% increase in RhoA activity and increased phosphorylation of ezrin (P<0.05). Conversely, overexpression of Sdc4 reduced RhoA activity and increased TRPC6 protein and TRPC6-mediated calcium influx and currents. CONCLUSIONS Our results establish a previously unknown function of Sdc4 for regulation of TRPC6 channels and support the role of Sdc4 for the regulation of glomerular permeability.
Collapse
Affiliation(s)
- Ying Liu
- Odense University Hospital and University of Southern Denmark, Institute for Molecular Medicine, Cardiovascular and Renal Research, Institute of Clinical Research, Winsløwparken 21.3, DK-5000 Odense C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
OBJECTIVE Diabetic kidney disease (DKD) is the single leading cause of kidney failure in the U.S., for which a cure has not yet been found. The aim of our study was to provide an unbiased catalog of gene-expression changes in human diabetic kidney biopsy samples. RESEARCH DESIGN AND METHODS Affymetrix expression arrays were used to identify differentially regulated transcripts in 44 microdissected human kidney samples. DKD samples were significant for their racial diversity and decreased glomerular filtration rate (~25-35 mL/min). Stringent statistical analysis, using the Benjamini-Hochberg corrected two-tailed t test, was used to identify differentially expressed transcripts in control and diseased glomeruli and tubuli. Two different web-based algorithms were used to define differentially regulated pathways. RESULTS We identified 1,700 differentially expressed probesets in DKD glomeruli and 1,831 in diabetic tubuli, and 330 probesets were commonly differentially expressed in both compartments. Pathway analysis highlighted the regulation of Ras homolog gene family member A, Cdc42, integrin, integrin-linked kinase, and vascular endothelial growth factor signaling in DKD glomeruli. The tubulointerstitial compartment showed strong enrichment for inflammation-related pathways. The canonical complement signaling pathway was determined to be statistically differentially regulated in both DKD glomeruli and tubuli and was associated with increased glomerulosclerosis even in a different set of DKD samples. CONCLUSIONS Our studies have cataloged gene-expression regulation and identified multiple novel genes and pathways that may play a role in the pathogenesis of DKD or could serve as biomarkers.
Collapse
Affiliation(s)
- Karolina I. Woroniecka
- Department of Medicine, Division of Nephrology, Albert Einstein College of Medicine, Bronx, New York
| | - Ae Seo Deok Park
- Department of Medicine, Division of Nephrology, Albert Einstein College of Medicine, Bronx, New York
| | - Davoud Mohtat
- Department of Pediatrics, Division of Nephrology, Albert Einstein College of Medicine, Bronx, New York
| | | | - James M. Pullman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Katalin Susztak
- Department of Medicine, Division of Nephrology, Albert Einstein College of Medicine, Bronx, New York
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
- Corresponding author: Katalin Susztak,
| |
Collapse
|
16
|
Thilo F, Liu Y, Loddenkemper C, Schuelein R, Schmidt A, Yan Z, Zhu Z, Zakrzewicz A, Gollasch M, Tepel M. VEGF regulates TRPC6 channels in podocytes. Nephrol Dial Transplant 2011; 27:921-9. [DOI: 10.1093/ndt/gfr457] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
17
|
Meyer-Schwesinger C, Dehde S, Klug P, Becker JU, Mathey S, Arefi K, Balabanov S, Venz S, Endlich KH, Pekna M, Gessner JE, Thaiss F, Meyer TN. Nephrotic syndrome and subepithelial deposits in a mouse model of immune-mediated anti-podocyte glomerulonephritis. THE JOURNAL OF IMMUNOLOGY 2011; 187:3218-29. [PMID: 21844386 DOI: 10.4049/jimmunol.1003451] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Subepithelial immune complex deposition in glomerular disease causes local inflammation and proteinuria by podocyte disruption. A rat model of membranous nephropathy, the passive Heymann nephritis, suggests that Abs against specific podocyte Ags cause subepithelial deposit formation and podocyte foot process disruption. In this study, we present a mouse model in which a polyclonal sheep anti-mouse podocyte Ab caused subepithelial immune complex formation. Mice developed a nephrotic syndrome with severe edema, proteinuria, hypoalbuminemia, and elevated cholesterol and triglycerides. Development of proteinuria was biphasic: an initial protein loss was followed by a second massive increase of protein loss beginning at approximately day 10. By histology, podocytes were swollen. Electron microscopy revealed 60-80% podocyte foot process effacement and subepithelial deposits, but no disruption of the glomerular basement membrane. Nephrin and synaptopodin staining was severely disrupted, and podocyte number was reduced in anti-podocyte serum-treated mice, indicating severe podocyte damage. Immunohistochemistry detected the injected anti-podocyte Ab exclusively along the glomerular filtration barrier. Immunoelectron microscopy localized the Ab to podocyte foot processes and the glomerular basement membrane. Similarly, immunohistochemistry localized mouse IgG to the subepithelial space. The third complement component (C3) was detected in a linear staining pattern along the glomerular basement membrane and in the mesangial hinge region. However, C3-deficient mice were not protected from podocyte damage, indicating a complement-independent mechanism. Twenty proteins were identified as possible Ags to the sheep anti-podocyte serum by mass spectrometry. Together, these data establish a reproducible model of immune-mediated podocyte injury in mice with subepithelial immune complex formation.
Collapse
|
18
|
Proteomic identification of vanin-1 as a marker of kidney damage in a rat model of type 1 diabetic nephropathy. Kidney Int 2011; 80:272-81. [DOI: 10.1038/ki.2011.116] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Prunotto M, Ghiggeri G, Bruschi M, Gabbiani G, Lescuyer P, Hocher B, Chaykovska L, Berrera M, Moll S. Renal fibrosis and proteomics: current knowledge and still key open questions for proteomic investigation. J Proteomics 2011; 74:1855-70. [PMID: 21642026 DOI: 10.1016/j.jprot.2011.05.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 04/27/2011] [Accepted: 05/22/2011] [Indexed: 12/25/2022]
Abstract
Renal tubulo-interstitial fibrosis is a non-specific process, representing the final common pathway for all kidney diseases, irrespective of their initial cause, histological injury, or etiology, leading to gradual expansion of the fibrotic mass which destroys the normal structure of the tissue and results in organ dysfunction and, ultimately, in end-stage organ failure. Proteomic studies of the fibrotic pathophysiological mechanisms have been performed in cell cultures, animal models and human tissues, addressing some of the key issues. This article will review proteomic contribution to the raising current knowledge on renal fibrosis biology and also mention seminal open questions to which proteomic techniques and proteomists could fruitfully contribute.
Collapse
Affiliation(s)
- Marco Prunotto
- RenalChild Foundation, G. Gaslini Children Hospital, Genoa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Blutke A, Block C, Berendt F, Herbach N, Kemter E, Amann K, Fröhlich T, Arnold GJ, Wanke R. Differential glomerular proteome analysis of two murine nephropathy models at onset of albuminuria. Proteomics Clin Appl 2011; 5:375-81. [DOI: 10.1002/prca.201000103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/08/2010] [Accepted: 12/15/2010] [Indexed: 11/07/2022]
|
21
|
Stieger N, Worthmann K, Schiffer M. The role of metabolic and haemodynamic factors in podocyte injury in diabetes. Diabetes Metab Res Rev 2011; 27:207-15. [PMID: 21309047 DOI: 10.1002/dmrr.1164] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Podocyte loss is a common feature in human diabetes as well as in experimental diabetes in rodents. Almost all components of the diabetic milieu lead to serious podocyte stress, driving the cells towards cell cycle arrest and hypertrophy, detachment and apoptosis. Common pathway components induced by high glucose and advanced glycation end-products are reactive oxygen species, cyclin-dependent kinases (p27(Kip1)) and transforming growth factor-beta. In addition, mechanical stresses by stretch or shear forces, insulin deficiency or insulin resistance are independent components resulting in podocyte apoptosis and detachment. In this review, we discuss the common pathways leading to podocyte death as well as novel pathways and concepts of podocyte dedifferentiation and detachment that influence the progression of diabetic glomerulopathy.
Collapse
Affiliation(s)
- Nicole Stieger
- Division of Nephrology, Department of Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany
| | | | | |
Collapse
|
22
|
Abstract
Organs are complex structures that consist of multiple tissues with different levels of gene expression. To achieve comprehensive coverage and accurate quantitation data, organs ideally should be separated into morphologic and/or functional substructures before gene or protein expression analysis. However, because of complex morphology and elaborate isolation protocols, to date this often has been difficult to achieve. Kidneys are organs in which functional and morphologic subdivision is especially important. Each subunit of the kidney, the nephron, consists of more than 10 subsegments with distinct morphologic and functional characteristics. For a full understanding of kidney physiology, global gene and protein expression analyses have to be performed at the level of the nephron subsegments; however, such studies have been extremely rare to date. Here we describe the latest approaches in quantitative high-accuracy mass spectrometry-based proteomics and their application to quantitative proteomics studies of the whole kidney and nephron subsegments, both in human beings and in animal models. We compare these studies with similar studies performed on other organ substructures. We argue that the newest technologies used for preparation, processing, and measurement of small amounts of starting material are finally enabling global and subsegment-specific quantitative measurement of protein levels in the kidney and other organs. These new technologies and approaches are making a decisive impact on our understanding of the (patho)physiological processes at the molecular level.
Collapse
|
23
|
Karczewska J, Piwkowska A, Rogacka D, Stępiński J, Angielski S, Jankowski M. Purinergic modulation of glucose uptake into cultured rat podocytes: effect of diabetic milieu. Biochem Biophys Res Commun 2010; 404:723-7. [PMID: 21163251 DOI: 10.1016/j.bbrc.2010.12.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 11/29/2022]
Abstract
Extracellular purines act via P1 and P2 receptors on podocytes and may influence on their function. This action may be modified under various (patho)physiological conditions leading to development of podocytopathy. Aim of study was to investigate effects of diabetic milieu, represented by high glucose concentration (HG, 30 mM glucose) on purinergic-induced changes of 2-deoxy-D-glucose (2-DG) uptake and on extracellular purines metabolism in cultured rat podocytes. Basal 2-DG uptake was 2.7-fold enhanced in HG compared to normal glucose concentration, NG (1271 ± 86 vs. 477 ± 37 nmol/h/mg protein, P<0.001). ATP stimulated 2-DG uptake by 44 ± 4% and 29 ± 5% in NG and HG, respectively. ATP analogues, β, γ-methylene ATP and 2-methylthio ATP stimulated 2-DG uptake in range of 18-34% in NG and 16-17% in HG. Benzoylbenzoyl ATP increased 2-DG uptake about 24 ± 2% in NG however, its effect in HG reached 50 ± 1%. The antagonists of P2 receptors (suramin, reactive blue 2, PPADS) decreased basal 2-DG uptake in NG and HG; suramin and reactive blue 2 at average of 15 ± 4% in NG but in HG the effect was in following order: suramin 28 ± 3%; PPADS 20 ± 3% and RB-2 9 ± 0.9%. Extracellular adenosine concentration was higher in HG than in NG (0.48 ± 0.01 vs. 5.05 ± 0.39 μM, P < 0.05), however intracellular ATP content and extracellular ATP concentration were not affected. Neither ecto-ATPase nor ecto-5'-nucleotidase activities were affected in HG. In conclusion, diabetic milieu affects purinergic modulation of glucose transport into podocytes which may play a role in development of diabetic podocytopathy.
Collapse
Affiliation(s)
- Joanna Karczewska
- Laboratory of Molecular and Cellular Nephrology, M. Mossakowski Medical Research Centre, Polish Academy of Science, Medical University of Gdańsk, Poland
| | | | | | | | | | | |
Collapse
|
24
|
|