1
|
Asif M, Kaygusuz E, Shinawi M, Nickelsen A, Hsieh TC, Wagle P, Budde BS, Hochscherf J, Abdullah U, Höning S, Nienberg C, Lindenblatt D, Noegel AA, Altmüller J, Thiele H, Motameny S, Fleischer N, Segal I, Pais L, Tinschert S, Samra NN, Savatt JM, Rudy NL, De Luca C, Paola Fortugno, White SM, Krawitz P, Hurst ACE, Niefind K, Jose J, Brancati F, Nürnberg P, Hussain MS. De novo variants of CSNK2B cause a new intellectual disability-craniodigital syndrome by disrupting the canonical Wnt signaling pathway. HGG ADVANCES 2022; 3:100111. [PMID: 35571680 PMCID: PMC9092267 DOI: 10.1016/j.xhgg.2022.100111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
CSNK2B encodes for casein kinase II subunit beta (CK2β), the regulatory subunit of casein kinase II (CK2), which is known to mediate diverse cellular pathways. Variants in this gene have been recently identified as a cause of Poirier-Bienvenu neurodevelopmental syndrome (POBINDS), but functional evidence is sparse. Here, we report five unrelated individuals: two of them manifesting POBINDS, while three are identified to segregate a new intellectual disability-craniodigital syndrome (IDCS), distinct from POBINDS. The three IDCS individuals carried two different de novo missense variants affecting the same codon of CSNK2B. Both variants, NP_001311.3; p.Asp32His and NP_001311.3; p.Asp32Asn, lead to an upregulation of CSNK2B expression at transcript and protein level, along with global dysregulation of canonical Wnt signaling. We found impaired interaction of the two key players DVL3 and β-catenin with mutated CK2β. The variants compromise the kinase activity of CK2 as evident by a marked reduction of phosphorylated β-catenin and consequent absence of active β-catenin inside nuclei of the patient-derived lymphoblastoid cell lines (LCLs). In line with these findings, whole-transcriptome profiling of patient-derived LCLs harboring the NP_001311.3; p.Asp32His variant confirmed a marked difference in expression of genes involved in the Wnt signaling pathway. In addition, whole-phosphoproteome analysis of the LCLs of the same subject showed absence of phosphorylation for 313 putative CK2 substrates, enriched in the regulation of nuclear β-catenin and transcription of the target genes. Our findings suggest that discrete variants in CSNK2B cause dominant-negative perturbation of the canonical Wnt signaling pathway, leading to a new craniodigital syndrome distinguishable from POBINDS.
Collapse
Affiliation(s)
- Maria Asif
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Emrah Kaygusuz
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.,Bilecik Şeyh Edebali University, Molecular Biology and Genetics, Gülümbe Campus, 11230 Bilecik, Turkey
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Anna Nickelsen
- Institute of Pharmaceutical and Medicinal Chemistry, Westphalian Wilhelms-University, Münster, Germany
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich Wilhelms, Universität Bonn, Bonn, Germany
| | - Prerana Wagle
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Birgit S Budde
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Jennifer Hochscherf
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Uzma Abdullah
- University Institute of Biochemistry and Biotechnology (UIBB), PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Stefan Höning
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Christian Nienberg
- Institute of Pharmaceutical and Medicinal Chemistry, Westphalian Wilhelms-University, Münster, Germany
| | - Dirk Lindenblatt
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Angelika A Noegel
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Genomics, Charitéplatz 1, 10117 Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Susanne Motameny
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | | | | | - Lynn Pais
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sigrid Tinschert
- Zentrum Medizinische Genetik, Medizinische Universität, Innsbruck, Austria
| | - Nadra Nasser Samra
- Hospital Center, Safed, Israel.,Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Natasha L Rudy
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chiara De Luca
- Department of Life, Health and Environmental Science, University of L'Aquila, 67100 L'Aquila, Italy
| | | | - Paola Fortugno
- Department of Life, Health and Environmental Science, University of L'Aquila, 67100 L'Aquila, Italy.,IRCCS, San Raffaele Roma, 00163 Roma, Italy
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich Wilhelms, Universität Bonn, Bonn, Germany
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Karsten Niefind
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, Westphalian Wilhelms-University, Münster, Germany
| | - Francesco Brancati
- Department of Life, Health and Environmental Science, University of L'Aquila, 67100 L'Aquila, Italy.,IRCCS, San Raffaele Roma, 00163 Roma, Italy
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Muhammad Sajid Hussain
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| |
Collapse
|
2
|
Savage SR, Zhang B. Using phosphoproteomics data to understand cellular signaling: a comprehensive guide to bioinformatics resources. Clin Proteomics 2020; 17:27. [PMID: 32676006 PMCID: PMC7353784 DOI: 10.1186/s12014-020-09290-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 07/04/2020] [Indexed: 12/19/2022] Open
Abstract
Mass spectrometry-based phosphoproteomics is becoming an essential methodology for the study of global cellular signaling. Numerous bioinformatics resources are available to facilitate the translation of phosphopeptide identification and quantification results into novel biological and clinical insights, a critical step in phosphoproteomics data analysis. These resources include knowledge bases of kinases and phosphatases, phosphorylation sites, kinase inhibitors, and sequence variants affecting kinase function, and bioinformatics tools that can predict phosphorylation sites in addition to the kinase that phosphorylates them, infer kinase activity, and predict the effect of mutations on kinase signaling. However, these resources exist in silos and it is challenging to select among multiple resources with similar functions. Therefore, we put together a comprehensive collection of resources related to phosphoproteomics data interpretation, compared the use of tools with similar functions, and assessed the usability from the standpoint of typical biologists or clinicians. Overall, tools could be improved by standardization of enzyme names, flexibility of data input and output format, consistent maintenance, and detailed manuals.
Collapse
Affiliation(s)
- Sara R. Savage
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
3
|
Cheng L, Poulsen SB, Wu Q, Esteva-Font C, Olesen ETB, Peng L, Olde B, Leeb-Lundberg LMF, Pisitkun T, Rieg T, Dimke H, Fenton RA. Rapid Aldosterone-Mediated Signaling in the DCT Increases Activity of the Thiazide-Sensitive NaCl Cotransporter. J Am Soc Nephrol 2019; 30:1454-1470. [PMID: 31253651 DOI: 10.1681/asn.2018101025] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/29/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The NaCl cotransporter NCC in the kidney distal convoluted tubule (DCT) regulates urinary NaCl excretion and BP. Aldosterone increases NaCl reabsorption via NCC over the long-term by altering gene expression. But the acute effects of aldosterone in the DCT are less well understood. METHODS Proteomics, bioinformatics, and cell biology approaches were combined with animal models and gene-targeted mice. RESULTS Aldosterone significantly increases NCC activity within minutes in vivo or ex vivo. These effects were independent of transcription and translation, but were absent in the presence of high potassium. In vitro, aldosterone rapidly increased intracellular cAMP and inositol phosphate accumulation, and altered phosphorylation of various kinases/kinase substrates within the MAPK/ERK, PI3K/AKT, and cAMP/PKA pathways. Inhibiting GPR30, a membrane-associated receptor, limited aldosterone's effects on NCC activity ex vivo, and NCC phosphorylation was reduced in GPR30 knockout mice. Phosphoproteomics, network analysis, and in vitro studies determined that aldosterone activates EGFR-dependent signaling. The EGFR immunolocalized to the DCT and EGFR tyrosine kinase inhibition decreased NCC activity ex vivo and in vivo. CONCLUSIONS Aldosterone acutely activates NCC to modulate renal NaCl excretion.
Collapse
Affiliation(s)
- Lei Cheng
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Qi Wu
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Emma T B Olesen
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Li Peng
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Björn Olde
- Unit of Drug Target Discovery, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - L M Fredrik Leeb-Lundberg
- Unit of Drug Target Discovery, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Trairak Pisitkun
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; and.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Robert A Fenton
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark;
| |
Collapse
|
4
|
Kubiniok P, Finicle BT, Piffaretti F, McCracken AN, Perryman M, Hanessian S, Edinger AL, Thibault P. Dynamic Phosphoproteomics Uncovers Signaling Pathways Modulated by Anti-oncogenic Sphingolipid Analogs. Mol Cell Proteomics 2019; 18:408-422. [PMID: 30482847 PMCID: PMC6398214 DOI: 10.1074/mcp.ra118.001053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/23/2018] [Indexed: 12/31/2022] Open
Abstract
The anti-neoplastic sphingolipid analog SH-BC-893 starves cancer cells to death by down-regulating cell surface nutrient transporters and blocking lysosomal trafficking events. These effects are mediated by the activation of protein phosphatase 2A (PP2A). To identify putative PP2A substrates, we used quantitative phosphoproteomics to profile the temporal changes in protein phosphorylation in FL5.12 cells following incubation with SH-BC-893 or the specific PP2A inhibitor LB-100. These analyses enabled the profiling of more than 15,000 phosphorylation sites, of which 958 sites on 644 proteins were dynamically regulated. We identified 114 putative PP2A substrates including several nutrient transporter proteins, GTPase regulators (e.g. Agap2, Git1), and proteins associated with actin cytoskeletal remodeling (e.g. Vim, Pxn). To identify SH-BC-893-induced cell signaling events that disrupt lysosomal trafficking, we compared phosphorylation profiles in cells treated with SH-BC-893 or C2-ceramide, a non-vacuolating sphingolipid that does not impair lysosomal fusion. These analyses combined with functional assays uncovered the differential regulation of Akt and Gsk3b by SH-BC-893 (vacuolating) and C2-ceramide (non-vacuolating). Dynamic phosphoproteomics of cells treated with compounds affecting PP2A activity thus enabled the correlation of cell signaling with phenotypes to rationalize their mode of action.
Collapse
Affiliation(s)
- Peter Kubiniok
- From the ‡Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada
- §Department of Chemistry, Université de Montréal, Quebec, H3C 3J7, Canada
| | - Brendan T Finicle
- ¶Department of Developmental and Cell Biology, University of California Irvine, Irvine CA 92697
| | - Fanny Piffaretti
- From the ‡Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Alison N McCracken
- ¶Department of Developmental and Cell Biology, University of California Irvine, Irvine CA 92697
| | - Michael Perryman
- §Department of Chemistry, Université de Montréal, Quebec, H3C 3J7, Canada
| | - Stephen Hanessian
- §Department of Chemistry, Université de Montréal, Quebec, H3C 3J7, Canada
| | - Aimee L Edinger
- ¶Department of Developmental and Cell Biology, University of California Irvine, Irvine CA 92697;
| | - Pierre Thibault
- From the ‡Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada;
- §Department of Chemistry, Université de Montréal, Quebec, H3C 3J7, Canada
- ‖Department of Biochemistry, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada
| |
Collapse
|
5
|
Awan MG, Saeed F. MaSS-Simulator: A Highly Configurable Simulator for Generating MS/MS Datasets for Benchmarking of Proteomics Algorithms. Proteomics 2018; 18:e1800206. [PMID: 30216669 PMCID: PMC6400488 DOI: 10.1002/pmic.201800206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/23/2018] [Indexed: 11/11/2022]
Abstract
Mass Spectrometry (MS)-based proteomics has become an essential tool in the study of proteins. With the advent of modern MS machines huge amounts of data is being generated, which can only be processed by novel algorithmic tools. However, in the absence of data benchmarks and ground truth datasets algorithmic integrity testing and reproducibility is a challenging problem. To this end, MaSS-Simulator has been presented, which is an easy to use simulator and can be configured to simulate MS/MS datasets for a wide variety of conditions with known ground truths. MaSS-Simulator offers many configuration options to allow the user a great degree of control over the test datasets, which can enable rigorous and large- scale testing of any proteomics algorithm. MaSS-Simulator is assessed by comparing its performance against experimentally generated spectra and spectra obtained from NIST collections of spectral library. The results show that MaSS-Simulator generated spectra match closely with real-spectra and have a relative-error distribution centered around 25%. In contrast, the theoretical spectra for same peptides have relative-error distribution centered around 150%. MaSS-Simulator will enable developers to specifically highlight the capabilities of their algorithms and provide a strong proof of any pitfalls they might face. Source code, executables, and a user manual for MaSS-Simulator can be downloaded from https://github.com/pcdslab/MaSS-Simulator.
Collapse
Affiliation(s)
- Muaaz Gul Awan
- Department of Computer Science, Western Michigan University, MI, USA
| | - Fahad Saeed
- School of Computing and Information Sciences, Florida International University, Miami, FL, USA
| |
Collapse
|
6
|
Awan MG, Saeed F. An Out-of-Core GPU based dimensionality reduction algorithm for Big Mass Spectrometry Data and its application in bottom-up Proteomics. ACM-BCB ... ... : THE ... ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOMEDICINE. ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOMEDICINE 2017; 2017:550-555. [PMID: 28868521 DOI: 10.1145/3107411.3107466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Modern high resolution Mass Spectrometry instruments can generate millions of spectra in a single systems biology experiment. Each spectrum consists of thousands of peaks but only a small number of peaks actively contribute to deduction of peptides. Therefore, pre-processing of MS data to detect noisy and non-useful peaks are an active area of research. Most of the sequential noise reducing algorithms are impractical to use as a pre-processing step due to high time-complexity. In this paper, we present a GPU based dimensionality-reduction algorithm, called G-MSR, for MS2 spectra. Our proposed algorithm uses novel data structures which optimize the memory and computational operations inside GPU. These novel data structures include Binary Spectra and Quantized Indexed Spectra (QIS). The former helps in communicating essential information between CPU and GPU using minimum amount of data while latter enables us to store and process complex 3-D data structure into a 1-D array structure while maintaining the integrity of MS data. Our proposed algorithm also takes into account the limited memory of GPUs and switches between in-core and out-of-core modes based upon the size of input data. G-MSR achieves a peak speed-up of 386x over its sequential counterpart and is shown to process over a million spectra in just 32 seconds. The code for this algorithm is available as a GPL open-source at GitHub at the following link: https://github.com/pcdslab/G-MSR.
Collapse
Affiliation(s)
- Muaaz Gul Awan
- Department of Computer Science, Western Michigan University, 4601 Campus Drive, Kalamazoo, Michigan 49009,
| | - Fahad Saeed
- Department of Computer Science, Western Michigan University, 4601 Campus Drive, Kalamazoo, Michigan 49009,
| |
Collapse
|
7
|
Rinschen MM, Hoppe AK, Grahammer F, Kann M, Völker LA, Schurek EM, Binz J, Höhne M, Demir F, Malisic M, Huber TB, Kurschat C, Kizhakkedathu JN, Schermer B, Huesgen PF, Benzing T. N-Degradomic Analysis Reveals a Proteolytic Network Processing the Podocyte Cytoskeleton. J Am Soc Nephrol 2017; 28:2867-2878. [PMID: 28724775 DOI: 10.1681/asn.2016101119] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 05/08/2017] [Indexed: 11/03/2022] Open
Abstract
Regulated intracellular proteostasis, controlled in part by proteolysis, is essential in maintaining the integrity of podocytes and the glomerular filtration barrier of the kidney. We applied a novel proteomics technology that enables proteome-wide identification, mapping, and quantification of protein N-termini to comprehensively characterize cleaved podocyte proteins in the glomerulus in vivo We found evidence that defined proteolytic cleavage results in various proteoforms of important podocyte proteins, including those of podocin, nephrin, neph1, α-actinin-4, and vimentin. Quantitative mapping of N-termini demonstrated perturbation of protease action during podocyte injury in vitro, including diminished proteolysis of α-actinin-4. Differentially regulated protease substrates comprised cytoskeletal proteins as well as intermediate filaments. Determination of preferential protease motifs during podocyte damage indicated activation of caspase proteases and inhibition of arginine-specific proteases. Several proteolytic processes were clearly site-specific, were conserved across species, and could be confirmed by differential migration behavior of protein fragments in gel electrophoresis. Some of the proteolytic changes discovered in vitro also occurred in two in vivo models of podocyte damage (WT1 heterozygous knockout mice and puromycin aminonucleoside-treated rats). Thus, we provide direct and systems-level evidence that the slit diaphragm and podocyte cytoskeleton are regulated targets of proteolytic modification, which is altered upon podocyte damage.
Collapse
Affiliation(s)
- Markus M Rinschen
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC).,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and.,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Ann-Kathrin Hoppe
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC)
| | - Florian Grahammer
- Department of Medicine III, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Medicine IV, Medical Center and Faculty of Medicine - University of Freiburg, Freiburg, Germany
| | - Martin Kann
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC)
| | - Linus A Völker
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC)
| | - Eva-Maria Schurek
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC)
| | - Julie Binz
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC)
| | - Martin Höhne
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC).,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and.,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Milena Malisic
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Tobias B Huber
- Department of Medicine III, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Medicine IV, Medical Center and Faculty of Medicine - University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies and Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University, Freiburg, Germany; and
| | - Christine Kurschat
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC)
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Bernhard Schermer
- Department II of Internal Medicine.,Center for Molecular Medicine Cologne (CMMC).,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and.,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany;
| | - Thomas Benzing
- Department II of Internal Medicine, .,Center for Molecular Medicine Cologne (CMMC).,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), and.,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Saethang T, Payne DM, Avihingsanon Y, Pisitkun T. A machine learning strategy for predicting localization of post-translational modification sites in protein-protein interacting regions. BMC Bioinformatics 2016; 17:307. [PMID: 27534850 PMCID: PMC4989344 DOI: 10.1186/s12859-016-1165-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 08/05/2016] [Indexed: 02/02/2023] Open
Abstract
Background One very important functional domain of proteins is the protein-protein interacting region (PPIR), which forms the binding interface between interacting polypeptide chains. Post-translational modifications (PTMs) that occur in the PPIR can either interfere with or facilitate the interaction between proteins. The ability to predict whether sites of protein modifications are inside or outside of PPIRs would be useful in further elucidating the regulatory mechanisms by which modifications of specific proteins regulate their cellular functions. Results Using two of the comprehensive databases for protein-protein interaction and protein modification site data (PDB and PhosphoSitePlus, respectively), we created new databases that map PTMs to their locations inside or outside of PPIRs. The mapped PTMs represented only 5 % of all known PTMs. Thus, in order to predict localization within or outside of PPIRs for the vast majority of PTMs, a machine learning strategy was used to generate predictive models from these mapped databases. For the three mapped PTM databases which had sufficient numbers of modification sites for generating models (acetylation, phosphorylation, and ubiquitylation), the resulting models yielded high overall predictive performance as judged by a combined performance score (CPS). Among the multiple properties of amino acids that were used in the classification tasks, hydrophobicity was found to contribute substantially to the performance of the final predictive models. Compared to the other classifiers we also evaluated, the SVM provided the best performance overall. Conclusions These models are the first to predict whether PTMs are located inside or outside of PPIRs, as demonstrated by their high predictive performance. The models and data presented here should be useful in prioritizing both known and newly identified PTMs for further studies to determine the functional relationship between specific PTMs and protein-protein interactions. The implemented R package is available online (http://sysbio.chula.ac.th/PtmPPIR). Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1165-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thammakorn Saethang
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - D Michael Payne
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Yingyos Avihingsanon
- Department of Medicine, Division of Nephrology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Trairak Pisitkun
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand. .,Epithelial Systems Biology Laboratory, NHLBI, National Institutes of Health, Bethesda, MD, 20892-1603, USA.
| |
Collapse
|
9
|
Malmersjö S, Di Palma S, Diao J, Lai Y, Pfuetzner RA, Wang AL, McMahon MA, Hayer A, Porteus M, Bodenmiller B, Brunger AT, Meyer T. Phosphorylation of residues inside the SNARE complex suppresses secretory vesicle fusion. EMBO J 2016; 35:1810-21. [PMID: 27402227 PMCID: PMC5010044 DOI: 10.15252/embj.201694071] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/09/2016] [Indexed: 12/22/2022] Open
Abstract
Membrane fusion is essential for eukaryotic life, requiring SNARE proteins to zipper up in an α‐helical bundle to pull two membranes together. Here, we show that vesicle fusion can be suppressed by phosphorylation of core conserved residues inside the SNARE domain. We took a proteomics approach using a PKCB knockout mast cell model and found that the key mast cell secretory protein VAMP8 becomes phosphorylated by PKC at multiple residues in the SNARE domain. Our data suggest that VAMP8 phosphorylation reduces vesicle fusion in vitro and suppresses secretion in living cells, allowing vesicles to dock but preventing fusion with the plasma membrane. Markedly, we show that the phosphorylation motif is absent in all eukaryotic neuronal VAMPs, but present in all other VAMPs. Thus, phosphorylation of SNARE domains is a general mechanism to restrict how much cells secrete, opening the door for new therapeutic strategies for suppression of secretion.
Collapse
Affiliation(s)
- Seth Malmersjö
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Serena Di Palma
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Jiajie Diao
- Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, CA, USA Howard Hughes Medical Institute, Stanford, CA, USA
| | - Ying Lai
- Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, CA, USA Howard Hughes Medical Institute, Stanford, CA, USA
| | - Richard A Pfuetzner
- Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, CA, USA Howard Hughes Medical Institute, Stanford, CA, USA
| | - Austin L Wang
- Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, CA, USA Howard Hughes Medical Institute, Stanford, CA, USA
| | - Moira A McMahon
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Arnold Hayer
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Matthew Porteus
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Bernd Bodenmiller
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Axel T Brunger
- Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, CA, USA Howard Hughes Medical Institute, Stanford, CA, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
10
|
Trost B, Kusalik A, Napper S. Computational Analysis of the Predicted Evolutionary Conservation of Human Phosphorylation Sites. PLoS One 2016; 11:e0152809. [PMID: 27046079 PMCID: PMC4821552 DOI: 10.1371/journal.pone.0152809] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/19/2016] [Indexed: 11/19/2022] Open
Abstract
Protein kinase-mediated phosphorylation is among the most important post-translational modifications. However, few phosphorylation sites have been experimentally identified for most species, making it difficult to determine the degree to which phosphorylation sites are conserved. The goal of this study was to use computational methods to characterize the conservation of human phosphorylation sites in a wide variety of eukaryotes. Using experimentally-determined human sites as input, homologous phosphorylation sites were predicted in all 432 eukaryotes for which complete proteomes were available. For each pair of species, we calculated phosphorylation site conservation as the number of phosphorylation sites found in both species divided by the number found in at least one of the two species. A clustering of the species based on this conservation measure was concordant with phylogenies based on traditional genomic measures. For a subset of the 432 species, phosphorylation site conservation was compared to conservation of both protein kinases and proteins in general. Protein kinases exhibited the highest degree of conservation, while general proteins were less conserved and phosphorylation sites were least conserved. Although preliminary, these data tentatively suggest that variation in phosphorylation sites may play a larger role in explaining phenotypic differences among organisms than differences in the complements of protein kinases or general proteins.
Collapse
Affiliation(s)
- Brett Trost
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Scott Napper
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
11
|
Huebner AR, Cheng L, Somparn P, Knepper MA, Fenton RA, Pisitkun T. Deubiquitylation of Protein Cargo Is Not an Essential Step in Exosome Formation. Mol Cell Proteomics 2016; 15:1556-71. [PMID: 26884507 DOI: 10.1074/mcp.m115.054965] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Indexed: 01/02/2023] Open
Abstract
Exosomes, derived from multivesicular bodies (MVBs), contain proteins and genetic materials from their cell of origin and are secreted from various cells types, including kidney epithelial cells. In general, it is thought that protein cargo is ubiquitylated but that ubiquitin is cleaved by specific deubiquitylases during the process of cargo incorporation into MVBs. Here, we provide direct evidence that, in vivo, deubiquitylation is not essential. Ubiquitin was detected within human MVBs and urinary exosomes by electron microscopy. Of the >6000 proteins identified in human urinary exosomes was mass spectrometry, 15% were ubiquitylated with various topologies (Lys63>Lys48> Lys11>Lys6>Lys29>Lys33>Lys27). A significant preference for basic amino acids upstream of ubiquitylation sites suggests specific ubiquitylation motifs. The current studies demonstrate that, in vivo, deubiquitylation of proteins is not necessary for their incorporation into MVBs and highlight that urinary exosomes are an enriched source for studying ubiquitin modifications in physiological or disease states.
Collapse
Affiliation(s)
- Alyssa R Huebner
- From the ‡Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Denmark
| | - Lei Cheng
- From the ‡Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Denmark
| | | | - Mark A Knepper
- ¶Epithelial Systems Biology Laboratory, NHLBI, National Institutes of Health, Bethesda, MD 20892-1603
| | - Robert A Fenton
- From the ‡Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Denmark;
| | - Trairak Pisitkun
- From the ‡Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Denmark; §Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand;
| |
Collapse
|
12
|
Awan MG, Saeed F. MS-REDUCE: an ultrafast technique for reduction of big mass spectrometry data for high-throughput processing. Bioinformatics 2016; 32:1518-26. [DOI: 10.1093/bioinformatics/btw023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/12/2016] [Indexed: 12/16/2022] Open
|
13
|
Rinschen MM, Benzing T, Limbutara K, Pisitkun T. Proteomic analysis of the kidney filtration barrier--Problems and perspectives. Proteomics Clin Appl 2015; 9:1053-68. [PMID: 25907645 DOI: 10.1002/prca.201400201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/21/2015] [Accepted: 04/20/2015] [Indexed: 12/12/2022]
Abstract
Diseases of the glomerular filter of the kidney are a leading cause of end-stage renal failure. The kidney filter is localized within the renal glomeruli, small microvascular units that are responsible for ultrafiltration of about 180 liters of primary urine every day. The renal filter consists of three layers, fenestrated endothelial cells, glomerular basement membrane, and the podocytes, terminally differentiated, arborized epithelial cells. This review demonstrates the use of proteomics to generate insights into the regulation of the renal filtration barrier at a molecular level. The advantages and disadvantages of different glomerular purification methods are examined, and the technical limitations that have been significantly improved by in silico or biochemical approaches are presented. We also comment on phosphoproteomic studies that have generated considerable molecular-level understanding of the physiological regulation of the kidney filter. Lastly, we conclude with an analysis of urinary exosomes as a potential filter-derived resource for the noninvasive discovery of glomerular disease mechanisms.
Collapse
Affiliation(s)
- Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Kavee Limbutara
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
14
|
A Systems Level Analysis of Vasopressin-mediated Signaling Networks in Kidney Distal Convoluted Tubule Cells. Sci Rep 2015; 5:12829. [PMID: 26239621 PMCID: PMC4523861 DOI: 10.1038/srep12829] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/10/2015] [Indexed: 01/06/2023] Open
Abstract
The kidney distal convoluted tubule (DCT) plays an essential role in maintaining body sodium balance and blood pressure. The major sodium reabsorption pathway in the DCT is the thiazide-sensitive NaCl cotransporter (NCC), whose functions can be modulated by the hormone vasopressin (VP) acting via uncharacterized signaling cascades. Here we use a systems biology approach centered on stable isotope labeling by amino acids in cell culture (SILAC) based quantitative phosphoproteomics of cultured mouse DCT cells to map global changes in protein phosphorylation upon acute treatment with a VP type II receptor agonist 1-desamino-8-D-arginine vasopressin (dDAVP). 6330 unique proteins, containing 12333 different phosphorylation sites were identified. 185 sites were altered in abundance following dDAVP. Basophilic motifs were preferential targets for upregulated sites upon dDAVP stimulation, whereas proline-directed motifs were prominent for downregulated sites. Kinase prediction indicated that dDAVP increased AGC and CAMK kinase families’ activities and decreased activity of CDK and MAPK families. Network analysis implicated phosphatidylinositol-4,5-bisphosphate 3-kinase or CAMKK dependent pathways in VP-mediated signaling; pharmacological inhibition of which significantly reduced dDAVP induced increases in phosphorylated NCC at an activating site. In conclusion, this study identifies unique VP signaling cascades in DCT cells that may be important for regulating blood pressure.
Collapse
|
15
|
Rinschen MM, Pahmeyer C, Pisitkun T, Schnell N, Wu X, Maaß M, Bartram MP, Lamkemeyer T, Schermer B, Benzing T, Brinkkoetter PT. Comparative phosphoproteomic analysis of mammalian glomeruli reveals conserved podocin C-terminal phosphorylation as a determinant of slit diaphragm complex architecture. Proteomics 2015; 15:1326-31. [PMID: 25420462 DOI: 10.1002/pmic.201400235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/10/2014] [Accepted: 11/20/2014] [Indexed: 11/06/2022]
Abstract
Glomerular biology is dependent on tightly controlled signal transduction networks that control phosphorylation of signaling proteins such as cytoskeletal regulators or slit diaphragm proteins of kidney podocytes. Cross-species comparison of phosphorylation events is a powerful mean to functionally prioritize and identify physiologically meaningful phosphorylation sites. Here, we present the result of phosphoproteomic analyses of cow and rat glomeruli to allow cross-species comparisons. We discovered several phosphorylation sites with potentially high biological relevance, e.g. tyrosine phosphorylation of the cytoskeletal regulator synaptopodin and the slit diaphragm protein neph-1 (Kirrel). Moreover, cross-species comparisons revealed conserved phosphorylation of the slit diaphragm protein nephrin on an acidic cluster at the intracellular terminus and conserved podocin phosphorylation on the very carboxyl terminus of the protein. We studied a highly conserved podocin phosphorylation site in greater detail and show that phosphorylation regulates affinity of the interaction with nephrin and CD2AP. Taken together, these results suggest that species comparisons of phosphoproteomic data may reveal regulatory principles in glomerular biology. All MS data have been deposited in the ProteomeXchange with identifier PXD001005 (http://proteomecentral.proteomexchange.org/dataset/PXD001005).
Collapse
Affiliation(s)
- Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Assentoft M, Larsen BR, Olesen ETB, Fenton RA, MacAulay N. AQP4 plasma membrane trafficking or channel gating is not significantly modulated by phosphorylation at COOH-terminal serine residues. Am J Physiol Cell Physiol 2014; 307:C957-65. [PMID: 25231107 DOI: 10.1152/ajpcell.00182.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aquaporin 4 (AQP4) is the predominant water channel in the mammalian brain and is mainly expressed in the perivascular glial endfeet at the brain-blood interface. AQP4 serves as a water entry site during brain edema formation, and regulation of AQP4 may therefore be of therapeutic interest. Phosphorylation of aquaporins can regulate plasma membrane localization and, possibly, the unit water permeability via gating of the AQP channel itself. In vivo phosphorylation of six serine residues in the COOH terminus of AQP4 has been detected by mass spectrometry: Ser(276), Ser(285), Ser(315), Ser(316), Ser(321), and Ser(322). To address the role of these phosphorylation sites for AQP4 function, serine-to-alanine mutants were created to abolish the phosphorylation sites. All mutants were detected at the plasma membrane of transfected C6 cells, with the fraction of the total cellular AQP4 expressed at the plasma membrane of transfected C6 cells being similar between the wild-type (WT) and mutant forms of AQP4. Activation of protein kinases A, C, and G in primary astrocytic cultures did not affect the plasma membrane abundance of AQP4. The unit water permeability was determined for the mutant AQP4s upon heterologous expression in Xenopus laevis oocytes (along with serine-to-aspartate mutants of the same residues to mimic a phosphorylation). None of the mutant AQP4 constructs displayed alterations in the unit water permeability. Thus phosphorylation of six different serine residues in the COOH terminus of AQP4 appears not to be required for proper plasma membrane localization of AQP4 or to act as a molecular switch to gate the water channel.
Collapse
Affiliation(s)
- Mette Assentoft
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark; and
| | - Brian R Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark; and
| | - Emma T B Olesen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark; and Department of Biomedicine and InterPrET Center, Aarhus University, Aarhus, Denmark
| | - Robert A Fenton
- Department of Biomedicine and InterPrET Center, Aarhus University, Aarhus, Denmark
| | - Nanna MacAulay
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark; and
| |
Collapse
|
17
|
Trepiccione F, Pisitkun T, Hoffert JD, Poulsen SB, Capasso G, Nielsen S, Knepper MA, Fenton RA, Christensen BM. Early targets of lithium in rat kidney inner medullary collecting duct include p38 and ERK1/2. Kidney Int 2014; 86:757-67. [PMID: 24786704 DOI: 10.1038/ki.2014.107] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/30/2014] [Accepted: 02/13/2014] [Indexed: 12/14/2022]
Abstract
Almost half of patients receiving lithium salts have nephrogenic diabetes insipidus. Chronic lithium exposure induces AQP2 downregulation and changes in the cellular composition of the collecting duct. In order to understand these pathophysiological events, we determined the earliest lithium targets in rat inner medullary collecting duct (IMCD) by examining changes in the IMCD phosphoproteome after acute lithium administration. IMCDs were isolated 9 h after lithium exposure, a time when urinary concentrating impairment was evident. We found 1093 unique phosphopeptides corresponding to 492 phosphoproteins identified and quantified by mass spectrometry. Label-free quantification identified 152 upregulated and 56 downregulated phosphopeptides in response to lithium. Bioinformatic analysis highlighted several signaling proteins including MAP kinases and cell-junction proteins. The majority of the upregulated phosphopeptides contained a proline-directed motif, a known target of MAPK. Four hours after lithium exposure, phosphorylation sites in the activation loops of ERK1/2 and p38 were upregulated. Increased expression of phospho-Ser261-AQP2 (proline-directed motif) was concomitant with the increase in urine output. Pretreatment with MAPK inhibitors reversed the increased Ser261-AQP2 phosphorylation. Thus, in IMCD, ERK1/2 and p38 are early targets of lithium and may play a role in the onset of lithium-induced polyuria.
Collapse
Affiliation(s)
- Francesco Trepiccione
- 1] Water and Salt Research Center, Department of Biomedicine, Aarhus University, Aarhus C, Denmark [2] Division of Nephrology, Department of Cardiothoracic and Respiratory Sciences, Second University of Naples, Naples, Italy
| | - Trairak Pisitkun
- 1] Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland, USA [2] Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jason D Hoffert
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland, USA
| | - Søren B Poulsen
- Water and Salt Research Center, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Giovambattista Capasso
- Division of Nephrology, Department of Cardiothoracic and Respiratory Sciences, Second University of Naples, Naples, Italy
| | - Søren Nielsen
- Water and Salt Research Center, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland, USA
| | - Robert A Fenton
- Water and Salt Research Center, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Birgitte M Christensen
- Water and Salt Research Center, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
18
|
Rinschen MM, Wu X, König T, Pisitkun T, Hagmann H, Pahmeyer C, Lamkemeyer T, Kohli P, Schnell N, Schermer B, Dryer S, Brooks BR, Beltrao P, Krueger M, Brinkkoetter PT, Benzing T. Phosphoproteomic analysis reveals regulatory mechanisms at the kidney filtration barrier. J Am Soc Nephrol 2014; 25:1509-22. [PMID: 24511133 DOI: 10.1681/asn.2013070760] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Diseases of the kidney filtration barrier are a leading cause of ESRD. Most disorders affect the podocytes, polarized cells with a limited capacity for self-renewal that require tightly controlled signaling to maintain their integrity, viability, and function. Here, we provide an atlas of in vivo phosphorylated, glomerulus-expressed proteins, including podocyte-specific gene products, identified in an unbiased tandem mass spectrometry-based approach. We discovered 2449 phosphorylated proteins corresponding to 4079 identified high-confidence phosphorylated residues and performed a systematic bioinformatics analysis of this dataset. We discovered 146 phosphorylation sites on proteins abundantly expressed in podocytes. The prohibitin homology domain of the slit diaphragm protein podocin contained one such site, threonine 234 (T234), located within a phosphorylation motif that is mutated in human genetic forms of proteinuria. The T234 site resides at the interface of podocin dimers. Free energy calculation through molecular dynamic simulations revealed a role for T234 in regulating podocin dimerization. We show that phosphorylation critically regulates formation of high molecular weight complexes and that this may represent a general principle for the assembly of proteins containing prohibitin homology domains.
Collapse
Affiliation(s)
- Markus M Rinschen
- Department of Internal Medicine II, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Systems Biology of Ageing Cologne
| | - Xiongwu Wu
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Tim König
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases,Institute for Genetics, University of Cologne, Cologne, Germany
| | - Trairak Pisitkun
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Henning Hagmann
- Department of Internal Medicine II, Center for Molecular Medicine
| | | | - Tobias Lamkemeyer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases
| | - Priyanka Kohli
- Department of Internal Medicine II, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases
| | - Nicole Schnell
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases
| | - Bernhard Schermer
- Department of Internal Medicine II, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Systems Biology of Ageing Cologne
| | - Stuart Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Pedro Beltrao
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom; and
| | - Marcus Krueger
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Thomas Benzing
- Department of Internal Medicine II, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Systems Biology of Ageing Cologne,
| |
Collapse
|
19
|
HMMpTM: improving transmembrane protein topology prediction using phosphorylation and glycosylation site prediction. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:316-22. [PMID: 24225132 DOI: 10.1016/j.bbapap.2013.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/02/2013] [Accepted: 11/04/2013] [Indexed: 11/22/2022]
Abstract
During the last two decades a large number of computational methods have been developed for predicting transmembrane protein topology. Current predictors rely on topogenic signals in the protein sequence, such as the distribution of positively charged residues in extra-membrane loops and the existence of N-terminal signals. However, phosphorylation and glycosylation are post-translational modifications (PTMs) that occur in a compartment-specific manner and therefore the presence of a phosphorylation or glycosylation site in a transmembrane protein provides topological information. We examine the combination of phosphorylation and glycosylation site prediction with transmembrane protein topology prediction. We report the development of a Hidden Markov Model based method, capable of predicting the topology of transmembrane proteins and the existence of kinase specific phosphorylation and N/O-linked glycosylation sites along the protein sequence. Our method integrates a novel feature in transmembrane protein topology prediction, which results in improved performance for topology prediction and reliable prediction of phosphorylation and glycosylation sites. The method is freely available at http://bioinformatics.biol.uoa.gr/HMMpTM.
Collapse
|
20
|
Saeed F, Pisitkun T, Hoffert JD, Rashidian S, Wang G, Gucek M, Knepper MA. PhosSA: Fast and accurate phosphorylation site assignment algorithm for mass spectrometry data. Proteome Sci 2013; 11:S14. [PMID: 24565028 PMCID: PMC3909108 DOI: 10.1186/1477-5956-11-s1-s14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Phosphorylation site assignment of high throughput tandem mass spectrometry (LC-MS/MS) data is one of the most common and critical aspects of phosphoproteomics. Correctly assigning phosphorylated residues helps us understand their biological significance. The design of common search algorithms (such as Sequest, Mascot etc.) do not incorporate site assignment; therefore additional algorithms are essential to assign phosphorylation sites for mass spectrometry data. The main contribution of this study is the design and implementation of a linear time and space dynamic programming strategy for phosphorylation site assignment referred to as PhosSA. The proposed algorithm uses summation of peak intensities associated with theoretical spectra as an objective function. Quality control of the assigned sites is achieved using a post-processing redundancy criteria that indicates the signal-to-noise ratio properties of the fragmented spectra. The quality assessment of the algorithm was determined using experimentally generated data sets using synthetic peptides for which phosphorylation sites were known. We report that PhosSA was able to achieve a high degree of accuracy and sensitivity with all the experimentally generated mass spectrometry data sets. The implemented algorithm is shown to be extremely fast and scalable with increasing number of spectra (we report up to 0.5 million spectra/hour on a moderate workstation). The algorithm is designed to accept results from both Sequest and Mascot search engines. An executable is freely available at http://helixweb.nih.gov/ESBL/PhosSA/ for academic research purposes.
Collapse
|
21
|
Yu P, Pisitkun T, Wang G, Wang R, Katagiri Y, Gucek M, Knepper MA, Geller HM. Global analysis of neuronal phosphoproteome regulation by chondroitin sulfate proteoglycans. PLoS One 2013; 8:e59285. [PMID: 23527152 PMCID: PMC3601063 DOI: 10.1371/journal.pone.0059285] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/13/2013] [Indexed: 01/01/2023] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are major components of the extracellular matrix which mediate inhibition of axonal regeneration after injury to the central nervous system (CNS). Several neuronal receptors for CSPGs have recently been identified; however, the signaling pathways by which CSPGs restrict axonal growth are still largely unknown. In this study, we applied quantitative phosphoproteomics to investigate the global changes in protein phosphorylation induced by CSPGs in primary neurons. In combination with isobaric Tags for Relative and Absolute Quantitation (iTRAQ) labeling, strong cation exchange chromatography (SCX) fractionation, immobilized metal affinity chromatography (IMAC) and LC-MS/MS, we identified and quantified 2214 unique phosphopeptides corresponding to 1118 phosphoproteins, with 118 changing significantly in abundance with CSPG treatment. The proteins that were regulated by CSPGs included key components of synaptic vesicle trafficking, axon guidance mediated by semaphorins, integrin signaling, cadherin signaling and EGF receptor signaling pathways. A significant number of the regulated proteins are cytoskeletal and related proteins that have been implicated in regulating neurite growth. Another highly represented protein category regulated by CSPGs is nucleic acid binding proteins involved in RNA post-transcriptional regulation. Together, by screening the overall phosphoproteome changes induced by CSPGs, this data expand our understanding of CSPG signaling, which provides new insights into development of strategies for overcoming CSPG inhibition and promoting axonal regeneration after CNS injury.
Collapse
Affiliation(s)
- Panpan Yu
- Developmental Neurobiology Section, Cell Biology and Physiology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Trairak Pisitkun
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, Division of Intramural Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Guanghui Wang
- Proteomics Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rong Wang
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Yasuhiro Katagiri
- Developmental Neurobiology Section, Cell Biology and Physiology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marjan Gucek
- Proteomics Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark A. Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, Division of Intramural Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Herbert M. Geller
- Developmental Neurobiology Section, Cell Biology and Physiology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
22
|
Bolger SJ, Hurtado PAG, Hoffert JD, Saeed F, Pisitkun T, Knepper MA. Quantitative phosphoproteomics in nuclei of vasopressin-sensitive renal collecting duct cells. Am J Physiol Cell Physiol 2012; 303:C1006-20. [PMID: 22992673 DOI: 10.1152/ajpcell.00260.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vasopressin regulates transport across the collecting duct epithelium in part via effects on gene transcription. Transcriptional regulation occurs partially via changes in phosphorylation of transcription factors, transcriptional coactivators, and protein kinases in the nucleus. To test whether vasopressin alters the nuclear phosphoproteome of vasopressin-sensitive cultured mouse mpkCCD cells, we used stable isotope labeling and mass spectrometry to quantify thousands of phosphorylation sites in nuclear extracts and nuclear pellet fractions. Measurements were made in the presence and absence of the vasopressin analog dDAVP. Of the 1,251 sites quantified, 39 changed significantly in response to dDAVP. Network analysis of the regulated proteins revealed two major clusters ("cell-cell adhesion" and "transcriptional regulation") that were connected to known elements of the vasopressin signaling pathway. The hub proteins for these two clusters were the transcriptional coactivator β-catenin and the transcription factor c-Jun. Phosphorylation of β-catenin at Ser552 was increased by dDAVP [log(2)(dDAVP/vehicle) = 1.79], and phosphorylation of c-Jun at Ser73 was decreased [log(2)(dDAVP/vehicle) = -0.53]. The β-catenin site is known to be targeted by either protein kinase A or Akt, both of which are activated in response to vasopressin. The c-Jun site is a canonical target for the MAP kinase Jnk2, which is downregulated in response to vasopressin in the collecting duct. The data support the idea that vasopressin-mediated control of transcription in collecting duct cells involves selective changes in the nuclear phosphoproteome. All data are available to users at http://helixweb.nih.gov/ESBL/Database/mNPPD/.
Collapse
Affiliation(s)
- Steven J Bolger
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1603, USA
| | | | | | | | | | | |
Collapse
|