1
|
Young NA, Schwarz E, Zeno BM, Bruckner S, Mesa RA, Jablonski K, Wu LC, Roberson EDO, Jarjour WN. Inhibition of miRNA associated with a disease-specific signature and secreted via extracellular vesicles of systemic lupus erythematosus patients suppresses target organ inflammation in a humanized mouse model. Front Immunol 2024; 14:1090177. [PMID: 38939646 PMCID: PMC11208704 DOI: 10.3389/fimmu.2023.1090177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 04/17/2023] [Indexed: 06/29/2024] Open
Abstract
Introduction Distinct, disease-associated intracellular miRNA (miR) expression profiles have been observed in peripheral blood mononuclear cells (PBMCs) of systemic lupus erythematous (SLE) patients. Additionally, we have identified novel estrogenic responses in PBMCs from SLE patients and demonstrated that estrogen upregulates toll-like receptor (TLR)7 and TLR8 expression. TLR7 and TLR8 bind viral-derived single-stranded RNA to stimulate innate inflammatory responses, but recent studies have shown that miR-21, mir-29a, and miR-29b can also bind and activate these receptors when packaged and secreted in extracellular vesicles (EVs). The objective of this study was to evaluate the association of EV-encapsulated small RNA species in SLE and examine the therapeutic approach of miR inhibition in humanized mice. Methods Plasma-derived EVs were isolated from SLE patients and quantified. RNA was then isolated and bulk RNA-sequencing reads were analyzed. Also, PBMCs from active SLE patients were injected into immunodeficient mice to produce chimeras. Prior to transfer, the PBMCs were incubated with liposomal EVs containing locked nucleic acid (LNA) antagonists to miR-21, mir-29a, and miR-29b. After three weeks, blood was collected for both immunophenotyping and cytokine analysis; tissue was harvested for histopathological examination. Results EVs were significantly increased in the plasma of SLE patients and differentially expressed EV-derived small RNA profiles were detected compared to healthy controls, including miR-21, mir-29a, and miR-29b. LNA antagonists significantly reduced proinflammatory cytokines and histopathological infiltrates in the small intestine, liver, and kidney, as demonstrated by H&E-stained tissue sections and immunohistochemistry measuring human CD3. Discussion These data demonstrate distinct EV-derived small RNA signatures representing SLE-associated biomarkers. Moreover, targeting upregulated EV-encapsulated miR signaling by antagonizing miRs that may bind to TLR7 and TLR8 reveals a novel therapeutic opportunity to suppress autoimmune-mediated inflammation and pathogenesis in SLE.
Collapse
Affiliation(s)
- Nicholas A. Young
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Emily Schwarz
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Braden M. Zeno
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Shane Bruckner
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Rosana A. Mesa
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Kyle Jablonski
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Lai-Chu Wu
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, United States
| | - Elisha D. O. Roberson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Genetics, Washington University, St. Louis, MO, United States
| | - Wael N. Jarjour
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
2
|
Yasodha K, Lizha Mary L, Surajit P, Satish R. Exosomes from metastatic colon cancer cells drive the proliferation and migration of primary colon cancer through increased expression of cancer stem cell markers CD133 and DCLK1. Tissue Cell 2023; 84:102163. [PMID: 37487255 DOI: 10.1016/j.tice.2023.102163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
The exchange of biological material between the neighbouring cells is essential for homeostasis. In pathological conditions, such as cancer, the major challenge in cancer treatment is the abnormal expression of crucial proteins and miRNA exchanged between the cancer cells through extracellular vesicles called exosomes. Clinically, it has been noticed that the primary tumour and the distal metastases are interconnected and co-dependent. The exosomes are key factors responsible for preparing the pre-metastatic niche and communicating between the tumour and the distal metastatic site. Cancer stem cells (CSCs) are a subpopulation of cancer cells with self-renewal characteristics and are shown to be responsible for metastasis. This study aims to understand the effect of metastatic cell line-derived exosomes and their regulation of CSC marker expressions on primary colon cancer cell lines. We have identified that treatment of primary colon cancer cell lines with metastatic colon cancer cell-derived exosomes has significantly increased the proliferation, colony formation, cell migration, and invasion. In addition, there was a significant increase in the number and size of spheroids following the exosomes treatment. We found that this metastatic phenotype is due to the increased expression of CD133 and DCLK1 in primary colon cancer cells.
Collapse
Affiliation(s)
- K Yasodha
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, kattankulathur, Chengalpattu, Tamil Nadu 603203, India
| | - L Lizha Mary
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, kattankulathur, Chengalpattu, Tamil Nadu 603203, India
| | - Pathak Surajit
- Department of Allied Health Sciences. Chettinad Academy of Science and Technology, Kelambakkam, Kanchipuram, Tamil Nadu 603103, India
| | - R Satish
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, kattankulathur, Chengalpattu, Tamil Nadu 603203, India.
| |
Collapse
|
3
|
Krishnan SR, Bebawy M. Circulating biosignatures in multiple myeloma and their role in multidrug resistance. Mol Cancer 2023; 22:79. [PMID: 37120508 PMCID: PMC10148481 DOI: 10.1186/s12943-022-01683-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/14/2022] [Indexed: 05/01/2023] Open
Abstract
A major obstacle to chemotherapeutic success in cancer treatment is the development of drug resistance. This occurs when a tumour fails to reduce in size after treatment or when there is clinical relapse after an initial positive response to treatment. A unique and serious type of resistance is multidrug resistance (MDR). MDR causes the simultaneous cross resistance to unrelated drugs used in chemotherapy. MDR can be acquired through genetic alterations following drug exposure, or as discovered by us, through alternative pathways mediated by the transfer of functional MDR proteins and nucleic acids by extracellular vesicles (M Bebawy V Combes E Lee R Jaiswal J Gong A Bonhoure GE Grau, 23 9 1643 1649, 2009).Multiple myeloma is an incurable cancer of bone marrow plasma cells. Treatment involves high dose combination chemotherapy and patient response is unpredictable and variable due to the presence of multisite clonal tumour infiltrates. This clonal heterogeneity can contribute to the development of MDR. There is currently no approved clinical test for the minimally invasive testing of MDR in myeloma.Extracellular vesicles comprise a group of heterogeneous cell-derived membranous structures which include; exosomes, microparticles (microvesicles), migrasomes and apoptotic bodies. Extracellular vesicles serve an important role in cellular communication through the intercellular transfer of cellular protein, nucleic acid and lipid cargo. Of these, microparticles (MPs) originate from the cell plasma membrane and vary in size from 0.1-1um. We have previously shown that MPs confer MDR through the transfer of resistance proteins and nucleic acids. A test for the early detection of MDR would benefit clinical decision making, improve survival and support rational drug use. This review focuses on microparticles as novel clinical biomarkers for the detection of MDR in Myeloma and discusses their role in the therapeutic management of the disease.
Collapse
|
4
|
Li L, Görgens A, Mussack V, Pepeldjiyska E, Hartz AS, Rank A, Schmohl J, Krämer D, Andaloussi SE, Pfaffl MW, Schmetzer H. Description and optimization of a multiplex bead-based flow cytometry method (MBFCM) to characterize extracellular vesicles in serum samples from patients with hematological malignancies. Cancer Gene Ther 2022; 29:1600-1615. [PMID: 35477770 PMCID: PMC9663305 DOI: 10.1038/s41417-022-00466-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/25/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023]
Abstract
Extracellular Vesicles (EVs) are membranous vesicles produced by all cells under physiological and pathological conditions. In hematological malignancies, tumor-derived EVs might reprogram the bone marrow environment, suppress antileukemic immunity, mediate drug resistance and interfere with immunotherapies. EVs collected from the serum of leukemic samples might correlate with disease stage, drug-/immunological resistance, or might correlate with antileukemic immunity/immune response. Special EV surface protein patterns in serum have the potential as noninvasive biomarker candidates to distinguish several disease-related patterns ex vivo or in vivo. EVs were isolated from the serum of acute myeloid leukemia (AML), acute lymphoid leukemia (ALL), chronic lymphoid leukemia (CLL) patients, and healthy volunteers. EVs were characterized by transmission electron microscopy and fluorescence nanoparticle tracking analysis, and EV surface protein profiles were analyzed by multiplex bead-based flow cytometry to identify tumor- or immune system-related EVs of AML, ALL, CLL, and healthy samples. Aiming to provide proof-of-concept evidence and methodology for the potential role of serum-derived EVs as biomarkers in leukemic versus healthy samples in this study, we hope to pave the way for future detection of promising biomarkers for imminent disease progression and the identification of potential targets to be used in a therapeutic strategy.
Collapse
Affiliation(s)
- Lin Li
- grid.411095.80000 0004 0477 2585Working-group: Immune-Modulation, Medical Department III, University Hospital of Munich, Munich, Germany
| | - André Görgens
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Veronika Mussack
- grid.6936.a0000000123222966Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Elena Pepeldjiyska
- grid.411095.80000 0004 0477 2585Working-group: Immune-Modulation, Medical Department III, University Hospital of Munich, Munich, Germany
| | - Anne Sophie Hartz
- grid.411095.80000 0004 0477 2585Working-group: Immune-Modulation, Medical Department III, University Hospital of Munich, Munich, Germany
| | - Andreas Rank
- grid.419801.50000 0000 9312 0220Department of Hematology and Oncology, University Hospital of Augsburg, Augsburg, Germany
| | - Jörg Schmohl
- Department of Hematology and Oncology, Hospital of Stuttgart, Stuttgart, Germany
| | - Doris Krämer
- Department of Heamatology, Oncology and Palliative Care, Ameos Klinikum Mitte, Bremerhaven, Germany
| | - Samir El Andaloussi
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael W. Pfaffl
- grid.6936.a0000000123222966Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Helga Schmetzer
- grid.411095.80000 0004 0477 2585Working-group: Immune-Modulation, Medical Department III, University Hospital of Munich, Munich, Germany
| |
Collapse
|
5
|
Inder WJ, Mohamed A, Keshvari S, Barclay JL, Ruelcke JE, Stoll T, Nolan BJ, Cesana-Nigro N, Hill MM. Ex vivo glucocorticoid-induced secreted proteome approach for discovery of glucocorticoid-responsive proteins in human serum. Proteomics Clin Appl 2021; 15:e2000078. [PMID: 33641263 DOI: 10.1002/prca.202000078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE To identify glucocorticoid-responsive proteins measurable in human serum that may have clinical utility in therapeutic drug monitoring and the diagnosis of cortisol excess or deficiency. EXPERIMENTAL DESIGN A phased biomarker discovery strategy was conducted in two cohorts. Secretome from peripheral blood mononuclear cells (PBMC) isolated from six volunteers after ex vivo incubation ± dexamethasone (DEX) 100 ng/mL for 4 h and 24 h was used for candidate discovery and qualification using untargeted proteomics and a custom multiple reaction monitoring mass spectrometry (MRM-MS) assay, respectively. For validation, five candidates were measured by immunoassay in serum from an independent cohort (n = 20), sampled at 1200 h before and after 4 mg oral DEX. RESULTS The discovery secretome proteomics data generated a shortlist of 45 candidates, with 43 measured in the final MRM-MS assay. Differential analysis revealed 16 proteins that were significant in at least one of two time points. In the validation cohort, 3/5 serum proteins were DEX-responsive, two significantly decreased: lysozyme C (p < 0.0001) and nucleophosmin-1 (p < 0.01), while high mobility group box 2 significantly increased (p < 0.01). CONCLUSIONS AND CLINICAL RELEVANCE Using an ex vivo proteomic approach in PBMC, we have identified circulating glucocorticoid-responsive proteins which may have potential as serum biomarkers of glucocorticoid activity.
Collapse
Affiliation(s)
- Warrick J Inder
- Faculty of Medicine, the University of Queensland, Brisbane, Queensland, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Ahmed Mohamed
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sahar Keshvari
- Mater Research Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Johanna L Barclay
- Mater Research Institute, the University of Queensland, Brisbane, Queensland, Australia
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- University of NSW, Sydney, New South Wales, Australia
| | - Jayde E Ruelcke
- Faculty of Medicine, University of Queensland Diamantina Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Thomas Stoll
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Brendan J Nolan
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Nicole Cesana-Nigro
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- University of NSW, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Minchenko ZM, Liubarets TF, Balan VV, Dmytrenko OO, Shlyakhtichenko TY, Moyseyenko VO, Silayev YO, Bebeshko VG. EFFICIENCY OF BONE MARROW PRECURSOR CELL COLONY-FORMING AS A PREDICTOR OF DISEASE COURSE IN PLASMA CELL MYELOMA PATIENTS WITH A HISTORY OF RADIATION EXPOSURE. PROBLEMY RADIAT︠S︡IĬNOÏ MEDYT︠S︡YNY TA RADIOBIOLOHIÏ 2020; 25:490-501. [PMID: 33361856 DOI: 10.33145/2304-8336-2020-25-490-501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Assessment of role of the bone marrow colony-forming efficiency in plasma cell myeloma patients at different stages of treatment as a prognostic criterion for the disease course. MATERIALS AND METHODS The colony forming efficiency (CFE) was assayed in stage I-II plasma cell myeloma (PCM)patients (n = 37) aged 42-73, namely in patients survived after the Chornobyl NPP accident (n = 21) and persons notexposed to ionizing radiation (n = 16). There were 11 males exposed to ionizing radiation and having got stage I PCM,9 males and 3 females exposed and having got stage II PCM, 3 males and 3 females not exposed and having got stageI PCM, 6 males and 2 females not exposed and having got stage II PCM. Healthy persons (n = 20) were included in thecontrol group. RESULTS Number of the bone marrow (BM) granulocyte-macrophage colony-forming units (CFU-GM) in both exposedand not exposed PCM patients depended on a disease stage. CFU-GM was (16.7 ± 1.2) in the stage I PCM patients vs.(11.1 ± 1.1) in the stage II PCM ones both being lower (p < 0.05) compared to control (64.5 ± 2.2). Changes in cluster formation were similar, i.e. (37.7 ± 1.6) and (19.4 ± 1.3) correspondingly in the stage I and stage II PCM patients.Respective values in control were (89.8 ± 3.6). The CFE in stage I and stage II PCM patients at the time of diagnosiswas lower (5.7 ± 1.5 and 2.4 ± 1.1 respectively) vs. control (39.5 ± 1.51, p < 0.05), but has increased in remission upto (29. 6 ± 1.8) and (13.8 ± 1.2) respectively. There was no difference at that between the irradiated and non-irradiated patients. Number of the fibroblast colony-forming units (CFU-F) in the stage I and stage II PCM patients duringdiagnosis, namely (43.9 ± 5.4) and (22.5 ± 3.7), was lower (p < 0.05) vs. control (110.5 ± 4.9). Upon reaching remission the CFU-F value increased significantly (p < 0.05), reaching (87.4 ± 4.2) and (55.6 ± 2.7) correspondingly in thestage I and stage II PCM patients. CONCLUSION Dependence of the BM cell CFE on the stage of PCM and presence or absence of remission was established. Prognostic value of the CFE of BM CFU-GM in terms of life span of patients was shown (Ro Spearm = 0.39,p < 0.02), namely in case of CFE > 20 before the polychemotherapy administration the life span of PCM patients wassignificantly longer vs. cases of CFE < 20.
Collapse
Affiliation(s)
- Zh M Minchenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - T F Liubarets
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - V V Balan
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - O O Dmytrenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - T Yu Shlyakhtichenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - V O Moyseyenko
- Bogomolets National Medical University of the Ministry of Health of Ukraine, 13 Tarasa Shevchenka Blvd., Kyiv, 01601, UkrainePrivate Higher Educational Institution «International Academy of Ecology and Medicine», 121 Kharkivske Hwy., Kyiv, 02000, Ukraine
| | - Yu O Silayev
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - V G Bebeshko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| |
Collapse
|
7
|
Chen T, Moscvin M, Bianchi G. Exosomes in the Pathogenesis and Treatment of Multiple Myeloma in the Context of the Bone Marrow Microenvironment. Front Oncol 2020; 10:608815. [PMID: 33251153 PMCID: PMC7674795 DOI: 10.3389/fonc.2020.608815] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma (MM), the second most common hematological malignancy, is an incurable cancer of plasma cells. MM cells diffusely involves the bone marrow (BM) and establish a close interaction with the BM niche that in turn supports MM survival, proliferation, dissemination and drug resistance. In spite of remarkable progress in understanding MM biology and developing drugs targeting MM in the context of the BM niche, acquisition of multi-class drug resistance is almost universally inevitable. Exosomes are small, secreted vesicles that have been shown to mediate bidirectional transfer of proteins, lipids, and nucleic acids between BM microenvironment and MM, supporting MM pathogenesis by promoting angiogenesis, osteolysis, and drug resistance. Exosome content has been shown to differ between MM patients and healthy donors and could potentially serve as both cancer biomarker and target for novel therapies. Furthermore, the natural nanostructure and modifiable surface properties of exosomes make them good candidates for drug delivery or novel immunomodulatory therapy. In this review we will discuss the current knowledge regarding exosome's role in MM pathogenesis and its potential role as a novel biomarker and therapeutic tool in MM.
Collapse
Affiliation(s)
- Tianzeng Chen
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Maria Moscvin
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Giada Bianchi
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Tanasi I, Adamo A, Kamga PT, Bazzoni R, Krampera M. High-throughput analysis and functional interpretation of extracellular vesicle content in hematological malignancies. Comput Struct Biotechnol J 2020; 18:2670-2677. [PMID: 33101605 PMCID: PMC7554250 DOI: 10.1016/j.csbj.2020.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-coated particles secreted by virtually all cell types in response to different stimuli, both in physiological and pathological conditions. Their content generally reflects their biological functions and includes a variety of molecules, such as nucleic acids, proteins and cellular components. The role of EVs as signaling vehicles has been widely demonstrated. In particular, they are actively involved in the pathogenesis of several hematological malignancies (HM), mainly interacting with a number of target cells and inducing functional and epigenetic changes. In this regard, by releasing their cargo, EVs play a pivotal role in the bilateral cross-talk between tumor microenvironment and cancer cells, thus facilitating mechanisms of immune escape and supporting tumor growth and progression. Recent advances in high-throughput technologies have allowed the deep characterization and functional interpretation of EV content. In this review, the current knowledge on the high-throughput technology-based characterization of EV cargo in HM is summarized.
Collapse
Affiliation(s)
- Ilaria Tanasi
- Department of Medicine, Hematology Section, University of Verona, Italy
| | - Annalisa Adamo
- Department of Medicine, Immunology Section, University of Verona, Italy
| | - Paul Takam Kamga
- Department of Medicine, Hematology Section, University of Verona, Italy
| | - Riccardo Bazzoni
- Department of Medicine, Hematology Section, University of Verona, Italy
| | - Mauro Krampera
- Department of Medicine, Hematology Section, University of Verona, Italy
| |
Collapse
|
9
|
Saber SH, Ali HEA, Gaballa R, Gaballah M, Ali HI, Zerfaoui M, Abd Elmageed ZY. Exosomes are the Driving Force in Preparing the Soil for the Metastatic Seeds: Lessons from the Prostate Cancer. Cells 2020; 9:E564. [PMID: 32121073 PMCID: PMC7140426 DOI: 10.3390/cells9030564] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Exosomes are nano-membrane vesicles that various cell types secrete during physiological and pathophysiological conditions. By shuttling bioactive molecules such as nucleic acids, proteins, and lipids to target cells, exosomes serve as key regulators for multiple cellular processes, including cancer metastasis. Recently, microvesicles have emerged as a challenge in the treatment of prostate cancer (PCa), encountered either when the number of vesicles increases or when the vesicles move into circulation, potentially with an ability to induce drug resistance, angiogenesis, and metastasis. Notably, the exosomal cargo can induce the desmoplastic response of PCa-associated cells in a tumor microenvironment (TME) to promote PCa metastasis. However, the crosstalk between PCa-derived exosomes and the TME remains only partially understood. In this review, we provide new insights into the metabolic and molecular signatures of PCa-associated exosomes in reprogramming the TME, and the subsequent promotion of aggressive phenotypes of PCa cells. Elucidating the molecular mechanisms of TME reprogramming by exosomes draws more practical and universal conclusions for the development of new therapeutic interventions when considering TME in the treatment of PCa patients.
Collapse
Affiliation(s)
- Saber H. Saber
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Assiut 71515, Egypt;
| | - Hamdy E. A. Ali
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Rofaida Gaballa
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Mohamed Gaballah
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Hamed I. Ali
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Mourad Zerfaoui
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Zakaria Y. Abd Elmageed
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| |
Collapse
|
10
|
Ho M, Bianchi G, Anderson KC. Proteomics-inspired precision medicine for treating and understanding multiple myeloma. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020; 5:67-85. [PMID: 34414281 DOI: 10.1080/23808993.2020.1732205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction Remarkable progress in molecular characterization methods has led to significant improvements in how we manage multiple myeloma (MM). The introduction of novel therapies has led to significant improvements in overall survival over the past 10 years. However, MM remains incurable and treatment choice is largely based on outdated risk-adaptive strategies that do not factor in improved treatment outcomes in the context of modern therapies. Areas covered This review discusses current risk-adaptive strategies in MM and the clinical application of proteomics in the monitoring of treatment response, disease progression, and minimal residual disease (MRD). We also discuss promising biomarkers of disease progression, treatment response, and chemoresistance. Finally, we will discuss an immunomics-based approach to monoclonal antibody (mAb), vaccine, and CAR-T cell development. Expert opinion It is an exciting era in oncology with basic scientific knowledge translating in novel therapeutic approaches to improve patient outcomes. With the advent of effective immunotherapies and targeted therapies, it has become crucial to identify biomarkers to aid in the stratification of patients based on anticipated sensitivity to chemotherapy. As a paradigm of diseases highly dependent on protein homeostasis, multiple myeloma provides the perfect opportunity to investigate the use of proteomics to aid in precision medicine.
Collapse
Affiliation(s)
- Matthew Ho
- UCD School of Medicine, College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Giada Bianchi
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Khalife J, Ghose J, Martella M, Viola D, Rocci A, Troadec E, Terrazas C, Satoskar AR, Gunes EG, Dona A, Sanchez JF, Bergsagel PL, Chesi M, Pozhitkov A, Rosen S, Marcucci G, Keats JJ, Hofmeister CC, Krishnan A, Caserta E, Pichiorri F. MiR-16 regulates crosstalk in NF-κB tolerogenic inflammatory signaling between myeloma cells and bone marrow macrophages. JCI Insight 2019; 4:129348. [PMID: 31593552 DOI: 10.1172/jci.insight.129348] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/02/2019] [Indexed: 12/27/2022] Open
Abstract
High levels of circulating miR-16 in the serum of multiple myeloma (MM) patients are independently associated with longer survival. Although the tumor suppressor function of intracellular miR-16 in MM plasma cells (PCs) has been elucidated, its extracellular role in maintaining a nonsupportive cancer microenvironment has not been fully explored. Here, we show that miR-16 is abundantly released by MM cells through extracellular vesicles (EVs) and that differences in its intracellular expression as associated with chromosome 13 deletion (Del13) are correlated to extracellular miR-16 levels. We also demonstrate that EVs isolated from MM patients and from the conditioned media of MM-PCs carrying Del13 more strongly differentiate circulating monocytes to M2-tumor supportive macrophages (TAMs), compared with MM-PCs without this chromosomal aberration. Mechanistically, our data show that miR-16 directly targets the IKKα/β complex of the NF-κB canonical pathway, which is critical not only in supporting MM cell growth, but also in polarizing macrophages toward an M2 phenotype. By using a miR-15a-16-1-KO mouse model, we found that loss of the miR-16 cluster supports polarization to M2 macrophages. Finally, we demonstrate the therapeutic benefit of miR-16 overexpression in potentiating the anti-MM activity by a proteasome inhibitor in the presence of MM-resident bone marrow TAM.
Collapse
Affiliation(s)
- Jihane Khalife
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California, USA.,Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Jayeeta Ghose
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio, USA
| | - Marianna Martella
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California, USA.,Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Domenico Viola
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California, USA.,Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Alberto Rocci
- Faculty of Biology, Medicine and Health, School of Medical Science, Division of Cancer Science, University of Manchester, Manchester, United Kingdom
| | - Estelle Troadec
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California, USA.,Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Cesar Terrazas
- Division of Experimental Pathology, Department of Microbiology, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Abhay R Satoskar
- Division of Experimental Pathology, Department of Microbiology, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Emine Gulsen Gunes
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California, USA
| | - Ada Dona
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California, USA
| | - James F Sanchez
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California, USA
| | - P Leif Bergsagel
- Department of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Marta Chesi
- Department of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Alex Pozhitkov
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Steven Rosen
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California, USA
| | - Guido Marcucci
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope Medical Center, Duarte, California, USA.,Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope, Duarte, California, USA
| | - Jonathan J Keats
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California, USA.,Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Craig C Hofmeister
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Amrita Krishnan
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California, USA
| | - Enrico Caserta
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California, USA.,Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Flavia Pichiorri
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California, USA.,Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope Medical Center, Duarte, California, USA
| |
Collapse
|
12
|
Yousafzai NA, Wang H, Wang Z, Zhu Y, Zhu L, Jin H, Wang X. Exosome mediated multidrug resistance in cancer. Am J Cancer Res 2018; 8:2210-2226. [PMID: 30555739 PMCID: PMC6291647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/08/2018] [Indexed: 06/09/2023] Open
Abstract
Extracellular vesicles (EVs), named as exosomes, were recently found to play important roles in cell-cell communication by transducing various biochemical and genetic information. Exosomes, secreted from either tumor cells or stromal cells including immune cells, can eventually remodel tumor environment to promote tumor progression such as metastasis and multidrug resistance (MDR). Therefore, the detection or targeting of biochemical and genetic cargos like proteins, lipids, metabolites and various types of RNAs or DNAs are believed to be valuable for the diagnosis and treatment of human cancer. In this review, we will summarize recent progresses in the research of exosomes especially its biological and clinical relevance to MDR. By doing so, we hope it could be valuable for the prevention, detection and intervention of MDR which is one of the major challenges for the clinical management of human cancers.
Collapse
Affiliation(s)
- Neelum Aziz Yousafzai
- Department of Medical Oncology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou, China
| | - Hanying Wang
- Department of Medical Oncology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou, China
| | - Zhuo Wang
- Department of Medical Oncology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou, China
| | - Yiran Zhu
- Labortory of Cancer Biology, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou, China
| | - Liyuan Zhu
- Labortory of Cancer Biology, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou, China
| | - Hongchuan Jin
- Labortory of Cancer Biology, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou, China
| | - Xian Wang
- Department of Medical Oncology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityHangzhou, China
| |
Collapse
|
13
|
Harshman SW, Pitsch RL, Smith ZK, O’Connor ML, Geier BA, Qualley AV, Schaeublin NM, Fischer MV, Eckerle JJ, Strang AJ, Martin JA. The proteomic and metabolomic characterization of exercise-induced sweat for human performance monitoring: A pilot investigation. PLoS One 2018; 13:e0203133. [PMID: 30383773 PMCID: PMC6211630 DOI: 10.1371/journal.pone.0203133] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/15/2018] [Indexed: 12/01/2022] Open
Abstract
Sweat is a biofluid with several attractive attributes. However, investigation into sweat for biomarker discovery applications is still in its infancy. To add support for the use of sweat as a non-invasive media for human performance monitoring, volunteer participants were subjected to a physical exertion model using a treadmill. Following exercise, sweat was collected, aliquotted, and analyzed for metabolite and protein content via high-resolution mass spectrometry. Overall, the proteomic analysis illustrates significant enrichment steps will be required for proteomic biomarker discovery from single sweat samples as protein abundance is low in this medium. Furthermore, the results indicate a potential for protein degradation, or a large number of low molecular weight protein/peptides, in these samples. Metabolomic analysis shows a strong correlation in the overall abundance among sweat metabolites. Finally, hierarchical clustering of participant metabolite abundances show trends emerging, although no significant trends were observed (alpha = 0.8, lambda = 1 standard error via cross validation). However, these data suggest with a greater number of biological replicates, stronger, statistically significant results, can be obtained. Collectively, this study represents the first to simultaneously use both proteomic and metabolomic analysis to investigate sweat. These data highlight several pitfalls of sweat analysis for biomarker discovery applications.
Collapse
Affiliation(s)
- Sean W. Harshman
- UES Inc., Air Force Research Laboratory, Wright- Patterson Air Force Base, Ohio, United States of America
- * E-mail:
| | - Rhonda L. Pitsch
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, United States of America
| | - Zachary K. Smith
- UES Inc., Air Force Research Laboratory, Wright- Patterson Air Force Base, Ohio, United States of America
| | - Maegan L. O’Connor
- Oak Ridge Institute of Science & Education, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, United States of America
| | - Brian A. Geier
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, United States of America
| | - Anthony V. Qualley
- UES Inc., Air Force Research Laboratory, Wright- Patterson Air Force Base, Ohio, United States of America
| | - Nicole M. Schaeublin
- UES Inc., Air Force Research Laboratory, Wright- Patterson Air Force Base, Ohio, United States of America
| | - Molly V. Fischer
- Oak Ridge Institute of Science & Education, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, United States of America
| | - Jason J. Eckerle
- InfoSciTex Corp., Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, United States of America
| | - Adam J. Strang
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, United States of America
| | - Jennifer A. Martin
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, United States of America
| |
Collapse
|
14
|
Ohyashiki JH, Umezu T, Ohyashiki K. Extracellular vesicle-mediated cell-cell communication in haematological neoplasms. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0484. [PMID: 29158313 DOI: 10.1098/rstb.2016.0484] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2017] [Indexed: 01/05/2023] Open
Abstract
Crosstalk between bone marrow tumour cells and surrounding cells, including bone marrow mesenchymal stromal cells (BM-MSCs), endothelial cells and immune cells, is important for tumour growth in haematological neoplasms. In addition to conventional signalling pathways, extracellular vesicles (EVs), which are endosome-derived vesicles containing proteins, mRNAs, lipids and miRNAs, can facilitate modulation of the bone marrow microenvironment without directly contacting non-tumourous cells. In this review, we discuss the current understanding of EV-mediated cell-cell communication in haematological neoplasms, particularly leukaemia and multiple myeloma. We highlight the actions of tumour and BM-MSC EVs in multiple myeloma. The origin of EVs, their tropism and mechanism of EV transfer are emerging issues that need to be addressed in EV-mediated cell-cell communication in haematological neoplasms.This article is part of the discussion meeting issue 'Extracellular vesicles and the tumour microenvironment'.
Collapse
Affiliation(s)
- Junko H Ohyashiki
- Department of Molecular Oncology, Institute of Medical Science, Tokyo, Japan
| | - Tomohiro Umezu
- Department of Molecular Oncology, Institute of Medical Science, Tokyo, Japan.,Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Kazuma Ohyashiki
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
15
|
Abak A, Abhari A, Rahimzadeh S. Exosomes in cancer: small vesicular transporters for cancer progression and metastasis, biomarkers in cancer therapeutics. PeerJ 2018; 6:e4763. [PMID: 29868251 PMCID: PMC5983002 DOI: 10.7717/peerj.4763] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/23/2018] [Indexed: 12/19/2022] Open
Abstract
Cancer progression is a polygenic procedure in which the exosomes can function as substantial roles. Exosomes are tiny, phospholipid bilayer membrane nanovesicles of endocytic derivation with a diameter of 40-100 nm. These nanovesicles can transport bioactive molecules containing mRNAs, proteins, DNA fragments, and non-coding RNAs from a donor cell to recipient cells, and cause the alteration in genetic and epigenetic factors and reprogramming of the target cells. Many diverse cell types such as mesenchymal cells, immune cells, and cancer cells can induce the release of exosomes. Increasing evidence illustrated that the exosomes derived from tumor cells might trigger the tumor initiation, tumor cell growth and progression, metastasis, and drug resistance. The secreted nanovesicles of exosomes can play significant roles in cells communicate via shuttling the nucleic acid molecules and proteins to target cells and tissues. In this review, we discussed multiple mechanisms related to biogenesis, load, and shuttle of the exosomes. Also, we illustrated the diverse roles of exosomes in several types of human cancer development, tumor immunology, angiogenesis, and metastasis. The exosomes may act as the promising biomarkers for the prognosis of various types of cancers which suggested a new pathway for anti-tumor therapeutic of these nanovesicles and promoted exosome-based cancer for clinical diagnostic and remedial procedures.
Collapse
Affiliation(s)
- Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Abhari
- Department of Biochemistry and Clinical Laboratory, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Rahimzadeh
- Department of Biochemistry and Clinical Laboratory, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Wang J, Faict S, Maes K, De Bruyne E, Van Valckenborgh E, Schots R, Vanderkerken K, Menu E. Extracellular vesicle cross-talk in the bone marrow microenvironment: implications in multiple myeloma. Oncotarget 2018; 7:38927-38945. [PMID: 26950273 PMCID: PMC5122441 DOI: 10.18632/oncotarget.7792] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/21/2016] [Indexed: 12/13/2022] Open
Abstract
The bone marrow (BM) represents a complex microenvironment containing stromal cells, immune cells, osteoclasts, osteoblasts, and hematopoietic cells, which are crucial for the immune response, bone formation, and hematopoiesis. Apart from soluble factors and direct cell-cell contact, extracellular vesicles (EVs), including exosomes, were recently identified as a third mediator for cell communication. Solid evidence has already demonstrated the involvement of various BM-derived cells and soluble factors in the regulation of multiple biological processes whereas the EV-mediated message delivery system from the BM has just been explored in recent decades. These EVs not only perform physiological functions but can also play a role in cancer development, including in Multiple Myeloma (MM) which is a plasma cell malignancy predominantly localized in the BM. This review will therefore focus on the multiple functions of EVs derived from BM cells, the manipulation of the BM by cancer-derived EVs, and the role of BM EVs in MM progression.
Collapse
Affiliation(s)
- Jinheng Wang
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Sylvia Faict
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Els Van Valckenborgh
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Rik Schots
- Department of Clinical Hematology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| |
Collapse
|
17
|
Boyiadzis M, Whiteside TL. The emerging roles of tumor-derived exosomes in hematological malignancies. Leukemia 2017; 31:1259-1268. [PMID: 28321122 DOI: 10.1038/leu.2017.91] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/14/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022]
Abstract
Exosomes are small (30-150 nm) membranous vesicles of endocytic origin produced by all cells under physiological and pathological conditions. They have recently emerged as vehicles for intercellular transfer of molecular and genetic contents from parent to recipient cells. Exosome-mediated transfer of proteins or genes (RNA, miRNA, DNA) results in reprogramming of recipient cell functions. Exosomes carry and deliver information that is essential for health, and they participate in pathological events, including malignant transformation. Within the hematopoietic system, exosomes maintain crosstalk between cells located in the bone marrow compartment and at distant tissue sites. In hematological malignancies, tumor-derived exosomes (TEX) reprogram the bone marrow environment, suppress anti-leukemia immunity, mediate drug resistance and interfere with immunotherapies. TEX are also viewed as promising biomarkers of malignant progression and as potential therapeutic targets. The involvement of TEX in nearly all aspects of malignant transformation has generated much interest in their biology, mechanisms responsible for information transfer and the role they play in cancer escape from the host immune system.
Collapse
Affiliation(s)
- M Boyiadzis
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh Cancer Institute and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - T L Whiteside
- Departments of Pathology, Immunology and Otolaryngology, University of Pittsburgh Cancer Institute and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Abstract
Label-free quantitative methods are advantageous in bottom-up (shotgun) proteomics because they are robust and can easily be applied to different workflows without additional cost. Both label-based and label-free approaches are routinely applied to discovery-based proteomics experiments and are widely accepted as semiquantitative. Label-free quantitation approaches are segregated into two distinct approaches: peak-abundance-based approaches and spectral counting (SpC). Peak abundance approaches like MaxLFQ, which is integrated into the MaxQuant environment, require precursor peak alignment that is computationally intensive and cannot be routinely applied to low-resolution data. Not limited by these constraints, SpC approaches simply use the number of peptide identifications corresponding to a given protein as a measurement of protein abundance. We show here that spectral counts from multidimensional proteomic data sets have a mean-dispersion relationship that can be modeled in edgeR. Furthermore, by simulating spectral counts, we show that this approach can routinely be applied to large-scale discovery proteomics data sets to determine differential protein expression.
Collapse
Affiliation(s)
- Owen E Branson
- The Ohio State Biochemistry Graduate Program, The Ohio State University , Columbus, Ohio 43210, United States.,Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University , Columbus, Ohio 43210, United States.,Comprehensive Cancer Center, The Ohio State University , Columbus, Ohio 43210, United States
| | - Michael A Freitas
- The Ohio State Biochemistry Graduate Program, The Ohio State University , Columbus, Ohio 43210, United States.,Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University , Columbus, Ohio 43210, United States.,Comprehensive Cancer Center, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
19
|
Branson OE, Freitas MA. A multi-model statistical approach for proteomic spectral count quantitation. J Proteomics 2016; 144:23-32. [PMID: 27260494 DOI: 10.1016/j.jprot.2016.05.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 01/16/2023]
Abstract
UNLABELLED The rapid development of mass spectrometry (MS) technologies has solidified shotgun proteomics as the most powerful analytical platform for large-scale proteome interrogation. The ability to map and determine differential expression profiles of the entire proteome is the ultimate goal of shotgun proteomics. Label-free quantitation has proven to be a valid approach for discovery shotgun proteomics, especially when sample is limited. Label-free spectral count quantitation is an approach analogous to RNA sequencing whereby count data is used to determine differential expression. Here we show that statistical approaches developed to evaluate differential expression in RNA sequencing experiments can be applied to detect differential protein expression in label-free discovery proteomics. This approach, termed MultiSpec, utilizes open-source statistical platforms; namely edgeR, DESeq and baySeq, to statistically select protein candidates for further investigation. Furthermore, to remove bias associated with a single statistical approach a single ranked list of differentially expressed proteins is assembled by comparing edgeR and DESeq q-values directly with the false discovery rate (FDR) calculated by baySeq. This statistical approach is then extended when applied to spectral count data derived from multiple proteomic pipelines. The individual statistical results from multiple proteomic pipelines are integrated and cross-validated by means of collapsing protein groups. BIOLOGICAL SIGNIFICANCE Spectral count data from shotgun proteomics experiments is semi-quantitative and semi-random, yet a robust way to estimate protein concentration. Tag-count approaches are routinely used to analyze RNA sequencing data sets. This approach, termed MultiSpec, utilizes multiple tag-count based statistical tests to determine differential protein expression from spectral counts. The statistical results from these tag-count approaches are combined in order to reach a final MultiSpec q-value to re-rank protein candidates. This re-ranking procedure is completed to remove bias associated with a single approach in order to better understand the true proteomic differences driving the biology in question. The MultiSpec approach can be extended to multiple proteomic pipelines. In such an instance, MultiSpec statistical results are integrated by collapsing protein groups across proteomic pipelines to provide a single ranked list of differentially expressed proteins. This integration mechanism is seamlessly integrated with the statistical analysis and provides the means to cross-validate protein inferences from multiple proteomic pipelines.
Collapse
Affiliation(s)
- Owen E Branson
- The Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Michael A Freitas
- The Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
20
|
Raimondi L, De Luca A, Amodio N, Manno M, Raccosta S, Taverna S, Bellavia D, Naselli F, Fontana S, Schillaci O, Giardino R, Fini M, Tassone P, Santoro A, De Leo G, Giavaresi G, Alessandro R. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation. Oncotarget 2016; 6:13772-89. [PMID: 25944696 PMCID: PMC4537049 DOI: 10.18632/oncotarget.3830] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/26/2015] [Indexed: 12/17/2022] Open
Abstract
Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs differentiation. We show that MM cells produce exosomes which are actively internalized by Raw264.7 cell line, a cellular model of osteoclast formation. MM cell-derived exosomes positively modulate pre-osteoclast migration, through the increasing of CXCR4 expression and trigger a survival pathway. MM cell-derived exosomes play a significant pro-differentiative role in murine Raw264.7 cells and human primary osteoclasts, inducing the expression of osteoclast markers such as Cathepsin K (CTSK), Matrix Metalloproteinases 9 (MMP9) and Tartrate-resistant Acid Phosphatase (TRAP). Pre-osteoclast treated with MM cell-derived exosomes differentiate in multinuclear OCs able to excavate authentic resorption lacunae. Similar results were obtained with exosomes derived from MM patient's sera. Our data indicate that MM-exosomes modulate OCs function and differentiation. Further studies are needed to identify the OCs activating factors transported by MM cell-derived exosomes.
Collapse
Affiliation(s)
- Lavinia Raimondi
- Laboratory of Tissue Engineering - Innovative Technology Platforms for Tissue Engineering (PON01-00829), Rizzoli Orthopedic Institute, Palermo, Italy
| | - Angela De Luca
- Laboratory of Tissue Engineering - Innovative Technology Platforms for Tissue Engineering (PON01-00829), Rizzoli Orthopedic Institute, Palermo, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University and Medical Oncology Unit, T. Campanella Cancer Center, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Mauro Manno
- Institute of Biophysics, National Research Council of Italy, Palermo, Italy
| | - Samuele Raccosta
- Institute of Biophysics, National Research Council of Italy, Palermo, Italy
| | - Simona Taverna
- Section of Biology and Genetics, Department of Biopathology and Medical Biotechnology, University of Palermo, Italy
| | - Daniele Bellavia
- Laboratory of Tissue Engineering - Innovative Technology Platforms for Tissue Engineering (PON01-00829), Rizzoli Orthopedic Institute, Palermo, Italy
| | - Flores Naselli
- Section of Biology and Genetics, Department of Biopathology and Medical Biotechnology, University of Palermo, Italy
| | - Simona Fontana
- Section of Biology and Genetics, Department of Biopathology and Medical Biotechnology, University of Palermo, Italy
| | - Odessa Schillaci
- Section of Biology and Genetics, Department of Biopathology and Medical Biotechnology, University of Palermo, Italy
| | | | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University and Medical Oncology Unit, T. Campanella Cancer Center, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Alessandra Santoro
- Divisione di Ematologia A.O. Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Giacomo De Leo
- Section of Biology and Genetics, Department of Biopathology and Medical Biotechnology, University of Palermo, Italy
| | - Gianluca Giavaresi
- Laboratory of Tissue Engineering - Innovative Technology Platforms for Tissue Engineering (PON01-00829), Rizzoli Orthopedic Institute, Palermo, Italy.,Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Riccardo Alessandro
- Section of Biology and Genetics, Department of Biopathology and Medical Biotechnology, University of Palermo, Italy.,Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council of Italy, Palermo, Italy
| |
Collapse
|
21
|
Harshman SW, Canella A, Ciarlariello PD, Agarwal K, Branson OE, Rocci A, Cordero H, Phelps MA, Hade EM, Dubovsky JA, Palumbo A, Rosko A, Byrd JC, Hofmeister CC, Benson DM, Paulaitis ME, Freitas MA, Pichiorri F. Proteomic characterization of circulating extracellular vesicles identifies novel serum myeloma associated markers. J Proteomics 2016; 136:89-98. [PMID: 26775013 DOI: 10.1016/j.jprot.2015.12.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 11/14/2015] [Accepted: 12/15/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED Multiple myeloma (MM) is a hematological malignancy of clonal plasma cells in the bone marrow (BM). The microenvironment plays a key role in MM cell survival and drug resistance through release of soluble factors, expression of adhesion molecules and release of extracellular vesicles (EVs). The aim of this manuscript is to use proteomic profiling of EVs as a tool to identify circulating tumor associated markers in MM patients. First, we characterized the EV protein content obtained from different MM cell lines. Then, we established differences in protein abundance among EVs isolated from MM patient serum and BM and the serum of healthy donors. These data show that the Major Histocompatibility Complex Class I is highly enriched in EVs of MM cell lines and MM patient's serum. Next, we show that CD44 is highly expressed in the EVs isolated from the corticosteroid resistant MM cell line, MM.1R. Furthermore, CD44 was found to be differentially expressed in EVs isolated from newly diagnosed MM patients. Finally through ELISA analysis, we establish the potential of serum CD44 as a predictive biomarker of overall survival. These results support the analysis of EVs as an easily accessible source for MM biomarkers. BIOLOGICAL SIGNIFICANCE Extracellular vesicles are becoming a research focus due to their roles in cancer cell biology such as immune evasion, therapeutic resistance, proliferation and metastases. While numerous studies of vesicle characterization and biology have been conducted in many cancer models, the role of EV in MM remains relatively unstudied. Here we found that EVs isolated from MM cells are enriched in MHC-1 antigen presenting complex and its binding protein β2-MG, this observation is compatible with the enhanced proteasome activity of MM cells compared to other cancers and the ability of functional MHC-1 to bind and present peptides, generated from protein degradation by the proteasome. Additionally, our experiments show that CD44 is particularly enriched in the EV fraction of corticosteroid resistant MM.1R cells and is differentially expressed in the EV fraction of MM patients. This is of high significance due to the established role of CD44 in adhesion of MM cells to BMSC and induction of IL-6, the primary cytokine for MM cell survival, secretion by the BMSC. Furthermore, ELISA assays for CD44 content from the serum of 254 newly diagnosed MM patients enrolled in a Phase 3 randomized trial show highly variable CD44 levels and those patients with >280 ng/mL serum CD44 showing a reduced overall survival time. These results suggest the potential use of CD44 as a prognostic biomarker in MM.
Collapse
Affiliation(s)
- Sean W Harshman
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alessandro Canella
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | | | - Kitty Agarwal
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.,Nanoscale Science and Engineering Center, The Ohio State University, Columbus, OH, USA
| | - Owen E Branson
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Alberto Rocci
- Department of Haematology, Manchester Royal Infirmary hospital, Oxford Road, Manchester, UK
| | - Hector Cordero
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Mitch A Phelps
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Erinn M Hade
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Jason A Dubovsky
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Antonio Palumbo
- Myeloma Unit, Division of Hematology, University of Turin, Azienda Ospedaliera Citta'della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Ashley Rosko
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - John C Byrd
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Craig C Hofmeister
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Don M Benson
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Michael E Paulaitis
- Nanoscale Science and Engineering Center, The Ohio State University, Columbus, OH, USA.,Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Michael A Freitas
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Flavia Pichiorri
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
22
|
Bam R, Khan S, Ling W, Randal SS, Li X, Barlogie B, Edmondson R, Yaccoby S. Primary myeloma interaction and growth in coculture with healthy donor hematopoietic bone marrow. BMC Cancer 2015; 15:864. [PMID: 26545722 PMCID: PMC4636897 DOI: 10.1186/s12885-015-1892-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/01/2015] [Indexed: 01/28/2023] Open
Abstract
Background Human primary myeloma (MM) cells do not survive in culture; current in vitro and in vivo systems for growing these cells are limited to coculture with a specific bone marrow (BM) cell type or growth in an immunodeficient animal model. The purpose of the study is to establish an interactive healthy donor whole BM based culture system capable of maintaining prolonged survival of primary MM cells. This normal BM (NBM) coculture system is different from using autologous BM that is already affected by the disease. Methods Whole BM from healthy donors was cultured in medium supplemented with BM serum from MM patients for 7 days, followed by 7 days of coculture with CD138-selected primary MM cells or MM cell lines. MM cells in the coculture were quantified using flow cytometry or bioluminescence of luciferase-expressing MM cells. T-cell cytokine array and proteomics were performed to identify secreted factors. Results NBM is composed of adherent and nonadherent compartments containing typical hematopoietic and mesenchymal cells. MM cells, or a subset of MM cells, from all examined cases survived and grew in this system, regardless of the MM cells’ molecular risk or subtype, and growth was comparable to coculture with individual stromal cell types. Adherent and nonadherent compartments supported MM growth, and this support required patient serum for optimal growth. Increased levels of MM growth factors IL-6 and IL-10 along with MM clinical markers B2M and LDHA were detected in supernatants from the NBM coculture than from the BM cultured alone. Levels of extracellular matrix factors (e.g., MMP1, HMCN1, COL3A1, ACAN) and immunomodulatory factors (e.g., IFI16, LILRB4, PTPN6, AZGP1) were changed in the coculture system. The NBM system protected MM cells from dexamethasone but not bortezomib, and effects of lenalidomide varied. Conclusions The NBM system demonstrates the ability of primary MM plasma cells to interact with and to survive in coculture with healthy adult BM. This model is suitable for studying MM-microenvironment interactions, particularly at the early stage of engagement in new BM niches, and for characterizing MM cell subpopulations capable of long-term survival through secretion of extracellular matrix and immune-related factors. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1892-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rakesh Bam
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Sharmin Khan
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Wen Ling
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Shelton S Randal
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Xin Li
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Bart Barlogie
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Ricky Edmondson
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Shmuel Yaccoby
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
23
|
Riffle M, Merrihew GE, Jaschob D, Sharma V, Davis TN, Noble WS, MacCoss MJ. Visualization and dissemination of multidimensional proteomics data comparing protein abundance during Caenorhabditis elegans development. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1827-1836. [PMID: 26133526 PMCID: PMC4607629 DOI: 10.1007/s13361-015-1193-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 06/04/2023]
Abstract
Regulation of protein abundance is a critical aspect of cellular function, organism development, and aging. Alternative splicing may give rise to multiple possible proteoforms of gene products where the abundance of each proteoform is independently regulated. Understanding how the abundances of these distinct gene products change is essential to understanding the underlying mechanisms of many biological processes. Bottom-up proteomics mass spectrometry techniques may be used to estimate protein abundance indirectly by sequencing and quantifying peptides that are later mapped to proteins based on sequence. However, quantifying the abundance of distinct gene products is routinely confounded by peptides that map to multiple possible proteoforms. In this work, we describe a technique that may be used to help mitigate the effects of confounding ambiguous peptides and multiple proteoforms when quantifying proteins. We have applied this technique to visualize the distribution of distinct gene products for the whole proteome across 11 developmental stages of the model organism Caenorhabditis elegans. The result is a large multidimensional dataset for which web-based tools were developed for visualizing how translated gene products change during development and identifying possible proteoforms. The underlying instrument raw files and tandem mass spectra may also be downloaded. The data resource is freely available on the web at http://www.yeastrc.org/wormpes/ . Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Michael Riffle
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Gennifer E Merrihew
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Daniel Jaschob
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Vagisha Sharma
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
24
|
Arendt BK, Walters DK, Wu X, Tschumper RC, Jelinek DF. Multiple myeloma dell-derived microvesicles are enriched in CD147 expression and enhance tumor cell proliferation. Oncotarget 2015; 5:5686-99. [PMID: 25015330 PMCID: PMC4170605 DOI: 10.18632/oncotarget.2159] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Multiple myeloma (MM) is characterized by the clonal expansion of malignant plasma cells within the bone marrow. There is a growing literature that tumor cells release biologically active microvesicles (MVs) that modify both local and distant microenvironments. In this study, our goals were to determine if MM cells release MVs, and if so, begin to characterize their biologic activity. Herein we present clear evidence that not only do both patient MM cells and human MM cell lines (HMCLs) release MVs, but that these MVs stimulate MM cell growth. Of interest, MM-derived MVs were enriched with the biologically active form of CD147, a transmembrane molecule previously shown by us to be crucial for MM cell proliferation. Using MVs isolated from HMCLs stably transfected with a CD147-GFP fusion construct (CD147GFP), we observed binding and internalization of MV-derived CD147 with HMCLs. Cells with greater CD147GFP internalization proliferated at a higher rate than did cells with less CD147GFP association. Lastly, MVs obtained from CD147 downregulated HMCLs were attenuated in their ability to stimulate HMCL proliferation. In summary, this study demonstrates the significance of MV shedding and MV-mediated intercellular communication on malignant plasma cell proliferation, and identifies the role of MV-enriched CD147 in this process.
Collapse
Affiliation(s)
- Bonnie K Arendt
- Department of Immunology, Division of Hematology, Mayo Clinic, College of Medicine, Rochester, MN
| | - Denise K Walters
- Department of Immunology, Division of Hematology, Mayo Clinic, College of Medicine, Rochester, MN
| | - Xiaosheng Wu
- Department of Immunology, Division of Hematology, Mayo Clinic, College of Medicine, Rochester, MN
| | - Renee C Tschumper
- Department of Immunology, Division of Hematology, Mayo Clinic, College of Medicine, Rochester, MN
| | - Diane F Jelinek
- Department of Immunology, Division of Hematology, Mayo Clinic, College of Medicine, Rochester, MN. Department of Medicine, Mayo Clinic, College of Medicine, Rochester, MN
| |
Collapse
|
25
|
Di Noto G, Chiarini M, Paolini L, Mazzoldi EL, Giustini V, Radeghieri A, Caimi L, Ricotta D. Immunoglobulin Free Light Chains and GAGs Mediate Multiple Myeloma Extracellular Vesicles Uptake and Secondary NfκB Nuclear Translocation. Front Immunol 2014; 5:517. [PMID: 25386176 PMCID: PMC4209816 DOI: 10.3389/fimmu.2014.00517] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/04/2014] [Indexed: 01/08/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy caused by a microenviromentally aided persistence of plasma cells in the bone marrow. Monoclonal plasma cells often secrete high amounts of immunoglobulin free light chains (FLCs) that could induce tissue damage. Recently, we showed that FLCs are internalized in endothelial and myocardial cell lines and secreted in extracellular vesicles (EVs). MM serum derived EVs presented phenotypic differences if compared with monoclonal gammopathy of undetermined significance (MGUS) serum derived EVs suggesting their involvement in MM pathogenesis or progression. To investigate the effect of circulating EVs on endothelial and myocardial cells, we purified MM and MGUS serum derived EVs with differential ultracentrifugation protocols and tested their biological activity. We found that MM and MGUS EVs induced different proliferation and internalization rates in endothelial and myocardial cells, thus we tried to find specific targets in MM EVs docking and processing. Pre-treatment of EVs with anti-FLCs antibodies or heparin blocked the MM EVs uptake, highlighting that FLCs and glycosaminoglycans are involved. Indeed, only MM EVs exposure induced a strong nuclear factor kappa B nuclear translocation that was completely abolished after anti-FLCs antibodies and heparin pre-treatment. The protein tyrosine kinase c-src is present on MM circulating EVs and redistributes to the cell plasma membrane after MM EVs exposure. The anti-FLCs antibodies and heparin pre-treatments were able to block the intracellular re-distribution of the c-src kinase and the subsequent c-src kinase containing EVs production. Our results open new insights in EVs cellular biology and in MM therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
- Giuseppe Di Noto
- Department of Molecular and Translational Medicine, Faculty of Medicine, University of Brescia , Brescia , Italy
| | - Marco Chiarini
- CREA, Diagnostic Department, Azienda Ospedaliera Spedali Civili di Brescia , Brescia , Italy
| | - Lucia Paolini
- Department of Molecular and Translational Medicine, Faculty of Medicine, University of Brescia , Brescia , Italy
| | - Elena Laura Mazzoldi
- Department of Molecular and Translational Medicine, Faculty of Medicine, University of Brescia , Brescia , Italy
| | - Viviana Giustini
- CREA, Diagnostic Department, Azienda Ospedaliera Spedali Civili di Brescia , Brescia , Italy
| | - Annalisa Radeghieri
- Department of Molecular and Translational Medicine, Faculty of Medicine, University of Brescia , Brescia , Italy
| | - Luigi Caimi
- Department of Molecular and Translational Medicine, Faculty of Medicine, University of Brescia , Brescia , Italy
| | - Doris Ricotta
- Department of Molecular and Translational Medicine, Faculty of Medicine, University of Brescia , Brescia , Italy
| |
Collapse
|
26
|
Exosome in tumour microenvironment: overview of the crosstalk between normal and cancer cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:179486. [PMID: 24963475 PMCID: PMC4055162 DOI: 10.1155/2014/179486] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/09/2014] [Indexed: 12/13/2022]
Abstract
Cancer development is a multistep process in which exosomes play important roles. Exosomes are small vesicles formed in vesicular bodies in the endosomal network. The major role of exosomes seems to be the transport of bioactive molecules between cells. Depending on the cell of origin, exosomes are implicated in the regulation of several cellular events, with phenotypic consequences in recipient cells. Cancer derived exosomes (CCEs) are important players in the formation of the tumour microenvironment by (i) enabling the escape of tumour cells to immunological system and help initiating the inflammatory response; (ii) acting in the differentiation of fibroblasts and mesenchymal cells into myofibroblasts; (iii) triggering the angiogenic process; and (iv) enhancing the metastatic evolution of the tumour by promoting epithelial to mesenchymal transformation of tumour cells and by preparing the tumour niche in the new anatomical location. Since the finding that exosomes content resembles that of the cell of origin, they may be regarded as suitable biomarkers for cancer diagnosis, allowing for diagnosis and prognosis via a minimal invasive procedure. Exosome involvement in cancer may open new avenues regarding therapeutics, such as vectors for targeted drug delivery.
Collapse
|