1
|
Moreno Rueda LY, Wang H, Akagi K, Dang M, Vora A, Qin L, Lee HC, Patel KK, Lin P, Mery DE, Zhan F, Shaughnessy JD, Yi Q, Song Y, Jiang B, Gillison ML, Thomas SK, Weber DM, Diao L, Wang J, Kuiatse I, Manasanch EE, Symer DE, Orlowski RZ. Single-cell analysis of neoplastic plasma cells identifies myeloma pathobiology mediators and potential targets. Cell Rep Med 2025; 6:101925. [PMID: 39855192 PMCID: PMC11866523 DOI: 10.1016/j.xcrm.2024.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
Multiple myeloma is a clonal plasma cell (PC) dyscrasia that arises from precursors and has been studied utilizing approaches focused on CD138+ cells. By combining single-cell RNA sequencing (scRNA-seq) with scB-cell receptor sequencing (scBCR-seq), we differentiate monoclonal/neoplastic from polyclonal/normal PCs and find more dysregulated genes, especially in precursor patients, than we would have by analyzing bulk PCs. To determine whether this approach can identify oncogenes that contribute to disease pathobiology, mitotic arrest deficient-2 like-1 (MAD2L1) and S-adenosylmethionine synthase isoform type-2 (MAT2A) are validated as targets with drug-like molecules that suppress myeloma growth in preclinical models. Moreover, functional studies show a role of lysosomal-associated membrane protein family member-5 (LAMP5), which is uniquely expressed in neoplastic PCs, in tumor progression and aggressiveness via interactions with c-MYC. Finally, a monoclonal antibody recognizing cell-surface LAMP5 shows efficacy as an antibody-drug conjugate and in a chimeric antigen receptor-guided T-cell format. These studies provide additional insights into myeloma biology and identify potential targeted therapeutic approaches that can be applied to reverse myeloma progression.
Collapse
Affiliation(s)
- Luz Yurany Moreno Rueda
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hua Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keiko Akagi
- Department of Thoracic-Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Minghao Dang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amishi Vora
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Qin
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hans C Lee
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krina K Patel
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pei Lin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David E Mery
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Fenghuang Zhan
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - John D Shaughnessy
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Qing Yi
- Department of Cancer Biology in Medicine, Houston Methodist Dr. Mary and Ron Neal Cancer Center, Houston, TX, USA
| | - Yang Song
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bo Jiang
- Department of Thoracic-Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maura L Gillison
- Department of Thoracic-Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sheeba K Thomas
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Donna M Weber
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Isere Kuiatse
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elisabet E Manasanch
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David E Symer
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
| | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Zhang Z, Guo Q, Zhao Z, Nie M, Shi Q, Li E, Liu K, Yu H, Rao L, Li M. DNMT3B activates FGFR3-mediated endoplasmic reticulum stress by regulating PTPN2 promoter methylation to promote the development of atherosclerosis. FASEB J 2023; 37:e23085. [PMID: 37462502 DOI: 10.1096/fj.202300665r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/21/2023]
Abstract
Endoplasmic reticulum (ER) stress is closely associated with atherosclerosis (AS). Nevertheless, the regulatory mechanism of ER stress in endothelial cells during AS progression is unclear. Here, the role and regulatory mechanism of DNA (cytosine-5-)- methyltransferase 3 beta (DNMT3B) in ER stress during AS progression were investigated. ApoE-/- mice were fed with high fat diet to construct AS model in vivo. HE and Masson staining were performed to analyze histopathological changes and collagen deposition. HUVECs stimulated by ox-LDL were used as AS cellular model. Cell apoptosis was examined using flow cytometry. DCFH-DA staining was performed to examine ROS level. The levels of pro-inflammatory cytokines were assessed using ELISA. In addition, MSP was employed to detect PTPN2 promoter methylation level. Our results revealed that DNMT3B and FGFR3 were significantly upregulated in AS patient tissues, whereas PTPN2 was downregulated. PTPN2 overexpression attenuate ox-LDL-induced ER stress, inflammation and apoptosis in HUVECs and ameliorated AS symptoms in vivo. PTPN2 could suppress FGFR3 expression in ox-LDL-treated HUVECs, and FGFR3 knockdown inhibited ER stress to attenuate ox-LDL-induced endothelial cell apoptosis. DNMT3B could negatively regulate PTPN2 expression and positively FGFR2 expression in ox-LDL-treated HUVECs; DNMT3B activated FGFR2 expression by increasing PTPN2 promoter methylation level. DNMT3B downregulation repressed ox-LDL-induced ER stress, inflammation and cell apoptosis in endothelial cells, which was reversed by PTPN2 silencing. DNMT3B activated FGFR3-mediated ER stress by increasing PTPN2 promoter methylation level and suppressed its expression, thereby boosting ER stress to facilitate AS progression.
Collapse
Affiliation(s)
- Zhiwen Zhang
- Department of Cardiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, China
| | - Quan Guo
- Department of Cardiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, China
| | - Zhenzhou Zhao
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, China
| | - Ming Nie
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, China
| | - Qingbo Shi
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, China
| | - En Li
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, China
| | - Kaiyuan Liu
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, China
| | - Haosen Yu
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, China
| | - Lixin Rao
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, China
| | - Muwei Li
- Department of Cardiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Cardiology, Central China Fuwai Hospital, Zhengzhou, China
| |
Collapse
|
3
|
The catalytic activity of TCPTP is auto-regulated by its intrinsically disordered tail and activated by Integrin alpha-1. Nat Commun 2022; 13:94. [PMID: 35013194 PMCID: PMC8748766 DOI: 10.1038/s41467-021-27633-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/29/2021] [Indexed: 11/08/2022] Open
Abstract
T-Cell Protein Tyrosine Phosphatase (TCPTP, PTPN2) is a non-receptor type protein tyrosine phosphatase that is ubiquitously expressed in human cells. TCPTP is a critical component of a variety of key signaling pathways that are directly associated with the formation of cancer and inflammation. Thus, understanding the molecular mechanism of TCPTP activation and regulation is essential for the development of TCPTP therapeutics. Under basal conditions, TCPTP is largely inactive, although how this is achieved is poorly understood. By combining biomolecular nuclear magnetic resonance spectroscopy, small-angle X-ray scattering, and chemical cross-linking coupled with mass spectrometry, we show that the C-terminal intrinsically disordered tail of TCPTP functions as an intramolecular autoinhibitory element that controls the TCPTP catalytic activity. Activation of TCPTP is achieved by cellular competition, i.e., the intrinsically disordered cytosolic tail of Integrin-α1 displaces the TCPTP autoinhibitory tail, allowing for the full activation of TCPTP. This work not only defines the mechanism by which TCPTP is regulated but also reveals that the intrinsically disordered tails of two of the most closely related PTPs (PTP1B and TCPTP) autoregulate the activity of their cognate PTPs via completely different mechanisms.
Collapse
|
4
|
Xiao Y, Yang K, Liu P, Ma D, Lei P, Liu Q. Deoxyribonuclease 1-like 3 Inhibits Hepatocellular Carcinoma Progression by Inducing Apoptosis and Reprogramming Glucose Metabolism. Int J Biol Sci 2022; 18:82-95. [PMID: 34975319 PMCID: PMC8692146 DOI: 10.7150/ijbs.57919] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 10/20/2021] [Indexed: 12/21/2022] Open
Abstract
HCC has remained one of the challenging cancers to treat, owing to the paucity of drugs targeting the critical survival pathways. Considering the cancer cells are deficient in DNase activity, the increase of an autonomous apoptisis endonuclease should be a reasonable choice for cancer treatment. In this study, we investigated whether DNASE1L3, an endonuclease implicated in apoptosis, could inhibit the progress of HCC. We found DNASE1L3 was down-regulated in HCC tissues, whereas its high expression was positively associated with the favorable prognosis of patients with HCC. Besides, serum DNASE1L3 levels were lower in HCC patients than in healthy individuals. Functionally, we found that DNASE1L3 inhibited the proliferation of tumor cells by inducing G0/G1 cell cycle arrest and cell apoptosis in vitro. Additionally, DNASE1L3 overexpression suppressed tumor growth in vivo. Furthermore, we found that DNASE1L3 overexpression weakened glycolysis in HCC cells and tissues via inactivating the rate-limiting enzymes involved in PTPN2-HK2 and CEBPβ-p53-PFK1 pathways. Finally, we identified the HBx to inhibit DNASE1L3 expression by up-regulating the expression of ZNF384. Collectively, our findings demonstrated that DNASE1L3 could inhibit the HCC progression through inducing cell apoptosis and weakening glycolysis. We believe DNASE1L3 could be considered as a promising prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Yusha Xiao
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China.,Department of Hepatobiliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Kang Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Pengpeng Liu
- Department of Hepatobiliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Dong Ma
- Department of Hepatobiliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital Hospital, Tianjin, 300052, P.R. China
| | - Quanyan Liu
- Department of Hepatobiliary Surgery, Tianjin Medical University General Hospital , Tianjin, 300052, P.R. China
| |
Collapse
|
5
|
Szybowska P, Kostas M, Wesche J, Haugsten EM, Wiedlocha A. Negative Regulation of FGFR (Fibroblast Growth Factor Receptor) Signaling. Cells 2021; 10:cells10061342. [PMID: 34071546 PMCID: PMC8226934 DOI: 10.3390/cells10061342] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
FGFR (fibroblast growth factor receptor) signaling controls fundamental processes in embryonic, fetal and adult human life. The magnitude, duration, and location of FGFR signaling must be strictly controlled in order to induce the correct biological response. Uncontrolled receptor signaling has been shown to lead to a variety of diseases, such as skeletal disorders and cancer. Here we review the numerous cellular mechanisms that regulate and turn off FGFR signaling, once the receptor is activated. These mechanisms include endocytosis and endocytic sorting, phosphatase activity, negative regulatory proteins and negative feedback phosphorylation events. The mechanisms act together simultaneously or sequentially, controlling the same or different steps in FGFR signaling. Although more work is needed to fully understand the regulation of FGFR signaling, it is clear that the cells in our body have evolved an extensive repertoire of mechanisms that together keep FGFR signaling tightly controlled and prevent excess FGFR signaling.
Collapse
Affiliation(s)
- Patrycja Szybowska
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Michal Kostas
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Jørgen Wesche
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Ellen Margrethe Haugsten
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (P.S.); (M.K.); (J.W.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
- Correspondence: (E.M.H.); (A.W.); Tel.: +47-2278-1785 (E.M.H.); +47-2278-1930 (A.W.)
| | - Antoni Wiedlocha
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Correspondence: (E.M.H.); (A.W.); Tel.: +47-2278-1785 (E.M.H.); +47-2278-1930 (A.W.)
| |
Collapse
|
6
|
Abstract
The identification of mutations in FGFR3 in bladder tumors in 1999 led to major interest in this receptor and during the subsequent 20 years much has been learnt about the mutational profiles found in bladder cancer, the phenotypes associated with these and the potential of this mutated protein as a target for therapy. Based on mutational and expression data, it is estimated that >80% of non-muscle-invasive bladder cancers (NMIBC) and ∼40% of muscle-invasive bladder cancers (MIBC) have upregulated FGFR3 signalling, and these frequencies are likely to be even higher if alternative splicing of the receptor, expression of ligands and changes in regulatory mechanisms are taken into account. Major efforts by the pharmaceutical industry have led to development of a range of agents targeting FGFR3 and other FGF receptors. Several of these have entered clinical trials, and some have presented very encouraging early results in advanced bladder cancer. Recent reviews have summarised the drugs and related clinical trials in this area. This review will summarise what is known about the effects of FGFR3 and its mutant forms in normal urothelium and bladder tumors, will suggest when and how this protein contributes to urothelial cancer pathogenesis and will highlight areas that may benefit from further study.
Collapse
Affiliation(s)
- Margaret A. Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James’s, St James’s University Hospital, Leeds LS9 7TF, UK
| |
Collapse
|
7
|
Li J, Wu G, Cao Y, Hou Z. Roles of miR-210 in the pathogenesis of pre-eclampsia. Arch Med Sci 2019; 15:183-190. [PMID: 30697269 PMCID: PMC6348360 DOI: 10.5114/aoms.2018.73129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION This study aimed to explore the bio-function of miR-210 in the pathogenesis of pre-eclampsia and provide new insights into the diagnosis and treatment of pre-eclampsia. MATERIAL AND METHODS A JAR cell line cultured in standard or hypoxic conditions was used in this study. Expression levels of miR-210 and PTPN2 were determined using real-time polymerase chain reaction (RT-PCR). Protein and phosphorylation levels were assessed using western blotting. Proliferation of JAR cells was evaluated using MTT assay. Migration and invasion were measured using transwell assay. RESULTS Expression of miR-210 increased significantly in a time-dependent manner after hypoxia treatment within 36 h (p < 0.05). miR-210 inhibitor significantly decreased the cell proliferation, migration, and invasion (p < 0.05), while miR-210 mimic reversed these findings (p < 0.05). Hypoxia significantly suppressed the expression of PTPN2; however, this elevation was abolished by miR-210 inhibitor (p < 0.05). Inhibition of PTPN2 or hypoxia significantly increased the proliferation, migration, and invasion of JAR cells, while miR-210 inhibitor significantly reversed these changes (p < 0.05). The phosphorylation levels of PDGFR, Akt, and Erk were markedly upregulated by hypoxia or si-PTPN2, but this effect was abolished by miR-210 inhibitor (p < 0.05). CONCLUSIONS miR-210 can promote proliferation, migration, and invasion via downregulating PTPN2 in the PDGFR-Akt pathway.
Collapse
Affiliation(s)
- Jiyun Li
- Third Department of Obstetrical, Hebei Cangzhou Central Hospital, Hebei, China
| | - Guimei Wu
- Third Department of Obstetrical, Hebei Cangzhou Central Hospital, Hebei, China
| | - Yanmin Cao
- Third Department of Obstetrical, Hebei Cangzhou Central Hospital, Hebei, China
| | - Zhi Hou
- Third Department of Obstetrical, Hebei Cangzhou Central Hospital, Hebei, China
| |
Collapse
|
8
|
Tong J, Helmy M, Cavalli FMG, Jin L, St-Germain J, Karisch R, Taylor P, Minden MD, Taylor MD, Neel BG, Bader GD, Moran MF. Integrated analysis of proteome, phosphotyrosine-proteome, tyrosine-kinome, and tyrosine-phosphatome in acute myeloid leukemia. Proteomics 2017; 17. [PMID: 28176486 DOI: 10.1002/pmic.201600361] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/21/2016] [Accepted: 02/06/2017] [Indexed: 12/22/2022]
Abstract
Reversible protein-tyrosine phosphorylation is catalyzed by the antagonistic actions of protein-tyrosine kinases (PTKs) and phosphatases (PTPs), and represents a major form of cell regulation. Acute myeloid leukemia (AML) is an aggressive hematological malignancy that results from the acquisition of multiple genetic alterations, which in some instances are associated with deregulated protein-phosphotyrosine (pY) mediated signaling networks. However, although individual PTKs and PTPs have been linked to AML and other malignancies, analysis of protein-pY networks as a function of activated PTKs and PTPs has not been done. In this study, MS was used to characterize AML proteomes, and phospho-proteome-subsets including pY proteins, PTKs, and PTPs. AML proteomes resolved into two groups related to high or low degrees of maturation according to French-American-British classification, and reflecting differential expression of cell surface antigens. AML pY proteomes reflect canonical, spatially organized signaling networks, unrelated to maturation, with heterogeneous expression of activated receptor and nonreceptor PTKs. We present the first integrated analysis of the pY-proteome, activated PTKs, and PTPs. Every PTP and most PTKs have both positive and negative associations with the pY-proteome. pY proteins resolve into groups with shared PTK and PTP correlations. These findings highlight the importance of pY turnover and the PTP phosphatome in shaping the pY-proteome in AML.
Collapse
Affiliation(s)
- Jiefei Tong
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada.,Peter Gilgan Centre for Research and Learning, Hospital For Sick Children, Toronto, Canada
| | - Mohamed Helmy
- The Donnelly Centre, University of Toronto, Toronto, Canada
| | - Florence M G Cavalli
- Peter Gilgan Centre for Research and Learning, Hospital For Sick Children, Toronto, Canada.,Program in Developmental & Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Lily Jin
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada.,Peter Gilgan Centre for Research and Learning, Hospital For Sick Children, Toronto, Canada
| | | | - Robert Karisch
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Paul Taylor
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada.,Peter Gilgan Centre for Research and Learning, Hospital For Sick Children, Toronto, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Michael D Taylor
- Peter Gilgan Centre for Research and Learning, Hospital For Sick Children, Toronto, Canada.,Program in Developmental & Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Benjamin G Neel
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada.,Departmet of Medicine, NYU School of Medicine, New York, NY, USA
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Michael F Moran
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada.,Peter Gilgan Centre for Research and Learning, Hospital For Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
Ji HB, Wang LL, Wang XY, Yin SJ, Shang D, Sun LL, Wang L. Retracted: Single Nucleotide Polymorphisms in the PTPN1 Gene Are Associated with Susceptibility to Esophageal Squamous Cell Carcinoma: A Case–Control Study in Inner Mongolia, China. Genet Test Mol Biomarkers 2017; 21:305-311. [DOI: 10.1089/gtmb.2016.0194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Hong-Bo Ji
- Department of Medical Oncology in Section One, Chifeng Municipal Hospital, Chifeng, China
| | - Le-Le Wang
- Department of Medical Oncology in Section One, Chifeng Municipal Hospital, Chifeng, China
| | - Xiao-Ying Wang
- Department of Medical Oncology in Section One, Chifeng Municipal Hospital, Chifeng, China
| | - Sheng-Jie Yin
- Department of Medical Oncology in Section One, Chifeng Municipal Hospital, Chifeng, China
| | - Di Shang
- Department of Medical Oncology in Section One, Chifeng Municipal Hospital, Chifeng, China
| | - Li-Li Sun
- Department of Medical Oncology in Section One, Chifeng Municipal Hospital, Chifeng, China
| | - Lei Wang
- Department of Medical Oncology in Section One, Chifeng Municipal Hospital, Chifeng, China
| |
Collapse
|
10
|
di Martino E, Tomlinson DC, Williams SV, Knowles MA. A place for precision medicine in bladder cancer: targeting the FGFRs. Future Oncol 2016; 12:2243-63. [PMID: 27381494 DOI: 10.2217/fon-2016-0042] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bladder tumors show diverse molecular features and clinical outcome. Muscle-invasive bladder cancer has poor prognosis and novel approaches to systemic therapy are urgently required. Non-muscle-invasive bladder cancer has good prognosis, but high recurrence rate and the requirement for life-long disease monitoring places a major burden on patients and healthcare providers. Studies of tumor tissues from both disease groups have identified frequent alterations of FGFRs, including mutations of FGFR3 and dysregulated expression of FGFR1 and FGFR3 that suggest that these may be valid therapeutic targets. We summarize current understanding of the molecular alterations affecting these receptors in bladder tumors, preclinical studies validating them as therapeutic targets, available FGFR-targeted agents and results from early clinical trials in bladder cancer patients.
Collapse
Affiliation(s)
- Erica di Martino
- Section of Molecular Oncology, Leeds Institute of Cancer & Pathology, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Darren C Tomlinson
- Astbury Centre for Structural & Molecular Biology, School of Molecular & Cellular Biology, Astbury Building, University of Leeds, Leeds, LS2 9JT, UK
| | - Sarah V Williams
- Section of Molecular Oncology, Leeds Institute of Cancer & Pathology, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Margaret A Knowles
- Section of Molecular Oncology, Leeds Institute of Cancer & Pathology, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| |
Collapse
|