1
|
Sikander M, Malik S, Apraku J, Kumari S, Khan P, Mandil H, Ganju A, Chauhan B, Bell MC, Singh MM, Khan S, Yallapu MM, Halaweish FT, Jaggi M, Chauhan SC. Synthesis and Antitumor Activity of Brominated-Ormeloxifene (Br-ORM) against Cervical Cancer. ACS OMEGA 2023; 8:38839-38848. [PMID: 37901538 PMCID: PMC10601051 DOI: 10.1021/acsomega.3c02277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/17/2023] [Indexed: 10/31/2023]
Abstract
Aberrant regulation of β-catenin signaling is strongly linked with cancer proliferation, invasion, migration, and metastasis, thus, small molecules that can inhibit this pathway might have great clinical significance. Our molecular modeling studies suggest that ormeloxifene (ORM), a triphenylethylene molecule that docks with β-catenin, and its brominated analogue (Br-ORM) bind more effectively with relatively less energy (-7.6 kcal/mol) to the active site of β-catenin as compared to parent ORM. Herein, we report the synthesis and characterization of a Br-ORM by NMR and FTIR, as well as its anticancer activity in cervical cancer models. Br-ORM treatment effectively inhibited tumorigenic features (cell proliferation and colony-forming ability, etc.) and induced apoptotic death, as evident by pronounced PARP cleavage. Furthermore, Br-ORM treatment caused cell cycle arrest at the G1-S phase. Mechanistic investigation revealed that Br-ORM targets the key proteins involved in promoting epithelial-mesenchymal transition (EMT), as demonstrated by upregulation of E-cadherin and repression of N-cadherin, Vimentin, Snail, MMP-2, and MMP-9 expression. Br-ORM also represses the expression and nuclear subcellular localization of β-catenin. Consequently, Br-ORM treatment effectively inhibited tumor growth in an orthotopic cervical cancer xenograft mouse model along with EMT associated changes as compared to vehicle control-treated mice. Altogether, experimental findings suggest that Br-ORM is a novel, promising β-catenin inhibitor and therefore can be harnessed as a potent anticancer small molecule for cervical cancer treatment.
Collapse
Affiliation(s)
- Mohammed Sikander
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Shabnam Malik
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - John Apraku
- South
Dakota State University, Brookings, South Dakota 57007-2201, United States
| | - Sonam Kumari
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- National
Institutes of Health, Bathesda, South Dakota 20892-4874, United States
| | - Parvez Khan
- Jamia
Millia Islamia University, New Delhi 110025, India
| | - Hassan Mandil
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Aditya Ganju
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Memorial
Sloan Kettering Cancer Center, New York, New York 10065 United States
| | - Bhavin Chauhan
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Maria C. Bell
- Sanford
Health, Sanford Gynecologic Oncology Clinic, Sioux Falls, South Dakota 57104, United States
| | - Man Mohan Singh
- Endocrinology
Division, CSIR-Central Drug Research Institute, Lucknow 226001, India
| | - Sheema Khan
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Murali M. Yallapu
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Fathi T. Halaweish
- South
Dakota State University, Brookings, South Dakota 57007-2201, United States
| | - Meena Jaggi
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Subhash C. Chauhan
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
2
|
Ye X, Wang L, Yang X, Yang J, Zhou J, Lan C, Kantawong F, Kumsaiyai W, Wu J, Zeng J. Integrated Chemical Characterization, Network Pharmacology and Transcriptomics to Explore the Mechanism of Sesquiterpenoids Isolated from Gynura divaricata (L.) DC. against Chronic Myelogenous Leukemia. Pharmaceuticals (Basel) 2022; 15:1435. [PMID: 36422564 PMCID: PMC9693606 DOI: 10.3390/ph15111435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 08/30/2023] Open
Abstract
Chronic myelogenous leukemia (CML) is a serious threat to human health, while drugs for CML are limited. Herbal medicines with structural diversity, low toxicity and low drug resistance are always the most important source for drug discoveries. Gynura divaricata (L.) DC. is a well-known herbal medicine whose non-alkaline ingredients (GD-NAIs) were isolated. The GD-NAIs demonstrated potential anti-CML activity in our preliminary screening tests. However, the chemical components and underlying mechanism are still unknown. In this study, GD-NAIs were tentatively characterized using UHPLC-HRMS combined with molecular networking, which were composed of 75 sesquiterpenoids. Then, the anti-CML activities of GD-NAIs were evaluated and demonstrated significant suppression of proliferation and promotion of apoptosis in K562 cells. Furthermore, the mechanism of GD-NAIs against CML were elucidated using network pharmacology combined with RNA sequencing. Four sesquiterpenoids would be the main active ingredients of GD-NAIs against CML, which could regulate PD-L1 expression and the PD-1 checkpoint pathway in cancer, PI3K/AKT, JAK/STAT, TGF-β, estrogen, Notch and Wnt signaling pathways. In conclusion, our study reveals the composition of GD-NAIs, confirms its anti-CML activity and elucidates their underlying mechanism, which is a potential countermeasure for the treatment of CML.
Collapse
Affiliation(s)
- Xinyuan Ye
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xin Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jie Yang
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Faculty Associated Medical Sciences, Department of Medical Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jie Zhou
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Cai Lan
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fahsai Kantawong
- Faculty Associated Medical Sciences, Department of Medical Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Warunee Kumsaiyai
- Faculty Associated Medical Sciences, Department of Medical Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
- Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou 646000, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
3
|
ERK: A Double-Edged Sword in Cancer. ERK-Dependent Apoptosis as a Potential Therapeutic Strategy for Cancer. Cells 2021; 10:cells10102509. [PMID: 34685488 PMCID: PMC8533760 DOI: 10.3390/cells10102509] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
The RAF/MEK/ERK signaling pathway regulates diverse cellular processes as exemplified by cell proliferation, differentiation, motility, and survival. Activation of ERK1/2 generally promotes cell proliferation, and its deregulated activity is a hallmark of many cancers. Therefore, components and regulators of the ERK pathway are considered potential therapeutic targets for cancer, and inhibitors of this pathway, including some MEK and BRAF inhibitors, are already being used in the clinic. Notably, ERK1/2 kinases also have pro-apoptotic functions under certain conditions and enhanced ERK1/2 signaling can cause tumor cell death. Although the repertoire of the compounds which mediate ERK activation and apoptosis is expanding, and various anti-cancer compounds induce ERK activation while exerting their anti-proliferative effects, the mechanisms underlying ERK1/2-mediated cell death are still vague. Recent studies highlight the importance of dual-specificity phosphatases (DUSPs) in determining the pro- versus anti-apoptotic function of ERK in cancer. In this review, we will summarize the recent major findings in understanding the role of ERK in apoptosis, focusing on the major compounds mediating ERK-dependent apoptosis. Studies that further define the molecular targets of these compounds relevant to cell death will be essential to harnessing these compounds for developing effective cancer treatments.
Collapse
|
4
|
Sharma A, Upadhyay V, Sarkar M, Mishra M, Thacker G, Trivedi AK. Proteomic analysis of TGFβ-induced A549 secretome identifies putative regulators of epithelial-mesenchymal transition. Biotechnol Appl Biochem 2021; 69:442-450. [PMID: 33559923 DOI: 10.1002/bab.2121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/29/2021] [Indexed: 11/10/2022]
Abstract
Imparting epithelial to mesenchymal transition (EMT) during cellular transformation, a major driving force behind tumor progression, is one of the notorious oncogenic activities of transforming growth factor β (TGFβ); however, the secretary factors released during TGFβ-induced EMT that may have role in potentiating EMT and tumor progression are poorly known. This study was undertaken to identify such secreted protein factors from TGFβ-induced A549 cells cultured in serum-free chemically defined medium (FreestyleTM ) using Matrix Assisted Laser Desorption Ionization-Time of flight/Time of flight (MALDI-TOF/TOF) mass spectrometry. We identified some of the potential factors such as ESR, ANXA2, ALDH1A, TGFβ-induced protein ig-h3, and PAI-1 that were not only secreted but some were also elevated in TGFβ-induced A549 cells. Interestingly, these factors are widely reported to play crucial role in EMT induction and progression, which not only validates our findings but also opens avenues for further investigation, if upon secretion they act exogenously through certain receptors to potentiate cellular signaling involved in EMT induction and tumor progression.
Collapse
Affiliation(s)
- Akshay Sharma
- Division of Cancer Biology, CSIR-Central Drug Research Institute, CDRI, Lucknow, UP, India
| | - Vishal Upadhyay
- Division of Cancer Biology, CSIR-Central Drug Research Institute, CDRI, Lucknow, UP, India
| | - Monika Sarkar
- Division of Cancer Biology, CSIR-Central Drug Research Institute, CDRI, Lucknow, UP, India
| | - Mukul Mishra
- Division of Cancer Biology, CSIR-Central Drug Research Institute, CDRI, Lucknow, UP, India
| | - Gatha Thacker
- Division of Cancer Biology, CSIR-Central Drug Research Institute, CDRI, Lucknow, UP, India
| | - Arun Kumar Trivedi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, CDRI, Lucknow, UP, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| |
Collapse
|
5
|
Sharma A, Mishra T, Thacker G, Mishra M, Narender T, Trivedi AK. Chebulinic acid inhibits MDA‐MB‐231 breast cancer metastasis and promotes cell death through down regulation of SOD1 and induction of autophagy. Cell Biol Int 2020; 44:2553-2569. [DOI: 10.1002/cbin.11463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/17/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Akshay Sharma
- Division of Cancer Biology CSIR‐Central Drug Research Institute Lucknow Uttar Pradesh India
| | - Tripti Mishra
- Medicinal and Process Chemistry Division CSIR‐Central Drug Research Institute (CSIR‐CDRI) Lucknow Uttar Pradesh India
| | - Gatha Thacker
- Division of Cancer Biology CSIR‐Central Drug Research Institute Lucknow Uttar Pradesh India
| | - Mukul Mishra
- Division of Cancer Biology CSIR‐Central Drug Research Institute Lucknow Uttar Pradesh India
| | - Tadigoppula Narender
- Medicinal and Process Chemistry Division CSIR‐Central Drug Research Institute (CSIR‐CDRI) Lucknow Uttar Pradesh India
| | - Arun Kumar Trivedi
- Division of Cancer Biology CSIR‐Central Drug Research Institute Lucknow Uttar Pradesh India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| |
Collapse
|
6
|
Chauhan N, Kruse A, Newby H, Jaggi M, Yallapu MM, Chauhan SC. Pluronic Polymer-Based Ormeloxifene Nanoformulations Induce Superior Anticancer Effects in Pancreatic Cancer Cells. ACS OMEGA 2020; 5:1147-1156. [PMID: 31984272 PMCID: PMC6977081 DOI: 10.1021/acsomega.9b03382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/16/2019] [Indexed: 05/14/2023]
Abstract
Utilization of safe cytotoxic agents with precise anticancer activity is considered as the prime focus of cancer therapeutics research. A greater incentive for such agents arises from the molecules/drugs that are already being used for other indications. Ormeloxifene (ORM) is a nonsteroidal, nonhormonal selective estrogen receptor modulator (SERM), which has been in human use for contraception purposes. Although in the recent past, many reports have suggested its emerging role as an anticancer agent, no significant attention was paid toward generating simple and safe nanoformulation(s) for improved therapeutic activity and tumor cell-specific delivery. Our aim is to develop nanoformulation(s) of ormeloxifene to improve its targeted delivery in tumor cells. We developed ormeloxifene nanoformulation(s) by utilizing various biocompatible polymers. The optimized formulations with pluronic polymers F127 and F68 show improved nanoparticle characteristics. These formulations show enhanced cellular uptake that allows ormeloxifene's intracellular availability. We further evaluated its improved anticancer activity by performing cell proliferation, flow cytometry, and immunoblotting assays. Overall, this study confirms possible novel nanoformulation(s) of ormeloxifene to be evolved as a new therapeutic modality for cancer treatment.
Collapse
Affiliation(s)
- Neeraj Chauhan
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- Department
of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Cancer
Biology Research Center, Sanford Research/USD, Sioux Falls, South Dakota 57105, United States
| | - Amber Kruse
- Cancer
Biology Research Center, Sanford Research/USD, Sioux Falls, South Dakota 57105, United States
- Division
of Natural Sciences, Mount Marty College, Yankton, South Dakota 57078, United States
| | - Hilary Newby
- Cancer
Biology Research Center, Sanford Research/USD, Sioux Falls, South Dakota 57105, United States
- Division
of Natural Sciences, Augustana College, Sioux Falls, South Dakota 57105, United States
| | - Meena Jaggi
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- Department
of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Cancer
Biology Research Center, Sanford Research/USD, Sioux Falls, South Dakota 57105, United States
| | - Murali M. Yallapu
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- Department
of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Cancer
Biology Research Center, Sanford Research/USD, Sioux Falls, South Dakota 57105, United States
- E-mail: . Tel: +1 (956) 296 1734 (M.M.Y.)
| | - Subhash C. Chauhan
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- Department
of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Cancer
Biology Research Center, Sanford Research/USD, Sioux Falls, South Dakota 57105, United States
- E-mail: . Tel: +1 (956) 296 5000 (S.C.C.)
| |
Collapse
|
7
|
Torralba M, Farra R, Maddaloni M, Grassi M, Dapas B, Grassi G. Drugs Repurposing in High-Grade Serous Ovarian Cancer. Curr Med Chem 2020; 27:7222-7233. [PMID: 32660396 DOI: 10.2174/0929867327666200713190520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Ovary Carcinoma (OC) is the most lethal gynecological neoplasm due to the late diagnoses and to the common development of resistance to platinum-based chemotherapy. Thus, novel therapeutic approaches are urgently required. In this regard, the strategy of drug repurposing is becoming attractive. By this approach, the effectiveness of a drug originally developed for another indication is tested in a different pathology. The advantage is that data about pharmacokinetic properties and toxicity are already available. Thus, in principle, it is possible to reduce research costs and to speed up drug usage/marketing. RESULTS Here, some noticeable examples of repurposed drugs for OC, such as amiodarone, ruxolitinib, statins, disulfiram, ormeloxifenem, and Quinacrine, are reported. Amiodarone, an antiarrhythmic agent, has shown promising anti-OC activity, although the systemic toxicity should not be neglected. The JAK inhibitor, Ruxolitinib, may be employed particularly in coadministration with standard OC therapy as it synergistically interacts with platinum-based drugs. Particularly interesting is the use of statin which represent one of the most commonly administered drugs in aged population to treat hypercholesterolemia. Disulfiram, employed in the treatment of chronic alcoholism, has shown anti-OC properties. Ormeloxifene, commonly used for contraception, seems to be promising, especially due to the negligible side effects. Finally, Quinacrine used as an antimicrobial and anti-inflammatory drug, is able to downregulate OC cell growth and promote cell death. CONCLUSION Whereas further testing in patients are necessary to better clarify the therapeutic potential of repurposed drugs for OC, it is believed that their use, better if combined with OC targeted delivery systems, can significantly contribute to the development of novel and effective anti-OC treatments.
Collapse
Affiliation(s)
- Manuel Torralba
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Rossella Farra
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume 447,
34149 Trieste, Italy
| | - Marianna Maddaloni
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio
6/A, I-34127 Trieste, Italy
| | - Barbara Dapas
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume 447,
34149 Trieste, Italy
| |
Collapse
|
8
|
Mishra M, Sharma A, Thacker G, Trivedi AK. Nano-LC based proteomic approach identifies that E6AP interacts with ENO1 and targets it for degradation in breast cancer cells. IUBMB Life 2019; 71:1896-1905. [PMID: 31329371 DOI: 10.1002/iub.2132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
Abstract
E6AP (E6 associated protein) is a HECT domain containing protein having dual E3 ligase and ERα coactivation activity in breast cancer cells. Although E6AP is known to possess antitumorigenic activity, the underlying molecular mechanism is poorly understood. In the present study, we applied nano-LC based proteomics approach to identify E6AP-interacting proteins where we performed GST-pull down using GST-E6AP from whole cell extracts of MCF7 cells, resolved the differentially interacting proteins on 1D-SDS-PAGE, excised the gel bands that were trypsin digested followed by fractionation and spotting on MALDI-TOF/TOF plate through Nano-LC MALDI spotter. Subsequently, fractionated and spotted peptides were identified using MALDI-TOF/TOF. We identified several E6AP interacting proteins including previously reported such as HSP70 and new ones such as Enolase-1. We further confirmed that E6AP and Enolase1 interacted and colocalized more in the cytoplasmic periphery in breast cancer cells and further demonstrated that E6AP also targeted ENO1 for ubiquitin-mediated degradation in these cells.
Collapse
Affiliation(s)
- Mukul Mishra
- Room No. LSS008, Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Akshay Sharma
- Room No. LSS008, Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Gatha Thacker
- Room No. LSS008, Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Arun K Trivedi
- Room No. LSS008, Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
9
|
Ciocci M, Iorio E, Carotenuto F, Khashoggi HA, Nanni F, Melino S. H2S-releasing nanoemulsions: a new formulation to inhibit tumor cells proliferation and improve tissue repair. Oncotarget 2018; 7:84338-84358. [PMID: 27741519 PMCID: PMC5356665 DOI: 10.18632/oncotarget.12609] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022] Open
Abstract
The improvement of solubility and/or dissolution rate of poorly soluble natural compounds is an ideal strategy to make them optimal candidates as new potential drugs. Accordingly, the allyl sulfur compounds and omega-3 fatty acids are natural hydrophobic compounds that exhibit two important combined properties: cardiovascular protection and antitumor activity. Here, we have synthesized and characterized a novel formulation of diallyl disulfide (DADS) and α-linolenic acid (ALA) as protein-nanoemulsions (BAD-NEs), using ultrasounds. BAD-NEs are stable over time at room temperature and show antioxidant and radical scavenging property. These NEs are also optimal H2S slow-release donors and show a significant anti-proliferative effect on different human cancer cell lines: MCF-7 breast cancer and HuT 78 T-cell lymphoma cells. BAD-NEs are able to regulate the ERK1/2 pathway, inducing apoptosis and cell cycle arrest at the G0/G1 phase. We have also investigated their effect on cell proliferation of human adult stem/progenitor cells. Interestingly, BAD-NEs are able to improve the Lin- Sca1+ human cardiac progenitor cells (hCPC) proliferation. This stem cell growth stimulation is combined with the expression and activation of proteins involved in tissue-repair, such as P-AKT, α-sma and connexin 43. Altogether, our results suggest that these antioxidant nanoemulsions might have potential application in selective cancer therapy and for promoting the muscle tissue repair.
Collapse
Affiliation(s)
- Matteo Ciocci
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Egidio Iorio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Felicia Carotenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Haneen A Khashoggi
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Nanni
- Department of Industrial Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Sonia Melino
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
10
|
Bhattacharjee A, Hasanain M, Kathuria M, Singh A, Datta D, Sarkar J, Mitra K. Ormeloxifene-induced unfolded protein response contributes to autophagy-associated apoptosis via disruption of Akt/mTOR and activation of JNK. Sci Rep 2018; 8:2303. [PMID: 29396506 PMCID: PMC5797234 DOI: 10.1038/s41598-018-20541-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/19/2018] [Indexed: 12/11/2022] Open
Abstract
Autophagy, a regulated nutrient recycling program can affect both cell survival and cell death. Here, we show that Ormeloxifene (ORM), a selective estrogen receptor modulator approved for oral contraceptive use induces autophagic flux in ovarian cancer cells, which is activated by an ER stress response upstream of autophagy. The ER stress response is characterized by activation of IRE1α, PERK and ATF6 and is under regulation of JNK. Pharmacological inhibition of either autophagy or ER stress increased cell survival, as did silencing of autophagy proteins LC3 and Beclin 1, implying that ORM-induced autophagy is pro-death in nature. Ultrastructural observations of treated cells confirmed stages of autophagic maturation. Caspase-dependent apoptosis succeeded these events and was characterized by generation of reactive oxygen species and disruption of mitochondrial membrane potential. A concomitant inhibition of the Akt/mTOR axis was also observed with possible regulation of Akt by ORM. ORM inhibited tumor growth in ovarian xenograft model and displayed autophagic activity. In summary, in vitro and in vivo results reveal that ORM induces autophagy-associated cell death to attenuate proliferation of ovarian cancer cells. Our results demonstrate that using ORM in combination with ER stress and autophagy modulators could offer better therapeutic outcome in ovarian cancer.
Collapse
Affiliation(s)
- Arindam Bhattacharjee
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, 226 031, India
| | - Mohammad Hasanain
- Biochemistry Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, 226 031, India
| | - Manoj Kathuria
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, 226 031, India
| | - Akhilesh Singh
- Biochemistry Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, 226 031, India
| | - Dipak Datta
- Biochemistry Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, 226 031, India.,Academy of Scientific and Innovative Research, Chennai, 600113, India
| | - Jayanta Sarkar
- Biochemistry Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, 226 031, India. .,Academy of Scientific and Innovative Research, Chennai, 600113, India.
| | - Kalyan Mitra
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, 226 031, India. .,Academy of Scientific and Innovative Research, Chennai, 600113, India.
| |
Collapse
|
11
|
Centchroman regulates breast cancer angiogenesis via inhibition of HIF-1α/VEGFR2 signalling axis. Life Sci 2018; 193:9-19. [DOI: 10.1016/j.lfs.2017.11.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 11/24/2022]
|
12
|
Chhabra S, Mishra T, Kumar Y, Thacker G, Kanojiya S, Chattopadhyay N, Narender T, Trivedi AK. Chebulinic Acid Isolated From the Fruits of Terminalia chebula
Specifically Induces Apoptosis in Acute Myeloid Leukemia Cells. Phytother Res 2017; 31:1849-1857. [DOI: 10.1002/ptr.5927] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Stuti Chhabra
- Biochemistry Division; CSIR-Central Drug Research Institute (CSIR-CDRI); Sector-10, Jankipuram Extension Lucknow 226031 India
| | - Tripti Mishra
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute (CSIR-CDRI); Sector-10, Jankipuram Extension Lucknow 226031 India
| | - Yogesh Kumar
- Biochemistry Division; CSIR-Central Drug Research Institute (CSIR-CDRI); Sector-10, Jankipuram Extension Lucknow 226031 India
| | - Gatha Thacker
- Biochemistry Division; CSIR-Central Drug Research Institute (CSIR-CDRI); Sector-10, Jankipuram Extension Lucknow 226031 India
| | - Sanjeev Kanojiya
- Sophisticated Analytical Instrument Facility; CSIR-Central Drug Research Institute; Lucknow 226031 India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI); CSIR-Central Drug Research Institute (CSIR-CDRI); Sector-10, Jankipuram Extension Lucknow 226031 India
| | - Tadigoppula Narender
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute (CSIR-CDRI); Sector-10, Jankipuram Extension Lucknow 226031 India
| | - Arun Kumar Trivedi
- Biochemistry Division; CSIR-Central Drug Research Institute (CSIR-CDRI); Sector-10, Jankipuram Extension Lucknow 226031 India
| |
Collapse
|
13
|
Chhabra S, Mishra T, Kumar Y, Thacker G, Kanojiya S, Chattopadhyay N, Narender T, Trivedi AK. Chebulinic Acid Isolated From the Fruits of Terminalia chebula
Specifically Induces Apoptosis in Acute Myeloid Leukemia Cells. Phytother Res 2017. [DOI: 10.1002/ptr.5927 pmid: 28921713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Stuti Chhabra
- Biochemistry Division; CSIR-Central Drug Research Institute (CSIR-CDRI); Sector-10, Jankipuram Extension Lucknow 226031 India
| | - Tripti Mishra
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute (CSIR-CDRI); Sector-10, Jankipuram Extension Lucknow 226031 India
| | - Yogesh Kumar
- Biochemistry Division; CSIR-Central Drug Research Institute (CSIR-CDRI); Sector-10, Jankipuram Extension Lucknow 226031 India
| | - Gatha Thacker
- Biochemistry Division; CSIR-Central Drug Research Institute (CSIR-CDRI); Sector-10, Jankipuram Extension Lucknow 226031 India
| | - Sanjeev Kanojiya
- Sophisticated Analytical Instrument Facility; CSIR-Central Drug Research Institute; Lucknow 226031 India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI); CSIR-Central Drug Research Institute (CSIR-CDRI); Sector-10, Jankipuram Extension Lucknow 226031 India
| | - Tadigoppula Narender
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute (CSIR-CDRI); Sector-10, Jankipuram Extension Lucknow 226031 India
| | - Arun Kumar Trivedi
- Biochemistry Division; CSIR-Central Drug Research Institute (CSIR-CDRI); Sector-10, Jankipuram Extension Lucknow 226031 India
| |
Collapse
|
14
|
Centchroman induces redox-dependent apoptosis and cell-cycle arrest in human endometrial cancer cells. Apoptosis 2017; 22:570-584. [DOI: 10.1007/s10495-017-1346-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Xiong W, Li J, Jiang R, Li D, Liu Z, Chen D. Research on the effect of ginseng polysaccharide on apoptosis and cell cycle of human leukemia cell line K562 and its molecular mechanisms. Exp Ther Med 2017; 13:924-934. [PMID: 28450921 PMCID: PMC5403339 DOI: 10.3892/etm.2017.4087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/11/2016] [Indexed: 01/19/2023] Open
Abstract
Ginseng polysaccharide (GPS), a polymer of glucose and the primary constituent extracted from panax ginseng, has been documented to exert various pharmacological properties, including anti-tumor properties. To provide further insights into the anti-tumor functions of GPS, the present study was designed to investigate the effect of GPS on apoptosis and the cell cycle of human leukemia cell line K562 cells, and its underlying mechanisms. The results demonstrated that GPS could inhibit K562 cell proliferation and induce apoptosis in vitro in a concentration- and time-dependent manner. The transcription of P38 and c-Jun NH2-terminal kinase (JNK) mRNA were significantly augmented, while the transcription of extracellular signal-regulated kinase (ERK) mRNA were significantly reduced following treatment with GPS compared with the control group (all P<0.05). In addition, GPS treatment markedly suppressed the expression of phosphorylated (p)-ERK, nuclear factor (NF)-κB p65 and cyclin D1, and increased the synthesis of p-P38 and p-JNK protein expression, as evidenced by immunofluorescence and western blotting analyses. In conclusion, the results indicate that the GPS-mediated MAPK/NF-κB/cyclin D1 signaling pathway serves a crucial role in cell cycle arrest and apoptosis of K562 cells.
Collapse
Affiliation(s)
- Wei Xiong
- Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jing Li
- Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Rong Jiang
- Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Danyang Li
- Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zehong Liu
- Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Dilong Chen
- Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
16
|
Kapoor I, Kanaujiya J, Kumar Y, Thota JR, Bhatt MLB, Chattopadhyay N, Sanyal S, Trivedi AK. Proteomic discovery of MNT as a novel interacting partner of E3 ubiquitin ligase E6AP and a key mediator of myeloid differentiation. Oncotarget 2016; 7:7640-56. [PMID: 26506232 PMCID: PMC4884944 DOI: 10.18632/oncotarget.6156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/30/2015] [Indexed: 12/31/2022] Open
Abstract
Perturbed stability of regulatory proteins is a major cause of transformations leading to cancer, including several leukemia subtypes. Here, for the first time we demonstrate that E6-associated protein (E6AP), an E3 ubiquitin ligase negatively targets MAX binding protein MNT for ubiquitin-mediated proteasome degradation and impedes ATRA mediated myeloid cell differentiation. MNT is a member of the Myc/Max/Mad network of transcription factor that regulates cell proliferation, differentiation, cellular transformation and tumorigenesis. Wild-type E6AP promoted proteasome dependent degradation of MNT, while catalytically inactive E6AP having cysteine replaced with alanine at amino-acid 843 position (E6APC843A) rather stabilized it. Further, these proteins physically associated with each other both in non-myeloid (HEK293T) and myeloid cells. MNT overexpression induced G0-G1 growth arrest and promoted myeloid differentiation while its knockdown mitigated even ATRA induced differentiation suggesting MNT to be crucial for myeloid differentiation. We further showed that ATRA inhibited E6AP and stabilized MNT expression by protecting it from E6AP mediated ubiquitin-proteasome degradation. Notably, E6AP knockdown in HL60 cells restored MNT expression and promoted myeloid differentiation. Taken together, our data demonstrated that E6AP negatively regulates granulocytic differentiation by targeting MNT for degradation which is required for growth arrest and subsequent myeloid differentiation by various differentiation inducing agents.
Collapse
Affiliation(s)
- Isha Kapoor
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Jitendra Kanaujiya
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Yogesh Kumar
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | | | - Madan L B Bhatt
- Department of Radiotherapy, King George's Medical University, Lucknow, UP, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, UP, India
| | - Sabyasachi Sanyal
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Arun Kumar Trivedi
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| |
Collapse
|
17
|
Kumar Y, Shukla N, Thacker G, Kapoor I, Lochab S, Bhatt MLB, Chattopadhyay N, Sanyal S, Trivedi AK. Ubiquitin Ligase, Fbw7, Targets CDX2 for Degradation via Two Phosphodegron Motifs in a GSK3β-Dependent Manner. Mol Cancer Res 2016; 14:1097-1109. [PMID: 27470268 DOI: 10.1158/1541-7786.mcr-16-0138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 12/23/2022]
Abstract
Drosophila caudal-related homeobox transcription factor 2 (CDX2) drives differentiation of the intestinal epithelium. Loss of CDX2 expression has been reported in several colorectal cancers and cancer cell lines with a potential inverse correlation between CDX2 levels and tumor stage. Ubiquitination of CDX2 leading to its downregulation has been implicated in several studies; however, the E3 ubiquitin ligases involved in CDX2 ubiquitination have largely remained unknown. Here, it is mechanistically determined that the E3 ubiquitin ligase Fbw7 promotes CDX2 ubiquitination and degradation through two phosphodegron motifs present within CDX2 in a GSK3β-dependent manner leading to its reduced expression and function in colon cancer cells. Fbw7, through its WD domain, interacted with CDX2 both in a heterologous HEK293T cell system and in colon cancer cells. GSK3β was also present in the same complex as determined by coimmunoprecipitation. Furthermore, overexpression of both Fbw7 or GSK3β down regulated endogenous CDX2 expression and function; however, both failed to inhibit endogenous CDX2 when either of them were depleted in colon cancer cells. Fbw7-mediated inhibition of CDX2 expression also led to reduced CDX2 transactivation and growth arrest of colon cancer cells. Both GSK3β and Fbw7 degraded mutant-CDX2 having either of the Cdc4-phosphodegron (CPD) motifs disrupted (CDX2-S60A or CDX-S281A), but were unable to degrade mutant-CDX2 having both CPDs disrupted (CDX2-S60,64,281A). IMPLICATIONS Taken together, these findings demonstrate that Fbw7 negatively regulates CDX2 expression in a GSK3β-dependent manner through two CPDs present in CDX2. Mol Cancer Res; 14(11); 1097-109. ©2016 AACR.
Collapse
Affiliation(s)
- Yogesh Kumar
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Nidhi Shukla
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Gatha Thacker
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Isha Kapoor
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Savita Lochab
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | | | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Sabyasachi Sanyal
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Arun Kumar Trivedi
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India.
| |
Collapse
|
18
|
Thacker G, Kumar Y, Khan MP, Shukla N, Kapoor I, Kanaujiya JK, Lochab S, Ahmed S, Sanyal S, Chattopadhyay N, Trivedi AK. Skp2 inhibits osteogenesis by promoting ubiquitin-proteasome degradation of Runx2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:510-9. [PMID: 26778333 DOI: 10.1016/j.bbamcr.2016.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/13/2015] [Accepted: 01/05/2016] [Indexed: 12/16/2022]
Abstract
Osteogenic transcription factor Runx2 is essential for osteoblast differentiation. The activity of Runx2 is tightly regulated at transcriptional as well as post-translational level. However, regulation of Runx2 stability by ubiquitin mediated proteasomal degradation by E3 ubiquitin ligases is little-known. Here, for the first time we demonstrate that Skp2, an SCF family E3 ubiquitin ligase negatively targets Runx2 by promoting its polyubiquitination and proteasome dependent degradation. Co-immunoprecipitation studies revealed that Skp2 physically interacts with Runx2 both in a heterologous as well as physiologically relevant system. Functional consequences of Runx2-Skp2 physical interaction were then assessed by promoter reporter assay. We show that Skp2-mediated downregulation of Runx2 led to reduced Runx2 transactivation and osteoblast differentiation. On the contrary, inhibition of Skp2 restored Runx2 levels and promoted osteoblast differentiation. We further show that Skp2 and Runx2 proteins are co-expressed and show inverse relation in vivo such as in lactating, ovariectomized and estrogen-treated ovariectomized animals. Together, these data demonstrate that Skp2 targets Runx2 for ubiquitin mediated degradation and hence negatively regulate osteogenesis. Therefore, the present study provides a plausible therapeutic target for osteoporosis or cleidocranial dysplasia caused by the heterozygous mutation of Runx2 gene.
Collapse
Affiliation(s)
- Gatha Thacker
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Yogesh Kumar
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Mohd Parvez Khan
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Nidhi Shukla
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Isha Kapoor
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Jitendra Kumar Kanaujiya
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Savita Lochab
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Shakil Ahmed
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Sabyasachi Sanyal
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India
| | - Arun Kumar Trivedi
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031, UP, India.
| |
Collapse
|
19
|
Ji X, Shi C, Li N, Wang K, Li Z, Luan Y. Catanionic drug-derivative nano-objects constructed by chlorambucil and its derivative for efficient leukaemia therapy. Colloids Surf B Biointerfaces 2015; 136:1081-8. [PMID: 26595388 DOI: 10.1016/j.colsurfb.2015.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/30/2015] [Accepted: 11/08/2015] [Indexed: 02/06/2023]
Abstract
A new carrier-free catanionic drug-derivative nano-object strategy is developed for leukaemia therapy. The as-prepared drug-derivative nano-objects are formed by ionic pairs of hydrophobic anticancer drug chlorambucil (CLB) and its derivative N-(2-Amino-ethyl)-4-{4-[bis-(2-chloro-ethyl)-amino]-phenyl}-butyramide (CLBM). The designed drug delivery system has the advantage of 100% drug content without additional carrier materials. The ionic pairs are formed by proton exchange between CLB and CLBM. Due to the amphiphilicity of the ionic pairs, they can assemble into well-defined drug-derivative (CLB-CLBM) nano-objects. Series of techniques such as transmission electron microscopy (TEM), dynamic light scattering (DLS) and electrical conductivity are used to investigate the property of the solution and aggregation behaviour of as-prepared drug-derivative ionic pairs. In vitro drug release study of the as-prepared nano-objects shows their prolonged drug release behavior. Specifically, in vitro cytotoxicity results of these nano-objects show obviously higher cytotoxicity, which is promising for clinical efficacy. This study may pave the way for the fabrication of carrier-free drug delivery system with efficient cancer therapy.
Collapse
Affiliation(s)
- Xiaoqing Ji
- School of Pharmaceutical Science, Shandong University, 44 West Wenhua Road, Jinan, Shandong Province, 250012, PR China
| | - Chunhuan Shi
- School of Pharmaceutical Science, Shandong University, 44 West Wenhua Road, Jinan, Shandong Province, 250012, PR China
| | - Nuannuan Li
- School of Pharmaceutical Science, Shandong University, 44 West Wenhua Road, Jinan, Shandong Province, 250012, PR China
| | - Kaiming Wang
- School of Pharmaceutical Science, Shandong University, 44 West Wenhua Road, Jinan, Shandong Province, 250012, PR China
| | - Zhonghao Li
- Key Lab of Colloid & Interface Chemistry, Shandong University, Ministry of Education, 250100, PR China
| | - Yuxia Luan
- School of Pharmaceutical Science, Shandong University, 44 West Wenhua Road, Jinan, Shandong Province, 250012, PR China.
| |
Collapse
|
20
|
Kumar Y, Kapoor I, Khan K, Thacker G, Khan MP, Shukla N, Kanaujiya JK, Sanyal S, Chattopadhyay N, Trivedi AK. E3 Ubiquitin Ligase Fbw7 Negatively Regulates Osteoblast Differentiation by Targeting Runx2 for Degradation. J Biol Chem 2015; 290:30975-87. [PMID: 26542806 DOI: 10.1074/jbc.m115.669531] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 11/06/2022] Open
Abstract
Runx2, a master regulator of osteoblast differentiation, is tightly regulated at both transcriptional and post-translational levels. Post-translational modifications such as phosphorylation and ubiquitination have differential effects on Runx2 functions. Here, we show that the reduced expression and functions of Runx2 upon its phosphorylation by GSK3β are mediated by its ubiquitin-mediated degradation through E3 ubiquitin ligase Fbw7α. Fbw7α through its WD domain interacts with Runx2 both in a heterologous (HEK293T cells) system as well as in osteoblasts. GSK3β was also present in the same complex as determined by co-immunoprecipitation. Furthermore, overexpression of either Fbw7α or GSK3β was sufficient to down-regulate endogenous Runx2 expression and function; however, both failed to inhibit endogenous Runx2 when either of them was depleted in osteoblasts. Fbw7α-mediated inhibition of Runx2 expression also led to reduced Runx2 transactivation and osteoblast differentiation. In contrast, inhibition of Fbw7α restored Runx2 levels and promoted osteoblast differentiation. We also observed reciprocal expression levels of Runx2 and Fbw7α in models of bone loss such as lactating (physiological bone loss condition) and ovariectomized (induction of surgical menopause) animals that show reduced Runx2 and enhanced Fbw7α, whereas this was reversed in the estrogen-treated ovariectomized animals. In addition, methylprednisolone (a synthetic glucocorticoid) treatment to neonatal rats showed a temporal decrease in Runx2 with a reciprocal increase in Fbw7 in their calvarium. Taken together, these data demonstrate that Fbw7α negatively regulates osteogenesis by targeting Runx2 for ubiquitin-mediated degradation in a GSK3β-dependent manner and thus provides a plausible explanation for GSK3β-mediated bone loss as described before.
Collapse
Affiliation(s)
- Yogesh Kumar
- From the Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031 Uttar Pradesh and
| | - Isha Kapoor
- From the Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031 Uttar Pradesh and
| | - Kainat Khan
- the Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031 Uttar Pradesh, India
| | - Gatha Thacker
- From the Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031 Uttar Pradesh and
| | - Mohd Parvez Khan
- the Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031 Uttar Pradesh, India
| | - Nidhi Shukla
- From the Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031 Uttar Pradesh and
| | - Jitendra Kumar Kanaujiya
- From the Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031 Uttar Pradesh and
| | - Sabyasachi Sanyal
- From the Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031 Uttar Pradesh and
| | - Naibedya Chattopadhyay
- the Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031 Uttar Pradesh, India
| | - Arun Kumar Trivedi
- From the Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031 Uttar Pradesh and
| |
Collapse
|
21
|
Khan S, Shukla S, Sinha S, Meeran SM. Centchroman altered the expressions of tumor-related genes through active chromatin modifications in mammary cancer. Mol Carcinog 2015; 55:1747-1760. [DOI: 10.1002/mc.22424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 09/03/2015] [Accepted: 10/02/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Sajid Khan
- Division of Endocrinology; Laboratory of Cancer Epigenetics; CSIR-Central Drug Research Institute; Lucknow India
| | - Samriddhi Shukla
- Division of Endocrinology; Laboratory of Cancer Epigenetics; CSIR-Central Drug Research Institute; Lucknow India
| | - Sonam Sinha
- Division of Endocrinology; Laboratory of Cancer Epigenetics; CSIR-Central Drug Research Institute; Lucknow India
| | - Syed Musthapa Meeran
- Division of Endocrinology; Laboratory of Cancer Epigenetics; CSIR-Central Drug Research Institute; Lucknow India
| |
Collapse
|
22
|
Khan S, Chauhan N, Yallapu MM, Ebeling MC, Balakrishna S, Ellis RT, Thompson PA, Balabathula P, Behrman SW, Zafar N, Singh MM, Halaweish FT, Jaggi M, Chauhan SC. Nanoparticle formulation of ormeloxifene for pancreatic cancer. Biomaterials 2015; 53:731-43. [PMID: 25890768 DOI: 10.1016/j.biomaterials.2015.02.082] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is the fourth most prevalent cancer with about an 85% mortality rate; thus, an utmost need exists to discover new therapeutic modalities that would enhance therapy outcomes of this disease with minimal or no side effects. Ormeloxifene (ORM), a synthetic molecule, has exhibited potent anti-cancer effects through inhibition of important oncogenic and proliferation signaling pathways. However, the anti-cancer efficacy of ORM can be further improved by developing its nanoformulation, which will also offer tumor specific targeted delivery. Therefore, we have developed a novel ORM encapsulated poly(lactic-co-glycolic acid) nanoparticle (NP) formulation (PLGA-ORM NP). This formulation was characterized for particle size, chemical composition, and drug loading efficiency, using various physico-chemical methods (TEM, FT-IR, DSC, TGA, and HPLC). Because of its facile composition, this novel formulation is compatible with antibody/aptamer conjugation to achieve tumor specific targeting. The particle size analysis of this PLGA-ORM formulation (∼100 nm) indicates that this formulation can preferentially reach and accumulate in tumors by the Enhanced Permeability and Retention (EPR) effect. Cellular uptake and internalization studies demonstrate that PLGA-ORM NPs escape lysosomal degradation, providing efficient endosomal release to cytosol. PLGA-ORM NPs showed remarkable anti-cancer potential in various pancreatic cancer cells (HPAF-II, AsPC-1, BxPC-3, Panc-1, and MiaPaca) and a BxPC-3 xenograft mice model resulting in increased animal survival. PLGA-ORM NPs suppressed pancreatic tumor growth via suppression of Akt phosphorylation and expression of MUC1, HER2, PCNA, CK19 and CD31. This study suggests that the PLGA-ORM formulation is highly efficient for the inhibition of pancreatic tumor growth and thus can be valuable for the treatment of pancreatic cancer in the future.
Collapse
Affiliation(s)
- Sheema Khan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Neeraj Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mara C Ebeling
- Cancer Biology Research Center, Sanford Research/USD, Sioux Falls, SD, USA
| | - Swathi Balakrishna
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert T Ellis
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Paul A Thompson
- Methodology and Data Analysis Center, Sanford Research, Sioux Falls, SD, USA
| | - Pavan Balabathula
- Department of Pharmaceutical Sciences and Plough Center for Sterile Drug Delivery Systems, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Stephen W Behrman
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nadeem Zafar
- Department of Pathology, University of Tennessee at Memphis, Memphis, TN, USA
| | - Man M Singh
- Saraswati Dental College, Lucknow, Uttar Pradesh, India
| | - Fathi T Halaweish
- Department of Chemistry & Biochemistry, South Dakota State University, Brookings, SD, 57007, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
23
|
Maher DM, Khan S, Nordquist JL, Ebeling MC, Bauer NA, Kopel L, Singh MM, Halaweish F, Bell MC, Jaggi M, Chauhan SC. Ormeloxifene efficiently inhibits ovarian cancer growth. Cancer Lett 2014; 356:606-12. [PMID: 25306892 DOI: 10.1016/j.canlet.2014.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 12/26/2022]
Abstract
Ovarian cancer continues to be a leading cause of cancer related deaths for women. Anticancer agents effective against chemo-resistant cells are greatly needed for ovarian cancer treatment. Repurposing drugs currently in human use is an attractive strategy for developing novel cancer treatments with expedited translation into clinical trials. Therefore, we examined whether ormeloxifene (ORM), a non-steroidal Selective Estrogen Receptor Modulator (SERM) currently used for contraception, is therapeutically effective at inhibiting ovarian cancer growth. We report that ORM treatment inhibits cell growth and induces apoptosis in ovarian cancer cell lines, including cell lines resistant to cisplatin. Furthermore, ORM treatment decreases Akt phosphorylation, increases p53 phosphorylation, and modulates the expression and localization patterns of p27, cyclin E, cyclin D1, and CDK2. In a pre-clinical xenograft mouse ORM treatment significantly reduces tumorigenesis and metastasis. These results indicate that ORM effectively inhibits the growth of cisplatin resistant ovarian cancer cells. ORM is currently in human use and has an established record of patient safety. Our encouraging in vitro and pre-clinical in vivo findings indicate that ORM is a promising candidate for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Diane M Maher
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Sheema Khan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jordan L Nordquist
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Mara C Ebeling
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Nichole A Bauer
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Lucas Kopel
- Department of Chemistry & Biochemistry, South Dakota State University, SD 57007, USA
| | | | - Fathi Halaweish
- Department of Chemistry & Biochemistry, South Dakota State University, SD 57007, USA
| | - Maria C Bell
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, USA; Departments of OB/GYN and Basic Biomedical Science Division, Sanford School of Medicine, The University of South Dakota, SD 57105, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
24
|
Gara RK, Sundram V, Chauhan SC, Jaggi M. Anti-cancer potential of a novel SERM ormeloxifene. Curr Med Chem 2014; 20:4177-84. [PMID: 23895678 DOI: 10.2174/09298673113209990197] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 01/21/2013] [Accepted: 03/20/2013] [Indexed: 12/17/2022]
Abstract
Ormeloxifene is a non-steroidal Selective Estrogen Receptor Modulator (SERM) that is used as an oral contraceptive. Recent studies have shown its potent anti-cancer activities in breast, head and neck, and chronic myeloid leukemia cells. Several in vivo and clinical studies have reported that ormeloxifene possesses an excellent therapeutic index and has been well-tolerated, without any haematological, biochemical or histopathological toxicity, even with chronic administration. A reasonably long period of time and an enormous financial commitment are required to develop a lead compound into a clinically approved anti-cancer drug. For these reasons and to circumvent these obstacles, ormeloxifene is a promising candidate on a fast track for the development or repurposing established drugs as anti-cancer agents for cancer treatment. The current review summarizes recent findings on ormeloxifene as an anti-cancer agent and future prospects of this clinically safe pharmacophore.
Collapse
|
25
|
Lochab S, Pal P, Kapoor I, Kanaujiya JK, Sanyal S, Behre G, Trivedi AK. E3 ubiquitin ligase Fbw7 negatively regulates granulocytic differentiation by targeting G-CSFR for degradation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2639-2652. [PMID: 23820376 DOI: 10.1016/j.bbamcr.2013.06.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/10/2013] [Accepted: 06/21/2013] [Indexed: 11/30/2022]
Abstract
Tight control between activation and attenuation of granulocyte colony stimulating factor receptor (G-CSFR) signaling is essential to regulate survival, proliferation and differentiation of myeloid progenitor cells. Previous studies demonstrated negative regulation of G-CSFR through endosomal-lysosomal routing and ubiquitin-proteasome mediated degradation. However, very few E3 ubiquitin ligases are known to target G-CSFR for ubiquitin-proteasome pathway. Here we identified F-box and WD repeat domain-containing 7 (Fbw7), a substrate recognizing component of Skp-Cullin-F box (SCF) E3 ubiquitin Ligase physically associates with G-CSFR and promotes its ubiquitin-mediated proteasomal degradation. Our data shows that Fbw7 also interacts with and degrades G-CSFR-T718 (a truncated mutant of G-CSFR found in severe congenital neutropenia/acute myeloid leukemia (SCN/AML patients)) though at a quite slower rate compared to G-CSFR. We further show that glycogen synthase kinase 3 beta (GSK3β), like Fbw7 also targets G-CSFR and G-CSFR-T718 for degradation; however, Fbw7 and GSK3β are interdependent in targeting G-CSFR/G-CSFR-T718 for degradation because they are unable to degrade G-CSFR individually when either of them is knocked down. We further show that Fbw7 mediated downregulation of G-CSFR inhibits signal transducer and activator of transcription 3 (STAT3) phosphorylation which is required for G-CSF dependent granulocytic differentiation. In addition, our data also shows that inhibition of Fbw7 restores G-CSFR signaling leading to enhanced STAT3 activity resulting in massive granulocytic differentiation. These data indicate that Fbw7 together with GSK3β negatively regulates G-CSFR expression and its downstream signaling.
Collapse
Affiliation(s)
- Savita Lochab
- Drug Target Discovery and Development Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031 UP, India
| | - Pooja Pal
- Drug Target Discovery and Development Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031 UP, India
| | - Isha Kapoor
- Drug Target Discovery and Development Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031 UP, India
| | - Jitendra Kumar Kanaujiya
- Drug Target Discovery and Development Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031 UP, India
| | - Sabyasachi Sanyal
- Drug Target Discovery and Development Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031 UP, India
| | - Gerhard Behre
- Division of Hematology and Oncology, University Hospital of Leipzig, Johannissallee 32A, 04103 Leipzig, Germany
| | - Arun Kumar Trivedi
- Drug Target Discovery and Development Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector-10, Jankipuram Extension, Lucknow, 226031 UP, India.
| |
Collapse
|
26
|
Kanaujiya JK, Lochab S, Kapoor I, Pal P, Datta D, Bhatt MLB, Sanyal S, Behre G, Trivedi AK. Proteomic identification of Profilin1 as a corepressor of estrogen receptor alpha in MCF7 breast cancer cells. Proteomics 2013; 13:2100-12. [DOI: 10.1002/pmic.201200534] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 03/04/2013] [Accepted: 03/12/2013] [Indexed: 01/11/2023]
Affiliation(s)
| | - Savita Lochab
- LSS008, DTDD Division; CSIR-Central Drug Research Institute; Lucknow UP India
| | - Isha Kapoor
- LSS008, DTDD Division; CSIR-Central Drug Research Institute; Lucknow UP India
| | - Pooja Pal
- LSS008, DTDD Division; CSIR-Central Drug Research Institute; Lucknow UP India
| | - Dipak Datta
- LSS008, DTDD Division; CSIR-Central Drug Research Institute; Lucknow UP India
| | - Madan L. B. Bhatt
- Department of Radiation Oncology; Dr. Ram Manohar Lohia Institute of Medical Sciences (RMLIMS); Lucknow UP India
| | - Sabyasachi Sanyal
- LSS008, DTDD Division; CSIR-Central Drug Research Institute; Lucknow UP India
| | - Gerhard Behre
- Division of Hematology and Oncology; University Hospital of Leipzig; Leipzig Germany
| | - Arun Kumar Trivedi
- LSS008, DTDD Division; CSIR-Central Drug Research Institute; Lucknow UP India
| |
Collapse
|
27
|
Pal P, Lochab S, Kanaujiya JK, Kapoor I, Sanyal S, Behre G, Trivedi AK. E3 ubiquitin ligase E6AP negatively regulates adipogenesis by downregulating proadipogenic factor C/EBPalpha. PLoS One 2013; 8:e65330. [PMID: 23762344 PMCID: PMC3676453 DOI: 10.1371/journal.pone.0065330] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/24/2013] [Indexed: 02/04/2023] Open
Abstract
CCAAT/Enhancer Binding Protein Alpha (C/EBPα) is a key transcription factor involved in the adipocyte differentiation. Here for the first time we demonstrate that E6AP, an E3 ubiquitin ligase inhibits adipocyte differentiation in 3T3-L1 cells as revealed by reduced lipid staining with oil red. Knock down of E6AP in mouse 3T3L1 preadipocytes is sufficient to convert them to adipocytes independent of external hormonal induction. C/EBPα protein level is drastically increased in E6AP deficient 3T3L1 preadipocytes while inverse is observed when wild type E6AP is over expressed. We show that transient transfection of wild type E6AP downregulates C/EBPα protein expression in a dose dependent manner while catalytically inactive E6AP-C843A rather stabilizes it. In addition, wild type E6AP inhibits expression of proadipogenic genes while E6AP-C843A enhances them. More importantly, overexpression of E6AP-C843A in mesenchymal progenitor cells promotes accumulation of lipid droplets while there is drastically reduced lipid droplet formation when E6AP is over expressed. Taken together, our finding suggests that E6AP may negatively control adipogenesis by inhibiting C/EBPα expression by targeting it to ubiquitin-proteasome pathway for degradation.
Collapse
Affiliation(s)
- Pooja Pal
- LSS008, DTDD Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Savita Lochab
- LSS008, DTDD Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Isha Kapoor
- LSS008, DTDD Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sabyasachi Sanyal
- LSS008, DTDD Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Gerhard Behre
- Division of Hematology and Oncology, University Hospital of Leipzig, Leipzig, Germany
| | - Arun Kumar Trivedi
- LSS008, DTDD Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
28
|
E6AP, an E3 ubiquitin ligase negatively regulates granulopoiesis by targeting transcription factor C/EBPα for ubiquitin-mediated proteasome degradation. Cell Death Dis 2013; 4:e590. [PMID: 23598402 PMCID: PMC3641343 DOI: 10.1038/cddis.2013.120] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CCAAT/enhancer-binding protein alpha (C/EBPα) is an important transcription factor involved in granulocytic differentiation. Here, for the first time we demonstrate that E6-associated protein (E6AP), an E3 ubiquitin ligase targets C/EBPα for ubiquitin-mediated proteasome degradation and thereby negatively modulates its functions. Wild-type E6AP promotes ubiquitin dependent proteasome degradation of C/EBPα, while catalytically inactive E6-associated protein having cysteine replaced with alanine at amino-acid position 843 (E6AP-C843A) rather stabilizes it. Further, these two proteins physically associate both in non-myeloid (overexpressed human embryonic kidney epithelium) and myeloid cells. We show that E6AP-mediated degradation of C/EBPα protein expression curtails its transactivation potential on its target genes. Noticeably, E6AP degrades both wild-type 42 kDa CCAAT-enhancer-binding protein alpha (p42C/EBPα) and mutant isoform 30 kDa CCAAT-enhancer-binding protein alpha (p30C/EBPα), this may explain perturbed p42C/EBPα/p30C/EBPα ratio often observed in acute myeloid leukemia (AML). We show that overexpression of catalytically inactive E6AP-C843A in C/EBPα inducible K562- p42C/EBPα-estrogen receptor (ER) cells inhibits β-estradiol (E2)-induced C/EBPα degradation leading to enhanced granulocytic differentiation. This enhanced granulocytic differentiation upon E2-induced activation of C/EBPα in C/EBPα stably transfected cells (β-estradiol inducible K562 cells stably expressing p42C/EBPα-ER (K562-C/EBPα-p42-ER)) was further substantiated by siE6AP-mediated knockdown of E6AP in both K562-C/EBPα-p42-ER and 32dcl3 (32D clone 3, a cell line widely used model for in vitro study of hematopoietic cell proliferation, differentiation, and apoptosis) cells. Taken together, our data suggest that E6AP targeted C/EBPα protein degradation may provide a possible explanation for both loss of expression and/or functional inactivation of C/EBPα often experienced in myeloid leukemia.
Collapse
|
29
|
Arntzen MØ, Bull VH, Thiede B. Cell death proteomics database: consolidating proteomics data on cell death. J Proteome Res 2013; 12:2206-13. [PMID: 23537399 DOI: 10.1021/pr4000703] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Programmed cell death is a ubiquitous process of utmost importance for the development and maintenance of multicellular organisms. More than 10 different types of programmed cell death forms have been discovered. Several proteomics analyses have been performed to gain insight in proteins involved in the different forms of programmed cell death. To consolidate these studies, we have developed the cell death proteomics (CDP) database, which comprehends data from apoptosis, autophagy, cytotoxic granule-mediated cell death, excitotoxicity, mitotic catastrophe, paraptosis, pyroptosis, and Wallerian degeneration. The CDP database is available as a web-based database to compare protein identifications and quantitative information across different experimental setups. The proteomics data of 73 publications were integrated and unified with protein annotations from UniProt-KB and gene ontology (GO). Currently, more than 6,500 records of more than 3,700 proteins are included in the CDP. Comparing apoptosis and autophagy using overrepresentation analysis of GO terms, the majority of enriched processes were found in both, but also some clear differences were perceived. Furthermore, the analysis revealed differences and similarities of the proteome between autophagosomal and overall autophagy. The CDP database represents a useful tool to consolidate data from proteome analyses of programmed cell death and is available at http://celldeathproteomics.uio.no.
Collapse
Affiliation(s)
- Magnus Ø Arntzen
- The Biotechnology Centre of Oslo, University of Oslo, 0317 Oslo, Norway.
| | | | | |
Collapse
|
30
|
Contino F, Mazzarella C, Ferro A, Lo Presti M, Roz E, Lupo C, Perconti G, Giallongo A, Feo S. Negative transcriptional control of ERBB2 gene by MBP-1 and HDAC1: diagnostic implications in breast cancer. BMC Cancer 2013; 13:81. [PMID: 23421821 PMCID: PMC3599235 DOI: 10.1186/1471-2407-13-81] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/28/2013] [Indexed: 11/10/2022] Open
Abstract
Background The human ERBB2 gene is frequently amplified in breast tumors, and its high expression is associated with poor prognosis. We previously reported a significant inverse correlation between Myc promoter-binding protein-1 (MBP-1) and ERBB2 expression in primary breast invasive ductal carcinoma (IDC). MBP-1 is a transcriptional repressor of the c-MYC gene that acts by binding to the P2 promoter; only one other direct target of MBP-1, the COX2 gene, has been identified so far. Methods To gain new insights into the functional relationship linking MBP-1 and ERBB2 in breast cancer, we have investigated the effects of MBP-1 expression on endogenous ERBB2 transcript and protein levels, as well as on transcription promoter activity, by transient-transfection of SKBr3 cells. Reporter gene and chromatin immunoprecipitation assays were used to dissect the ERBB2 promoter and identify functional MBP-1 target sequences. We also investigated the relative expression of MBP-1 and HDAC1 in IDC and normal breast tissues by immunoblot analysis and immunohistochemistry. Results Transfection experiments and chromatin immunoprecipitation assays in SKBr3 cells indicated that MBP-1 negatively regulates the ERBB2 gene by binding to a genomic region between nucleotide −514 and −262 of the proximal promoter; consistent with this, a concomitant recruitment of HDAC1 and loss of acetylated histone H4 was observed. In addition, we found high expression of MBP-1 and HDAC1 in normal tissues and a statistically significant inverse correlation with ErbB2 expression in the paired tumor samples. Conclusions Altogether, our in vitro and in vivo data indicate that the ERBB2 gene is a novel MBP-1 target, and immunohistochemistry analysis of primary tumors suggests that the concomitant high expression of MBP-1 and HDAC1 may be considered a diagnostic marker of cancer progression for breast IDC.
Collapse
Affiliation(s)
- Flavia Contino
- Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, Università di Palermo, Viale delle Scienze, Ed. 16, Palermo I-90128, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pal P, Kanaujiya JK, Lochab S, Tripathi SB, Sanyal S, Behre G, Trivedi AK. Proteomic analysis of rosiglitazone and guggulsterone treated 3T3-L1 preadipocytes. Mol Cell Biochem 2012; 376:81-93. [PMID: 23275126 DOI: 10.1007/s11010-012-1551-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 12/14/2012] [Indexed: 01/16/2023]
Abstract
Adipogenesis is the differentiation of preadipocytes to adipocytes which is marked by the accumulation of lipid droplets. Adipogenic differentiation of 3T3-L1 cells is achieved by exposing the cells to Insulin, Dexamethasone and IBMX for 5-7 days. Thiazolidinedione drugs, like rosiglitazone are potent insulin sensitizing agents and have been shown to enhance lipid droplet formation in 3T3-L1 cells, a model cell line for preadipocyte differentiation. Guggulsterone is a natural drug extracted from the gum resin of tree Commiphora mukul. Guggulsterone has been shown to inhibit adipogenesis and induce apoptosis in 3T3-L1 cells. In this study we treated the 3T3-L1 preadipocytes with rosiglitazone and guggulsterone and assessed the protein expression profile using 2D gel electrophoresis-based proteomics to find out differential target proteins of these drugs. The proteins that were identified upon rosiglitazone treatment generally regulate cell proliferation and/or exhibit anti-inflammatory effect which strengthens its differentiation-inducing property. Guggulsterone treatment resulted in the identification of the apoptosis-inducing proteins to be up regulated which rightly is in agreement with the apoptosis-inducing property of guggulsterone in 3T3-L1 cells. Some of the proteins identified in our proteomic screen such as Galectin1, AnnexinA2 & TCTP were further confirmed by Real Time qPCR. Thus, the present study provides a better outlook of proteins being differentially regulated/expressed upon treatment with rosiglitazone and guggulsterone. The detailed study of the differentially expressed proteins identified in this proteomic screen may further provide the better molecular insight into the mode of action of these anti-diabetic drugs rosiglitazone and guggulsterone.
Collapse
Affiliation(s)
- Pooja Pal
- Drug Target Discovery and Development Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, UP, India
| | | | | | | | | | | | | |
Collapse
|
32
|
Lochab S, Pal P, Kanaujiya JK, Tripathi SB, Kapoor I, Bhatt MLB, Sanyal S, Behre G, Trivedi AK. Proteomic identification of E6AP as a molecular target of tamoxifen in MCF7 cells. Proteomics 2012; 12:1363-77. [PMID: 22589186 DOI: 10.1002/pmic.201100572] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tamoxifen (Tam) is most widely used selective estrogen receptor modulator (SERM) for treatment of hormone-responsive breast cancer. Despite being regularly used in clinical therapy for breast cancer since 1971, the mechanism of Tam action remains largely unclear. In order to gain insights into Tam-mediated antibreast cancer actions, we applied 2DE and MS based proteomics approach to identify target proteins of Tam. We identified E6-associated protein, i.e. E6AP (UBE3A) among others to be regulated by Tam that otherwise is upregulated in breast tumors. We confirmed our 2DE finding by immunoblotting and further show that Tam leads to inhibition of E6AP expression presumably by promoting its autoubiquitination, which is coupled with nuclear export and subsequent proteasome-mediated degradation. Furthermore, we show that Tam- and siE6AP-mediated inhibition of E6AP leads to enhanced G0-G1 growth arrest and apoptosis, which is also evident from significant upregulation of cytochrome-c, Bax, p21, and PARP cleavage. Taken together, our data suggest that, Tam-targeted E6AP inhibition is in fact required for Tam-mediated antibreast cancer actions. Thus, E6AP may be a therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Savita Lochab
- DTDD Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
There are substantial experimental, epidemiological and clinical evidences that show that breast cancer pathology is influenced by endogenous estrogens. This knowledge is the foundation upon which endocrine deprivation therapy has been developed as a major modality for the management of breast cancer. Tamoxifen, which functions as a competitive partial agonist-inhibitor of estrogen at its receptor, has been widely used for more than three decades for adjuvant endocrine treatment in breast cancer. Currently, other effective drugs for endocrine therapy include raloxifene, different aromatase inhibitors (particularly third-generation agents) and luteinizing hormone-releasing hormone agonists. In recent years, a growing body of evidence suggests that these drugs can also act as immune modulators by altering the function of various leukocytes and the release of different cytokines. Moreover, there is evidence that anti-estrogens may prove to be beneficial in the treatment or prevention of some autoimmune diseases due to their effects on immune function. However, their immunopharmacological aspects in the present state of knowledge are not precisely comprehensible. Only a clear pathophysiological understanding could lead to an efficient strategy for breast cancer prevention and decrease in the mortality due to this disease.
Collapse
|
34
|
Reddy PJ, Jain R, Paik YK, Downey R, Ptolemy AS, Ozdemir V, Srivastava S. Personalized Medicine in the Age of Pharmacoproteomics: A Close up on India and Need for Social Science Engagement for Responsible Innovation in Post-Proteomic Biology. CURRENT PHARMACOGENOMICS AND PERSONALIZED MEDICINE 2011; 9:67-75. [PMID: 22279515 PMCID: PMC3264661 DOI: 10.2174/187569211794728850] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Panga Jaipal Reddy
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Rekha Jain
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Young-Ki Paik
- Yonsei Proteome Research Center, Biomedical Proteome Research Center, and Department of Biomedical Sciences, World Class University Program, Yonsei University, Seoul, Korea
| | | | - Adam S. Ptolemy
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Vural Ozdemir
- Centre of Genomics and Policy, Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Sanjeeva Srivastava
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|