1
|
Yew PYM, Lin Q, Owh C, Chee PL, Loh XJ. Current research and future potential of thermogels for sustained drug delivery. Expert Opin Drug Deliv 2025:1-18. [PMID: 40156586 DOI: 10.1080/17425247.2025.2486350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
INTRODUCTION Drug administration is ubiquitous in the healthcare field, and it is crucial to optimize drug delivery methods to improve drug efficacy, reduce systemic toxicity, and enhance patient compliance Thermogels have shown immense potential in drug delivery due to their injectability, biocompatibility, and ability to provide localized and sustained drug release. AREA COVERED This paper discusses the unique properties of thermogel in relation to drug kinetics and their suitability as a carrier. Different considerations and applications of thermogel drug delivery systems (DDS) were highlighted and their challenges to enter the market discussed. A comprehensive literature search was conducted using major databases such as PubMed, Scopus, and Web of Science. The search employed relevant keywords to identify studies on thermogel DDS. Clinicaltrials.gov was also utilized to determine the current state of clinical studies. EXPERT OPINION Nonetheless, thermogel holds great promise for the future in DDS with research achieving greater heights in terms of complexity and clinical pursuits. Their flexibility in fabrication and modularity manner makes it a great material to tailor to different drug delivery applications and to be integrated into various biomedical disciplinaries.
Collapse
Affiliation(s)
- Pek Yin Michelle Yew
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Pei Lin Chee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
2
|
Wang Q, Yang S, Huang L, Liu S, Liu C, Xu J. Research Progress of Application and Interaction Mechanism of Polymers in Mineral Flotation: A Review. Polymers (Basel) 2024; 16:3335. [PMID: 39684080 DOI: 10.3390/polym16233335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/23/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Polymers are composed of many smaller units connected by covalent bonds, with higher molecular weight and larger molecular structure. Due to their economical efficiency and easy modification, researchers have discovered the potential of polymers as the flotation reagent in mineral processing, including the roles of depressant, flocculant, and frother. This paper provides a comprehensive review of the utilization of polymers in mineral flotation, emphasizing their current applications and mechanistic investigations. The study categorizes polymers into three types: natural polymers, modified polymers, and synthesized polymers. Detailed discussions include the polymers structures, functional properties, adsorption mechanisms and specific application examples of each reagent are shown in the main text, which will provide a vital reference for the development of highly efficient and environmentally friendly reagents in mineral flotation.
Collapse
Affiliation(s)
- Qianqian Wang
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Siyuan Yang
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Lingyun Huang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Shuo Liu
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Cheng Liu
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jinyue Xu
- SLon Magnetic Separator Ltd., Shahe Industrial Park, Ganzhou 341000, China
| |
Collapse
|
3
|
Latham SG, Williams RL, Grover LM, Rauz S. Achieving net-zero in the dry eye disease care pathway. Eye (Lond) 2024; 38:829-840. [PMID: 37957294 PMCID: PMC10965955 DOI: 10.1038/s41433-023-02814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Climate change is a threat to human health and wellbeing across the world. In recent years, there has been a surge in awareness of this crisis, leading to many countries and organisations setting "net-zero" targets. This entails minimising carbon emissions and neutralising remaining emissions by removing carbon from the atmosphere. At the 2022 United Nations Climate Change Conference (COP27), commitments to transition away from fossil fuels and augment climate targets were underwhelming. It is therefore imperative for public and private sector organisations to demonstrate successful implementation of net-zero and set a precedent for the global political consensus. As a top 10 world employer, the United Kingdom National Health Service (NHS) has pledged to reach net-zero by 2045. The NHS has already taken positive steps forward, but its scale and complexity as a health system means stakeholders in each of its services must highlight the specifications for further progress. Dry eye disease is a chronic illness with an estimated global prevalence of 29.5% and an environmentally damaging care pathway. Moreover, environmental damage is a known aggravator of dry eye disease. Worldwide management of this illness generates copious amounts of non-recyclable waste, utilises inefficient supply chains and involves recurrent follow-up appointments and prescriptions. By mapping the dry eye disease care pathway to environmental impact, in this review we will highlight seven key areas in which reduced emissions and pollution could be targeted. Examining these approaches for improved environmental sustainability is critical in driving the transformation needed to preserve our health and wellbeing.
Collapse
Affiliation(s)
- Samuel G Latham
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham NHS Trust, Birmingham, UK
| | - Richard L Williams
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
- Healthcare Technologies Institute, University of Birmingham, Birmingham, UK
| | - Liam M Grover
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
- Healthcare Technologies Institute, University of Birmingham, Birmingham, UK
| | - Saaeha Rauz
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham NHS Trust, Birmingham, UK.
| |
Collapse
|
4
|
Sun H, Wang G, Feng Q, Liu S. Polymer-Based Self-Assembled Drug Delivery Systems for Glaucoma Treatment: Design Strategies and Recent Advances. Polymers (Basel) 2023; 15:4466. [PMID: 38006190 PMCID: PMC10675782 DOI: 10.3390/polym15224466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Glaucoma has become the world's leading cause of irreversible blindness, and one of its main characteristics is high intraocular pressure. Currently, the non-surgical drug treatment scheme to reduce intraocular pressure is a priority method for glaucoma treatment. However, the complex and special structure of the eye poses significant challenges to the treatment effect and safety adherence of this drug treatment approach. To address these challenges, the application of polymer-based self-assembled drug delivery systems in glaucoma treatment has emerged. This review focuses on the utilization of polymer-based self-assembled structures or materials as important functional and intelligent carriers for drug delivery in glaucoma treatment. Various drug delivery systems, such as eye drops, hydrogels, and contact lenses, are discussed. Additionally, the review primarily summarizes the design strategies and methods used to enhance the treatment effect and safety compliance of these polymer-based drug delivery systems. Finally, the discussion delves into the new challenges and prospects of employing polymer-based self-assembled drug delivery systems for the treatment of glaucoma.
Collapse
Affiliation(s)
- Hao Sun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China;
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Guangtong Wang
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| | - Qingying Feng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China;
| | - Shaoqin Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China;
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
5
|
Wang X, Li F, Liu X, Zhang H. Applications and Recent Developments of Hydrogels in Ophthalmology. ACS Biomater Sci Eng 2023; 9:5968-5984. [PMID: 37906698 DOI: 10.1021/acsbiomaterials.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Hydrogels are a type of functional polymer material with a three-dimensional network structure composed of physically or chemically cross-linked polymers. All hydrogels have two common features: first, their structure contains a large number of hydrophilic groups; therefore, they have a high water content and can swell in water. Second, they have good regulation, and the physical and chemical properties of their cross-linked network can be changed by environmental factors and deliberate modification methods. In recent years, the application of hydrogels in ophthalmology has gradually attracted attention. By selecting an appropriate composition and cross-linking mode, hydrogels can be used in different fields for various applications, such as gel eye drops, in situ gel preparation, intravitreal injection, and corneal contact lenses. This Review provides a detailed introduction to the classification of hydrogels and their applications in glaucoma, vitreous substitutes, fundus diseases, corneal contact lenses, corneal diseases, and cataract surgery.
Collapse
Affiliation(s)
- Xi Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - FuQiang Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Xin Liu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Hui Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| |
Collapse
|
6
|
Hu B, Gao J, Lu Y, Wang Y. Applications of Degradable Hydrogels in Novel Approaches to Disease Treatment and New Modes of Drug Delivery. Pharmaceutics 2023; 15:2370. [PMID: 37896132 PMCID: PMC10610366 DOI: 10.3390/pharmaceutics15102370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 10/29/2023] Open
Abstract
Hydrogels are particularly suitable materials for loading drug delivery agents; their high water content provides a biocompatible environment for most biomolecules, and their cross-linked nature protects the loaded agents from damage. During delivery, the delivered substance usually needs to be released gradually over time, which can be achieved by degradable cross-linked chains. In recent years, biodegradable hydrogels have become a promising technology in new methods of disease treatment and drug delivery methods due to their many advantageous properties. This review briefly discusses the degradation mechanisms of different types of biodegradable hydrogel systems and introduces the specific applications of degradable hydrogels in several new methods of disease treatment and drug delivery methods.
Collapse
Affiliation(s)
- Bo Hu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (B.H.); (J.G.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic, Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Jinyuan Gao
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (B.H.); (J.G.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic, Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (B.H.); (J.G.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic, Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (B.H.); (J.G.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic, Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
7
|
Santhamoorthy M, Vanaraj R, Thirupathi K, Ulagesan S, Nam TJ, Phan TTV, Kim SC. L-Lysine-Modified pNIPAm-co-GMA Copolymer Hydrogel for pH- and Temperature-Responsive Drug Delivery and Fluorescence Imaging Applications. Gels 2023; 9:gels9050363. [PMID: 37232955 DOI: 10.3390/gels9050363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
The development of dual-stimuli-responsive hydrogels attracts much research interest owing to its unique stimuli-responsive characteristics. In this study, a poly-N-isopropyl acrylamide-co-glycidyl methacrylate-based copolymer was synthesized by incorporating N-isopropyl acrylamide (NIPAm) and a glycidyl methacrylate (GMA) monomer. The synthesized copolymer, pNIPAm-co-GMA was further modified with L-lysine (Lys) functional units and further conjugated with fluorescent isothiocyanate (FITC) to produce a fluorescent copolymer pNIPAAm-co-GMA-Lys hydrogel (HG). The in vitro drug loading and dual pH- and temperature-stimuli-responsive drug release behavior of the pNIPAAm-co-GMA-Lys HG was investigated at different pH (pH 7.4, 6.2, and 4.0) and temperature (25 °C, 37 °C, and 45 °C) conditions, respectively, using curcumin (Cur) as a model anticancer drug. The Cur drug-loaded pNIPAAm-co-GMA-Lys/Cur HG showed a relatively slow drug release behavior at a physiological pH (pH 7.4) and low temperature (25 °C) condition, whereas enhanced drug release was achieved at acidic pH (pH 6.2 and 4.0) and higher temperature (37 °C and 45 °C) conditions. Furthermore, the in vitro biocompatibility and intracellular fluorescence imaging were examined using the MDA-MB-231 cell line. Therefore, we demonstrate that the synthesized pNIPAAm-co-GMA-Lys HG system with temperature- and pH-stimuli-responsive features could be promising for various applications in biomedical fields, including drug delivery, gene delivery, tissue engineering, diagnosis, antibacterial/antifouling material, and implantable devices.
Collapse
Affiliation(s)
| | - Ramkumar Vanaraj
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Kokila Thirupathi
- Department of Physics, Government Arts and Science College for Women, Karimangalam 635111, Dharmapuri, Tamil Nadu, India
| | - Selvakumari Ulagesan
- Division of Fisheries Life Sciences, Pukyong National University, Nam-gu, Busan 48513, Republic of Korea
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Gijang-gun, Busan 46041, Republic of Korea
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
8
|
Wang Q, Zhang A, Zhu L, Yang X, Fang G, Tang B. Cyclodextrin-based ocular drug delivery systems: A comprehensive review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Parikh BH, Liu Z, Blakeley P, Lin Q, Singh M, Ong JY, Ho KH, Lai JW, Bogireddi H, Tran KC, Lim JYC, Xue K, Al-Mubaarak A, Yang B, R S, Regha K, Wong DSL, Tan QSW, Zhang Z, Jeyasekharan AD, Barathi VA, Yu W, Cheong KH, Blenkinsop TA, Hunziker W, Lingam G, Loh XJ, Su X. A bio-functional polymer that prevents retinal scarring through modulation of NRF2 signalling pathway. Nat Commun 2022; 13:2796. [PMID: 35589753 PMCID: PMC9119969 DOI: 10.1038/s41467-022-30474-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/26/2022] [Indexed: 01/20/2023] Open
Abstract
One common cause of vision loss after retinal detachment surgery is the formation of proliferative and contractile fibrocellular membranes. This aberrant wound healing process is mediated by epithelial-mesenchymal transition (EMT) and hyper-proliferation of retinal pigment epithelial (RPE) cells. Current treatment relies primarily on surgical removal of these membranes. Here, we demonstrate that a bio-functional polymer by itself is able to prevent retinal scarring in an experimental rabbit model of proliferative vitreoretinopathy. This is mediated primarily via clathrin-dependent internalisation of polymeric micelles, downstream suppression of canonical EMT transcription factors, reduction of RPE cell hyper-proliferation and migration. Nuclear factor erythroid 2-related factor 2 signalling pathway was identified in a genome-wide transcriptomic profiling as a key sensor and effector. This study highlights the potential of using synthetic bio-functional polymer to modulate RPE cellular behaviour and offers a potential therapy for retinal scarring prevention.
Collapse
Affiliation(s)
- Bhav Harshad Parikh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zengping Liu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute (SERI), Singapore, Singapore
| | - Paul Blakeley
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Malay Singh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jun Yi Ong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kim Han Ho
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joel Weijia Lai
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design (SUTD), Singapore, Singapore
| | - Hanumakumar Bogireddi
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kim Chi Tran
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jason Y C Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Kun Xue
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Abdurrahmaan Al-Mubaarak
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Binxia Yang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sowmiya R
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kakkad Regha
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniel Soo Lin Wong
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Queenie Shu Woon Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Zhongxing Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Veluchamy Amutha Barathi
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute (SERI), Singapore, Singapore
- Academic Clinical Program in Ophthalmology, Duke-NUS Medical School, Singapore, Singapore
| | - Weimiao Yu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kang Hao Cheong
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design (SUTD), Singapore, Singapore
| | - Timothy A Blenkinsop
- Department of Cellular, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Walter Hunziker
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gopal Lingam
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute (SERI), Singapore, Singapore
- Department of Ophthalmology, National University Hospital, Singapore, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.
| | - Xinyi Su
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Singapore Eye Research Institute (SERI), Singapore, Singapore.
- Department of Ophthalmology, National University Hospital, Singapore, Singapore.
| |
Collapse
|