1
|
Ghosal K, Bhattacharyya SK, Mishra V, Zuilhof H. Click Chemistry for Biofunctional Polymers: From Observing to Steering Cell Behavior. Chem Rev 2024; 124:13216-13300. [PMID: 39621547 PMCID: PMC11638903 DOI: 10.1021/acs.chemrev.4c00251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/05/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Click chemistry has become one of the most powerful construction tools in the field of organic chemistry, materials science, and polymer science, as it offers hassle-free platforms for the high-yielding synthesis of novel materials and easy functionalization strategies. The absence of harsh reaction conditions or complicated workup procedures allowed the rapid development of novel biofunctional polymeric materials, such as biopolymers, tailor-made polymer surfaces, stimulus-responsive polymers, etc. In this review, we discuss various types of click reactions─including azide-alkyne cycloadditions, nucleophilic and radical thiol click reactions, a range of cycloadditions (Diels-Alder, tetrazole, nitrile oxide, etc.), sulfur fluoride exchange (SuFEx) click reaction, and oxime-hydrazone click reactions─and their use for the formation and study of biofunctional polymers. Following that, we discuss state-of-the-art biological applications of "click"-biofunctionalized polymers, including both passive applications (e.g., biosensing and bioimaging) and "active" ones that aim to direct changes in biosystems, e.g., for drug delivery, antiviral action, and tissue engineering. In conclusion, we have outlined future directions and existing challenges of click-based polymers for medicinal chemistry and clinical applications.
Collapse
Affiliation(s)
- Krishanu Ghosal
- Research
& Development Laboratory, Shalimar Paints
Limited, Nashik, Maharashtra 422403, India
| | | | - Vivek Mishra
- Amity
Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201313, India
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, Netherlands
- College
of Biological and Chemical Sciences, Jiaxing
University, Jiaxing 314001, China
| |
Collapse
|
2
|
Křivánková N, Kaya K, van der Wijngaart W, Edlund U. Copper-mediated synthesis of temperature-responsive poly( N-acryloyl glycinamide) polymers: a step towards greener and simple polymerisation. RSC Adv 2023; 13:29099-29108. [PMID: 37800134 PMCID: PMC10548432 DOI: 10.1039/d3ra04993k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023] Open
Abstract
Stimuli-responsive materials with reversible supramolecular networks controlled by a change in temperature are of interest in medicine, biomedicine and analytical chemistry. For these materials to become more impactful, the development of greener synthetic practices with more sustainable solvents, lower energy consumption and a reduction in metallic catalysts is needed. In this work, we investigate the polymerisation of N-acryloyl glycinamide monomer by single-electron transfer reversible-deactivation radical polymerisation and its effect on the cloud point of the resulting PNAGA polymers. We accomplished 80% conversion within 5 min in water media using a copper wire catalyst. The material exhibited a sharp upper critical solution temperature (UCST) phase transition (10-80% transition within 6 K). These results indicate that UCST-exhibiting PNAGA can be synthesized at ambient temperatures and under non-inert conditions, eliminating the cost- and energy-consuming deoxygenation step. The choice of copper wire as the catalyst allows the possibility of catalyst recycling. Furthermore, we show that the reaction is feasible in a simple vial which would facilitate upscaling.
Collapse
Affiliation(s)
- Nikola Křivánková
- Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH) Stockholm 100 44 Sweden
- Digital Futures, Royal Institute of Technology (KTH) Stockholm 100 44 Sweden
| | - Kerem Kaya
- Intelligent Systems, School of Electrical Engineering and Computer Science, Royal Institute of Technology (KTH) Stockholm 100 44 Sweden
- Digital Futures, Royal Institute of Technology (KTH) Stockholm 100 44 Sweden
| | - Wouter van der Wijngaart
- Intelligent Systems, School of Electrical Engineering and Computer Science, Royal Institute of Technology (KTH) Stockholm 100 44 Sweden
- Digital Futures, Royal Institute of Technology (KTH) Stockholm 100 44 Sweden
| | - Ulrica Edlund
- Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH) Stockholm 100 44 Sweden
- Digital Futures, Royal Institute of Technology (KTH) Stockholm 100 44 Sweden
| |
Collapse
|
3
|
Höhner JR, Gumerov RA, Potemkin II, Rodriguez-Emmenegger C, Kostina NY, Mourran A, Englert J, Schröter D, Janke L, Möller M. Globular Hydrophilic Poly(acrylate)s by an Arborescent Grafting-from Synthesis. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. Robin Höhner
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52074, Germany
- DWI Leibniz Institute for Interactive Materials, Aachen 52056, Germany
| | - Rustam A. Gumerov
- DWI Leibniz Institute for Interactive Materials, Aachen 52056, Germany
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Igor I. Potemkin
- DWI Leibniz Institute for Interactive Materials, Aachen 52056, Germany
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation
- National Research South Ural State University, Chelyabinsk 454080, Russian Federation
| | | | - Nina Yu. Kostina
- DWI Leibniz Institute for Interactive Materials, Aachen 52056, Germany
| | - Ahmed Mourran
- DWI Leibniz Institute for Interactive Materials, Aachen 52056, Germany
| | - Jenny Englert
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52074, Germany
- DWI Leibniz Institute for Interactive Materials, Aachen 52056, Germany
| | - David Schröter
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52074, Germany
- DWI Leibniz Institute for Interactive Materials, Aachen 52056, Germany
| | - Lennart Janke
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52074, Germany
- DWI Leibniz Institute for Interactive Materials, Aachen 52056, Germany
| | - Martin Möller
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52074, Germany
- DWI Leibniz Institute for Interactive Materials, Aachen 52056, Germany
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russia
| |
Collapse
|
4
|
Eskandari P, Abousalman-Rezvani Z, Roghani-Mamaqani H, Salami-Kalajahi M. Polymer-functionalization of carbon nanotube by in situ conventional and controlled radical polymerizations. Adv Colloid Interface Sci 2021; 294:102471. [PMID: 34214841 DOI: 10.1016/j.cis.2021.102471] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
Functionalization of carbon nanotube (CNT) with polymers has drawn much attention due to its wide range of applications. Polymer-functionalized CNT could exhibit variety of properties, such as responsivity to environmental stimuli, ability of complexation with metal ions, increased dispersibility in different solvents, higher compatibility with polymer matrix, etc. Chemical and physical methods have been developed for the preparation of polymer-functionalized CNT. Polymer chains are chemically bonded to the CNT edge or surface in the chemical methods, which results in highly stable CNT/polymer composites. "Grafting to", "grafting from", and "grafting through" methods are the most common chemical methods for polymer-functionalization of CNT. In "grafting to" method, pre-fabricated polymer chains are coupled with the either functionalized or non-functionalized CNT. In "grafting from" and "grafting through" methods, CNT is functionalized by polymers simultaneously synthesized by in situ polymerization methods. Conventional free radical polymerization (FRP) and also controlled radical polymerization (CRP) are the most promising methods for in situ tethering of polymer brushes onto the surface of CNT due to their control over the grafting density, thickness, and functionality of the polymer brushes. The main focus of this review is on the synthesis of polymer-functionalized CNT via both the "grafting from" and "grafting through" methods on the basis of FRP and CRP routs, which is commonly known as in situ polymerizations. Finally, the most important challenges and applications of the in situ polymer grafting methods are discussed, which could be interesting for the future works.
Collapse
|
5
|
Long W, Ouyang H, Hu X, Liu M, Zhang X, Feng Y, Wei Y. State-of-art review on preparation, surface functionalization and biomedical applications of cellulose nanocrystals-based materials. Int J Biol Macromol 2021; 186:591-615. [PMID: 34271046 DOI: 10.1016/j.ijbiomac.2021.07.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022]
Abstract
Cellulose nanocrystals (CNCs) are a class of sustainable nanomaterials that are obtained from plants and microorganisms. These naturally derived nanomaterials are of abundant hydroxyl groups, well biocompatibility, low cost and biodegradable potential, making them suitable and promising candidates for various applications, especially in biomedical fields. In this review, the recent advances and development on the preparation, surface functionalization and biomedical applications of CNCs-based materials have been summarized and outlined. The main context of this paper could be divided into the following three parts. In the first part, the preparation strategies based on physical, chemical, enzymatic and combination techniques for preparation of CNCs have been summarized. The surface functionalization methods for synthesis CNCs-based materials with designed properties and functions were outlined in the following section. Finally, the current state about applications of CNCs-based materials for tissue engineering, medical hydrogels, biosensors, fluorescent imaging and intracellular delivery of biological agents have been highlighted. Moreover, current issues and future directions about the above aspects have also pointed out and discussed. We believe this review will attract great research attention of scientists from materials, chemistry, biomedicine and other disciplines. It will also provide some important insights on the future development of CNCs-based materials especially in biomedical fields.
Collapse
Affiliation(s)
- Wei Long
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Hui Ouyang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Xin Hu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Meiying Liu
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yulin Feng
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polyer Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Kwon D, Jochi Y, Okaya Y, Seki T, Satoh K, Kamigaito M, Hoshino T, Urayama K, Takeoka Y. Nonturbid Fast Temperature-Responsive Hydrogels with Homogeneous Three-Dimensional Networks by Two Types of Star Polymer Synthesis Methods. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- DoWoo Kwon
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yuto Jochi
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yuumi Okaya
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takahiro Seki
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kotaro Satoh
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Masami Kamigaito
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Taiki Hoshino
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-51982, Japan
| | - Kenji Urayama
- Department of Macromolecular Science & Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Yukikazu Takeoka
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
7
|
Facile Synthesis of Hydrophilic Homo-Polyacrylamides via Cu(0)-Mediated Reversible Deactivation Radical Polymerization. Polymers (Basel) 2021; 13:polym13121947. [PMID: 34208240 PMCID: PMC8230765 DOI: 10.3390/polym13121947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 11/22/2022] Open
Abstract
In this work, copper-mediated reversible deactivation radical polymerization (RDRP) of homo-polyacrylamides was conducted in aqueous solutions at 0.0 °C. Various degrees of polymerization (DP = 20, 40, 60, and 80) of well-defined water-soluble homopolymers were targeted. In the absence of any significant undesirable side reactions, the dispersity of polydiethylacrylamide (PDEA) and polydimethylacrylamide (PDMA) was narrow under controlled polymerization conditions. To accelerate the polymerization rate, disproportionation of copper bromide in the presence of a suitable ligand was performed prior to polymerization. Full conversion of the monomer was confirmed by nuclear magnetic resonance (NMR) analysis. Additionally, the linear evolution of the polymeric chains was established by narrow molecular weight distributions (MWDs). The values of theoretical and experimental number average molecular weights (Mn) were calculated, revealing a good matching and robustness of the system. The effect of decreasing the reaction temperature on the rate of polymerization was also investigated. At temperatures lower than 0.0 °C, the controlled polymerization and the rate of the process were not affected.
Collapse
|
8
|
Mohammad SA, Dolui S, Kumar D, Alam MM, Banerjee S. Anisotropic and Self‐Healing Copolymer with Multiresponsive Capability via Recyclable Alloy‐Mediated RDRP. Macromol Rapid Commun 2021; 42:e2100096. [DOI: 10.1002/marc.202100096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/19/2021] [Indexed: 12/20/2022]
Affiliation(s)
- Sk Arif Mohammad
- Department of Chemistry Indian Institute of Technology Bhilai Raipur Chhattisgarh 492015 India
| | - Subrata Dolui
- Department of Chemistry Indian Institute of Technology Bhilai Raipur Chhattisgarh 492015 India
| | - Devendra Kumar
- Department of Chemistry Indian Institute of Technology Bhilai Raipur Chhattisgarh 492015 India
| | - Md. Mehboob Alam
- Department of Chemistry Indian Institute of Technology Bhilai Raipur Chhattisgarh 492015 India
| | - Sanjib Banerjee
- Department of Chemistry Indian Institute of Technology Bhilai Raipur Chhattisgarh 492015 India
| |
Collapse
|
9
|
Monaco A, Beyer VP, Napier R, Becer CR. Multi-Arm Star-Shaped Glycopolymers with Precisely Controlled Core Size and Arm Length. Biomacromolecules 2020; 21:3736-3744. [PMID: 32786531 DOI: 10.1021/acs.biomac.0c00838] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Star-shaped glycopolymers provide very high binding activities toward lectins. However, a straightforward synthesis method for the preparation of multi-arm glycopolymers in a one-pot approach has been challenging. Herein, we report a rapid synthesis of well-defined multi-arm glycopolymers via Cu(0)-mediated reversible deactivation radical polymerization in aqueous media. d-Mannose acrylamide has been homo- and copolymerized with NIPAM to provide linear arms and then core cross-linked with a bisacrylamide monomer. Thus, the arm length and core size of multi-arm glycopolymers were tuned. Moreover, the stability of multi-arm glycopolymers was investigated, and degradation reactions under acidic or basic conditions were observed. The binding activities of the obtained multi-arm glycopolymers with mannose-specific human lectins, DC-SIGN and MBL, were investigated via surface plasmon resonance spectroscopy. Finally, the encapsulation ability of multi-arm glycopolymers was examined using DHA and Saquinavir below and above the lower critical solution temperature (LCST) of P(NIPAM).
Collapse
Affiliation(s)
- Alessandra Monaco
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, U.K.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Valentin P Beyer
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, U.K.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - C Remzi Becer
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
10
|
Wang Y, García‐Peñas A, Gómez‐Ruiz S, Stadler FJ. Surrounding Interactions on Phase Transition Temperature Promoted by Organometallic Complexes in Functionalized Poly(
N
‐isopropylacrylamide‐
co
‐dopamine methacrylamide) Copolymers. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yu Wang
- College of Materials Science and EngineeringShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsNanshan District Key Laboratory for Biopolymers and Safety EvaluationShenzhen University Shenzhen 518055 P. R. China
| | - Alberto García‐Peñas
- College of Materials Science and EngineeringShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsNanshan District Key Laboratory for Biopolymers and Safety EvaluationShenzhen University Shenzhen 518055 P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 P. R. China
| | - Santiago Gómez‐Ruiz
- COMET‐NANO GroupDepartamento de Biología y GeologíaFísica y Química InorgánicaESCETUniversidad Rey Juan Carlos Calle Tulipán s/n Móstoles Madrid 28933 Spain
| | - Florian J. Stadler
- College of Materials Science and EngineeringShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsNanshan District Key Laboratory for Biopolymers and Safety EvaluationShenzhen University Shenzhen 518055 P. R. China
| |
Collapse
|
11
|
Lu H, Gao M, Song R, Ye L, Zhang A, Feng Z. Hydroxypropyl β‐Cyclodextrin Solubilizing Hydrophobic Initiator to Initiate Copper‐Mediated RDRP of NIPAM in Aqueous Media. ChemistrySelect 2020. [DOI: 10.1002/slct.202000269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hang Lu
- School of Materials Science & EngineeringBeijing Institute of Technology No. 5 South Street Zhongguancun Beijing 100081 China
| | - Ming Gao
- School of Materials Science & EngineeringBeijing Institute of Technology No. 5 South Street Zhongguancun Beijing 100081 China
| | - Ronghao Song
- School of Materials Science & EngineeringBeijing Institute of Technology No. 5 South Street Zhongguancun Beijing 100081 China
| | - Lin Ye
- School of Materials Science & EngineeringBeijing Institute of Technology No. 5 South Street Zhongguancun Beijing 100081 China
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications No. 5 South Street Zhongguancun Beijing 100081 China
| | - Ai‐Ying Zhang
- School of Materials Science & EngineeringBeijing Institute of Technology No. 5 South Street Zhongguancun Beijing 100081 China
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications No. 5 South Street Zhongguancun Beijing 100081 China
| | - Zeng‐Guo Feng
- School of Materials Science & EngineeringBeijing Institute of Technology No. 5 South Street Zhongguancun Beijing 100081 China
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications No. 5 South Street Zhongguancun Beijing 100081 China
| |
Collapse
|
12
|
Okaya Y, Jochi Y, Seki T, Satoh K, Kamigaito M, Hoshino T, Nakatani T, Fujinami S, Takata M, Takeoka Y. Precise Synthesis of a Homogeneous Thermoresponsive Polymer Network Composed of Four-Branched Star Polymers with a Narrow Molecular Weight Distribution. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01616] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yuumi Okaya
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yuto Jochi
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takahiro Seki
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kotaro Satoh
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Taiki Hoshino
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tomotaka Nakatani
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - So Fujinami
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Masaki Takata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aobaku, Sendai City, Miyagi 980-8577, Japan
| | - Yukikazu Takeoka
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
13
|
Wang L, Ding W, Song K, Dong C, Chen M, Zhou H. Synthesis of a branched star copolymer by aqueous SET-LRP and its thermo-stimuli response. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1691452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ling Wang
- Chemistry and Chemical Engineering College of Northeast Petroleum University, Provincial Key Laboratory of Oil and Gas Chemical Technology, Daqing, China
| | - Wei Ding
- Chemistry and Chemical Engineering College of Northeast Petroleum University, Provincial Key Laboratory of Oil and Gas Chemical Technology, Daqing, China
| | - Kaoping Song
- School of Petroleum Engineering of Northeast Petroleum University, Daqing, China
| | - Chi Dong
- School of Petroleum Engineering of Northeast Petroleum University, Daqing, China
| | - Meixin Chen
- Chemistry and Chemical Engineering College of Northeast Petroleum University, Provincial Key Laboratory of Oil and Gas Chemical Technology, Daqing, China
| | - Huajian Zhou
- Institute of Unconventional Oil and Gas of Northeast Petroleum University, Daqing, China
| |
Collapse
|
14
|
Pei X, Zhai K, Wang C, Deng Y, Tan Y, Zhang B, Bai Y, Xu K, Wang P. Polymer Brush Graft-Modified Starch-Based Nanoparticles as Pickering Emulsifiers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7222-7230. [PMID: 31070380 DOI: 10.1021/acs.langmuir.9b00413] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We study biosourced core-shell particles with a starch-based core and thermo-responsive polymer brush shell using surface-initiated single-electron transfer living radical polymerization (SI-SET-LRP) as a Pickering stabilizer. The shell endows the Pickering stabilizer with reversible emulsification/demulsification of oil and water properties. The initiator attached to the starch-based nanosphere (Br-SNP) core particle was first fabricated using the precipitation method. Subsequently, dense poly( N-isopropylacrylamide) (PNIPAM) brush graft-modified starch-based nanoparticles (SNP- g-PNIPAM) were obtained via the SI-SET-LRP process. Interfacial properties of the resultant particles were analyzed by interfacial tensiometer measurements, as were the effects of the grafted polymer chain length and temperature on the interfacial activity. Pickering emulsion was obtained using SNP- g-PNIPAM particles as the stabilizer. The effect of the concentration of the Pickering stabilizer on the size of emulsion droplets was analyzed. The emulsification/demulsification process of the Pickering emulsion can be reversed and easily repeated by changing the temperature.
Collapse
Affiliation(s)
- Xiaopeng Pei
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , PR China
- University of Science and Technology of China , Hefei 230026 , PR China
| | - Kankan Zhai
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , PR China
- University of Science and Technology of China , Hefei 230026 , PR China
| | - Chao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , PR China
- University of Science and Technology of China , Hefei 230026 , PR China
| | - Yukun Deng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , PR China
| | - Ying Tan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , PR China
| | - Baichao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , PR China
| | - Yungang Bai
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , PR China
| | - Kun Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , PR China
| | - Pixin Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , PR China
| |
Collapse
|
15
|
Ding L, Li J, Jiang RY, Wang LF, Song W, Zhu L. Cu(0) Wire-mediated Single-electron Transfer-living Radical Polymerization of Oligo(ethylene oxide) Methyl Ether Acrylate by Selecting the Optimal Reaction Conditions. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2263-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Bensabeh N, Moreno A, Roig A, Monaghan OR, Ronda JC, Cádiz V, Galià M, Howdle SM, Lligadas G, Percec V. Polyacrylates Derived from Biobased Ethyl Lactate Solvent via SET-LRP. Biomacromolecules 2019; 20:2135-2147. [PMID: 31013072 DOI: 10.1021/acs.biomac.9b00435] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The precise synthesis of polymers derived from alkyl lactate ester acrylates is reported for the first time. Kinetic experiments were conducted to demonstrate that Cu(0) wire-catalyzed single electron transfer-living radical polymerization (SET-LRP) in alcohols at 25 °C provides a green methodology for the LRP of this forgotten class of biobased monomers. The acrylic derivative of ethyl lactate (EL) solvent and homologous structures with methyl and n-butyl ester were polymerized with excellent control over molecular weight, molecular weight distribution, and chain-end functionality. Kinetics plots in conventional alcohols such as ethanol and methanol were first order in the monomer, with molecular weight increasing linearly with conversion. However, aqueous EL mixtures were found to be more suitable than pure EL to mediate the SET-LRP process. The near-quantitative monomer conversion and high bromine chain-end functionality, demonstrated by matrix-assisted laser desorption ionization time-of-flight analysis, further allowed the preparation of innovative biobased block copolymers containing rubbery poly(ethyl lactate acrylate) poly(ELA) sequences. For instance, the poly(ELA)- b-poly(glycerol acrylate) block copolymer self-assembled in water to form stable micelles with chiral lactic acid-derived block-forming micellar core as confirmed by the pyrene-probe-based fluorescence technique. Dynamic light scattering and transmission electron microscopy measurements revealed the nanosize spherical morphology for these biobased aggregates.
Collapse
Affiliation(s)
- Nabil Bensabeh
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Adrian Moreno
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Adrià Roig
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Olivia R Monaghan
- School of Chemistry , University of Nottingham , University Park Nottingham, NG7 2RD Nottingham , U.K
| | - Juan C Ronda
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Virginia Cádiz
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain
| | - Steven M Howdle
- School of Chemistry , University of Nottingham , University Park Nottingham, NG7 2RD Nottingham , U.K
| | - Gerard Lligadas
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43003 , Spain.,Roy & Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| |
Collapse
|
17
|
Satoh K, Ishizuka K, Hamada T, Handa M, Abe T, Ozawa S, Miyajima M, Kamigaito M. Construction of Sequence-Regulated Vinyl Copolymers via Iterative Single Vinyl Monomer Additions and Subsequent Metal-Catalyzed Step-Growth Radical Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00676] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kotaro Satoh
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Kenta Ishizuka
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Tsuyoshi Hamada
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Masato Handa
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Tomohiro Abe
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Satoshi Ozawa
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Masato Miyajima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
18
|
Moreno A, Galià M, Lligadas G, Percec V. SET-LRP in Biphasic Mixtures of the Nondisproportionating Solvent Hexafluoroisopropanol with Water. Biomacromolecules 2018; 19:4480-4491. [DOI: 10.1021/acs.biomac.8b01381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
19
|
Kupfervermittelte radikalische Polymerisation mit reversibler Deaktivierung in wässrigen Medien. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Jones GR, Anastasaki A, Whitfield R, Engelis N, Liarou E, Haddleton DM. Copper‐Mediated Reversible Deactivation Radical Polymerization in Aqueous Media. Angew Chem Int Ed Engl 2018; 57:10468-10482. [DOI: 10.1002/anie.201802091] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Glen R. Jones
- University of WarwickDepartment of Chemistry Library Road Coventry CV4 7AL UK
| | - Athina Anastasaki
- Materials Research LaboratoryUniversity of California Santa Barbara California 93106 USA
| | - Richard Whitfield
- University of WarwickDepartment of Chemistry Library Road Coventry CV4 7AL UK
| | - Nikolaos Engelis
- University of WarwickDepartment of Chemistry Library Road Coventry CV4 7AL UK
| | - Evelina Liarou
- University of WarwickDepartment of Chemistry Library Road Coventry CV4 7AL UK
| | - David M. Haddleton
- University of WarwickDepartment of Chemistry Library Road Coventry CV4 7AL UK
| |
Collapse
|
21
|
Bensabeh N, Ronda JC, Galià M, Cádiz V, Lligadas G, Percec V. SET-LRP of the Hydrophobic Biobased Menthyl Acrylate. Biomacromolecules 2018. [DOI: 10.1021/acs.biomac.8b00090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nabil Bensabeh
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Joan C. Ronda
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Virginia Cádiz
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
22
|
Liu X, Appelhans D, Zhang T, Voit B. Rapid Synthesis of Dual-Responsive Hollow Capsules with Controllable Membrane Thickness by Surface-Initiated SET-LRP Polymerization. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02347] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaoling Liu
- Leibniz-Institute
für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Organic
Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz-Institute
für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Tao Zhang
- Organic
Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institute
für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Organic
Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
23
|
Moreno A, Lejnieks J, Ding L, Grama S, Galià M, Lligadas G, Percec V. Highly reactive α-bromoacrylate monomers and Michael acceptors obtained by Cu(ii)Br2-dibromination of acrylates and instantaneous E2 by a ligand. Polym Chem 2018. [DOI: 10.1039/c8py00155c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The importance of the order of addition of reagents in SET-LRP.
Collapse
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Jānis Lejnieks
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Liang Ding
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Marina Galià
- Laboratory of Sustainable Polymers
- Department of Analytical Chemistry and Organic Chemistry
- University Rovira i Virgili
- Tarragona
- Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
24
|
Moreno A, Lejnieks J, Galià M, Lligadas G, Percec V. Acetone: a solvent or a reagent depending on the addition order in SET-LRP. Polym Chem 2018. [DOI: 10.1039/c8py01331d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The importance of reagent order in biphasic SET-LRP in acetone/water mixtures is shown.
Collapse
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Jānis Lejnieks
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Marina Galià
- Laboratory of Sustainable Polymers
- Department of Analytical Chemistry and Organic Chemistry
- University Rovira i Virgili
- Tarragona
- Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
25
|
Moreno A, Liu T, Ding L, Buzzacchera I, Galià M, Möller M, Wilson CJ, Lligadas G, Percec V. SET-LRP in biphasic mixtures of fluorinated alcohols with water. Polym Chem 2018. [DOI: 10.1039/c8py00062j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Efficient and inexpensive SET-LRP in biphasic-mixtures of fluorinated alcohols with water.
Collapse
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Tong Liu
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Liang Ding
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Irene Buzzacchera
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Marina Galià
- Laboratory of Sustainable Polymers
- Department of Analytical Chemistry and Organic Chemistry
- University Rovira i Virgili
- Tarragona
- Spain
| | - Martin Möller
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
| | | | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
26
|
Moreno A, Garcia D, Galià M, Ronda JC, Cádiz V, Lligadas G, Percec V. SET-LRP in the Neoteric Ethyl Lactate Alcohol. Biomacromolecules 2017; 18:3447-3456. [DOI: 10.1021/acs.biomac.7b01130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Adrian Moreno
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Diego Garcia
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Marina Galià
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Joan C. Ronda
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Virginia Cádiz
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Gerard Lligadas
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Virgil Percec
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
27
|
Lligadas G, Grama S, Percec V. Single-Electron Transfer Living Radical Polymerization Platform to Practice, Develop, and Invent. Biomacromolecules 2017; 18:2981-3008. [DOI: 10.1021/acs.biomac.7b01131] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
28
|
Lligadas G, Enayati M, Grama S, Smail R, Sherman SE, Percec V. Ultrafast SET-LRP with Peptoid Cytostatic Drugs as Monofunctional and Bifunctional Initiators. Biomacromolecules 2017; 18:2610-2622. [DOI: 10.1021/acs.biomac.7b00722] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Gerard Lligadas
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Mojtaba Enayati
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Silvia Grama
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Rauan Smail
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Samuel E. Sherman
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
29
|
Lligadas G, Grama S, Percec V. Recent Developments in the Synthesis of Biomacromolecules and their Conjugates by Single Electron Transfer-Living Radical Polymerization. Biomacromolecules 2017; 18:1039-1063. [PMID: 28276244 DOI: 10.1021/acs.biomac.7b00197] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Single electron transfer-living radical polymerization (SET-LRP) represents a robust and versatile tool for the synthesis of vinyl polymers with well-defined topology and chain end functionality. The crucial step in SET-LRP is the disproportionation of the Cu(I)X generated by activation with Cu(0) wire, powder, or nascent Cu(0) generated in situ into nascent, extremely reactive Cu(0) atoms and nanoparticles and Cu(II)X2. Nascent Cu(0) activates the initiator and dormant chains via a homogeneous or heterogeneous outer-sphere single-electron transfer mechanism (SET-LRP). SET-LRP provides an ultrafast polymerization of a plethora of monomers (e.g., (meth)-acrylates, (meth)-acrylamides, styrene, and vinyl chloride) including hydrophobic and water insoluble to hydrophilic and water soluble. Some advantageous features of SET-LRP are (i) the use of Cu(0) wire or powder as readily available catalysts under mild reaction conditions, (ii) their excellent control over molecular weight evolution and distribution as well as polymer chain ends, (iii) their high functional group tolerance allowing the polymerization of commercial-grade monomers, and (iv) the limited purification required for the resulting polymers. In this Perspective, we highlight the recent advancements of SET-LRP in the synthesis of biomacromolecules and of their conjugates.
Collapse
Affiliation(s)
- Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States.,Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili , Tarragona, Spain
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
30
|
Smail RB, Jezorek RL, Lejnieks J, Enayati M, Grama S, Monteiro MJ, Percec V. Acetone–water biphasic mixtures as solvents for ultrafast SET-LRP of hydrophobic acrylates. Polym Chem 2017. [DOI: 10.1039/c7py00557a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transformation of SET-LRP catalyzed with Cu(0) wire from single phase (acetone/water = 9/1, v/v) into biphase (acetone/water = 8/2, v/v).
Collapse
Affiliation(s)
- Rauan B. Smail
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Ryan L. Jezorek
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Jānis Lejnieks
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Mojtaba Enayati
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
31
|
Grama S, Lejnieks J, Enayati M, Smail RB, Ding L, Lligadas G, Monteiro MJ, Percec V. Searching for efficient SET-LRP systems via biphasic mixtures of water with carbonates, ethers and dipolar aprotic solvents. Polym Chem 2017. [DOI: 10.1039/c7py01349c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Screening biphasic mixtures of water with carbonates, ethers and dipolar aprotic solvents to discover new SET-LRP solvent systems.
Collapse
Affiliation(s)
- Silvia Grama
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Jānis Lejnieks
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Mojtaba Enayati
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Rauan B. Smail
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Liang Ding
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
32
|
Moreno A, Grama S, Liu T, Galià M, Lligadas G, Percec V. SET-LRP mediated by TREN in biphasic water–organic solvent mixtures provides the most economical and efficient process. Polym Chem 2017. [DOI: 10.1039/c7py01841j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Screening ligands and solvents for economical and efficient biphasic SET-LRP.
Collapse
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Tong Liu
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Marina Galià
- Laboratory of Sustainable Polymers
- Department of Analytical Chemistry and Organic Chemistry
- University Rovira i Virgili
- Tarragona
- Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
33
|
Jezorek RL, Enayati M, Smail RB, Lejnieks J, Grama S, Monteiro MJ, Percec V. The stirring rate provides a dramatic acceleration of the ultrafast interfacial SET-LRP in biphasic acetonitrile–water mixtures. Polym Chem 2017. [DOI: 10.1039/c7py00659d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The rate of interfacial SET-LRP in biphasic acetonitrile–water mixtures is stirring rate dependent.
Collapse
Affiliation(s)
- Ryan L. Jezorek
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Mojtaba Enayati
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Rauan B. Smail
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Jānis Lejnieks
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
34
|
Yasumoto A, Gotoh H, Gotoh Y, Imran AB, Hara M, Seki T, Sakai Y, Ito K, Takeoka Y. Highly Responsive Hydrogel Prepared Using Poly(N-isopropylacrylamide)-Grafted Polyrotaxane as a Building Block Designed by Reversible Deactivation Radical Polymerization and Click Chemistry. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01955] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Atsushi Yasumoto
- Department of Molecular
Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiroaki Gotoh
- Department of Molecular
Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshie Gotoh
- Department of Molecular
Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8603, Japan
| | - Abu Bin Imran
- Department of Molecular
Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8603, Japan
| | - Mitsuo Hara
- Department of Molecular
Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8603, Japan
| | - Takahiro Seki
- Department of Molecular
Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8603, Japan
| | - Yasuhiro Sakai
- Department of Advanced Materials Science,
Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Kohzo Ito
- Department of Advanced Materials Science,
Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Yukikazu Takeoka
- Department of Molecular
Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
35
|
Knaus MGM, Giuman MM, Pöthig A, Rieger B. End of Frustration: Catalytic Precision Polymerization with Highly Interacting Lewis Pairs. J Am Chem Soc 2016; 138:7776-81. [PMID: 27254134 DOI: 10.1021/jacs.6b04129] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein we report on the catalytic polymerization of diverse Michael-type monomers with high precision by using simple but highly active combinations of phosphorus-containing Lewis bases and organoaluminum compounds. The interacting Lewis pair catalysts enable the control of molecular weight and microstructure of the produced polymers. The reactions show a linear Mn vs consumption plot thus proving a living type polymerization. The initiation has been investigated by end-group analysis with ESI mass spectrometric analysis. With these main-group element Lewis acid base pairs, it is not only possible to polymerize sterically demanding, functionalized as well as heteroatom containing monomers but also, for the first time, to catalytically polymerize extended Michael systems, like 4-vinylpyridine.
Collapse
Affiliation(s)
- Maximilian G M Knaus
- Wacker-Lehrstuhl für Makromolekulare Chemie, Technische Universität München , Lichtenbergstraße 4, 85747 Garching, Germany
| | - Marco M Giuman
- Wacker-Lehrstuhl für Makromolekulare Chemie, Technische Universität München , Lichtenbergstraße 4, 85747 Garching, Germany
| | - Alexander Pöthig
- Catalysis Research Center, Technische Universität München , Ernst-Otto-Fischer-Str. 1, D-85747 Garching, Germany
| | - Bernhard Rieger
- Wacker-Lehrstuhl für Makromolekulare Chemie, Technische Universität München , Lichtenbergstraße 4, 85747 Garching, Germany
| |
Collapse
|
36
|
Zoppe JO, Xu X, Känel C, Orsolini P, Siqueira G, Tingaut P, Zimmermann T, Klok HA. Effect of Surface Charge on Surface-Initiated Atom Transfer Radical Polymerization from Cellulose Nanocrystals in Aqueous Media. Biomacromolecules 2016; 17:1404-13. [DOI: 10.1021/acs.biomac.6b00011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Justin O. Zoppe
- Ecole Polytechnique Fédérale de Lausanne (EPFL) Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères STI - IMX - LP, MXD 036 (Bâtiment MXD) Station
12, CH-1015 Lausanne, Switzerland
| | - Xingyu Xu
- Ecole Polytechnique Fédérale de Lausanne (EPFL) Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères STI - IMX - LP, MXD 036 (Bâtiment MXD) Station
12, CH-1015 Lausanne, Switzerland
| | - Cindy Känel
- Ecole Polytechnique Fédérale de Lausanne (EPFL) Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères STI - IMX - LP, MXD 036 (Bâtiment MXD) Station
12, CH-1015 Lausanne, Switzerland
| | - Paola Orsolini
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, Laboratory of Applied Wood Materials, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Gilberto Siqueira
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, Laboratory of Applied Wood Materials, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Philippe Tingaut
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, Laboratory of Applied Wood Materials, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Tanja Zimmermann
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, Laboratory of Applied Wood Materials, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Harm-Anton Klok
- Ecole Polytechnique Fédérale de Lausanne (EPFL) Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères STI - IMX - LP, MXD 036 (Bâtiment MXD) Station
12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
37
|
Jones GR, Li Z, Anastasaki A, Lloyd DJ, Wilson P, Zhang Q, Haddleton DM. Rapid Synthesis of Well-Defined Polyacrylamide by Aqueous Cu(0)-Mediated Reversible-Deactivation Radical Polymerization. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b01994] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Glen R. Jones
- Chemistry
Department, University of Warwick, Library Road, Coventry CV4 7AL, United Kingdom
| | - Zaidong Li
- Chemistry
Department, University of Warwick, Library Road, Coventry CV4 7AL, United Kingdom
| | - Athina Anastasaki
- Chemistry
Department, University of Warwick, Library Road, Coventry CV4 7AL, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Danielle J. Lloyd
- Chemistry
Department, University of Warwick, Library Road, Coventry CV4 7AL, United Kingdom
| | - Paul Wilson
- Chemistry
Department, University of Warwick, Library Road, Coventry CV4 7AL, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Qiang Zhang
- Chemistry
Department, University of Warwick, Library Road, Coventry CV4 7AL, United Kingdom
| | - David M. Haddleton
- Chemistry
Department, University of Warwick, Library Road, Coventry CV4 7AL, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| |
Collapse
|
38
|
Gavrilov M, Jia Z, Percec V, Monteiro MJ. Quantitative end-group functionalization of PNIPAM from aqueous SET-LRP via in situ reduction of Cu(ii) with NaBH4. Polym Chem 2016. [DOI: 10.1039/c6py00968a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rapid in situ azidation and CuAAC ‘click’ reaction demonstrating very high chain-end functionality.
Collapse
Affiliation(s)
- Mikhail Gavrilov
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
| | - Zhongfan Jia
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
| |
Collapse
|
39
|
Anastasaki A, Nikolaou V, Haddleton DM. Cu(0)-mediated living radical polymerization: recent highlights and applications; a perspective. Polym Chem 2016. [DOI: 10.1039/c5py01916h] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cu(0)-mediated living radical polymerization or single electron transfer living radical polymerization (Cu(0)-mediated LRP or SET-LRP) is a versatile polymerization technique that has attracted considerable interest during the past few years for the facile preparation of advanced materials.
Collapse
Affiliation(s)
- Athina Anastasaki
- University of Warwick
- Chemistry Department
- Coventry
- UK
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| | | | - David M. Haddleton
- University of Warwick
- Chemistry Department
- Coventry
- UK
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| |
Collapse
|
40
|
Enayati M, Jezorek RL, Monteiro MJ, Percec V. Ultrafast SET-LRP of hydrophobic acrylates in multiphase alcohol–water mixtures. Polym Chem 2016. [DOI: 10.1039/c6py00353b] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A multiphase SET-LRP system using thein situgenerated Cu(0) by reduction of Cu(ii)Br2with NaBH4in various alcohols containing water was developed and used for SET-LRP of hydrophobic acrylates. From left to right: a solution of methanol/water containing Cu(ii)Br2, the same solution after addition of BA and its SET-LRP.
Collapse
Affiliation(s)
- Mojtaba Enayati
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Ryan L. Jezorek
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane QLD 4072
- Australia
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
41
|
Gavrilov M, Zerk TJ, Bernhardt PV, Percec V, Monteiro MJ. SET-LRP of NIPAM in water via in situ reduction of Cu(ii) to Cu(0) with NaBH4. Polym Chem 2016. [DOI: 10.1039/c5py01855b] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The direct and quantitative reduction of the air-stable Cu(ii)Br2/Me6TREN to Cu(0) by NaBH4 represents a new method for the aqueous single electron transfer-living radical polymerization (SET-LRP) of water soluble polymers.
Collapse
Affiliation(s)
- Mikhail Gavrilov
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane QLD 4072
- Australia
| | - Timothy J. Zerk
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- Brisbane QLD 4072
- Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- Brisbane QLD 4072
- Australia
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane QLD 4072
- Australia
| |
Collapse
|
42
|
Enayati M, Jezorek RL, Smail RB, Monteiro MJ, Percec V. Ultrafast SET-LRP in biphasic mixtures of the non-disproportionating solvent acetonitrile with water. Polym Chem 2016. [DOI: 10.1039/c6py01307d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The two kinetic regime, low conversion and low chain end functionality seen in copper catalyzed polymerization of acrylates in acetonitrile was transformed into a SET-LRP kinetic, to complete conversion and quantitative chain end functionality in a biphasic mixture containing 10% water.
Collapse
Affiliation(s)
- Mojtaba Enayati
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Ryan L. Jezorek
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Rauan B. Smail
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
43
|
Enayati M, Jezorek RL, Percec V. A multiple-stage activation of the catalytically inhomogeneous Cu(0) wire used in SET-LRP. Polym Chem 2016. [DOI: 10.1039/c6py00888g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The surface of a Cu(0) wire used as a catalyst in SET-LRP is inhomogeneous since it contains a combination of Cu(111) and Cu(100) faces of the FCC unit cell whose ratio is dependent on the fabrication method. A method to activate this inhomogeneous Cu(0) wire for SET-LRP is reported.
Collapse
Affiliation(s)
- Mojtaba Enayati
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Ryan L. Jezorek
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
44
|
Aksakal R, Resmini M, Becer CR. Pentablock star shaped polymers in less than 90 minutes via aqueous SET-LRP. Polym Chem 2016. [DOI: 10.1039/c5py01623a] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The synthesis of core-first multi-block star-shaped copolymers via aqueous SET-LRP has been reported for the first time.
Collapse
Affiliation(s)
- R. Aksakal
- School of Biological and Chemical Sciences
- Queen Mary University of London
- London E1 4NS
- UK
| | - M. Resmini
- School of Engineering and Materials Science
- Queen Mary University of London
- London E1 4NS
- UK
| | - C. R. Becer
- School of Biological and Chemical Sciences
- Queen Mary University of London
- London E1 4NS
- UK
| |
Collapse
|
45
|
Enayati M, Smail RB, Grama S, Jezorek RL, Monteiro MJ, Percec V. The synergistic effect during biphasic SET-LRP in ethanol–nonpolar solvent–water mixtures. Polym Chem 2016. [DOI: 10.1039/c6py01815g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adding a nonpolar solvent to ethanol–water reaction mixtures transforms SET-LRP of BA from triphasic to biphasic exhibiting a synergistic effect.
Collapse
Affiliation(s)
- Mojtaba Enayati
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Rauan B. Smail
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Ryan L. Jezorek
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
46
|
Boyer C, Corrigan NA, Jung K, Nguyen D, Nguyen TK, Adnan NNM, Oliver S, Shanmugam S, Yeow J. Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chem Rev 2015; 116:1803-949. [DOI: 10.1021/acs.chemrev.5b00396] [Citation(s) in RCA: 356] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cyrille Boyer
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nathaniel Alan Corrigan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Kenward Jung
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Diep Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Thuy-Khanh Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nik Nik M. Adnan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Susan Oliver
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Sivaprakash Shanmugam
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Jonathan Yeow
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
47
|
Lin C, Liu D, Luo W, Liu Y, Zhu M, Li X, Liu M. Functionalization of chitosan via single electron transfer living radical polymerization in an ionic liquid and its antimicrobial activity. J Appl Polym Sci 2015. [DOI: 10.1002/app.42754] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chunxiang Lin
- Department of Environmental Science and Engineering, College of Environment and Resources; Fuzhou University; Fuzhou, Fujian 350108 China
- Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education of China; Qilu University of Technology; Jinan, Shandong 250353 China
- Key Laboratory of Eco-Materials Advanced Technology (Fuzhou University); Fujian Province University; Fuzhou, Fujian 350108 China
| | - Danhui Liu
- Department of Environmental Science and Engineering, College of Environment and Resources; Fuzhou University; Fuzhou, Fujian 350108 China
| | - Wei Luo
- Department of Environmental Science and Engineering, College of Environment and Resources; Fuzhou University; Fuzhou, Fujian 350108 China
| | - Yifan Liu
- Department of Environmental Science and Engineering, College of Environment and Resources; Fuzhou University; Fuzhou, Fujian 350108 China
| | - Moshuqi Zhu
- Department of Environmental Science and Engineering, College of Environment and Resources; Fuzhou University; Fuzhou, Fujian 350108 China
| | - Xiaojuan Li
- Department of Environmental Science and Engineering, College of Environment and Resources; Fuzhou University; Fuzhou, Fujian 350108 China
| | - Minghua Liu
- Department of Environmental Science and Engineering, College of Environment and Resources; Fuzhou University; Fuzhou, Fujian 350108 China
- Key Laboratory of Eco-Materials Advanced Technology (Fuzhou University); Fujian Province University; Fuzhou, Fujian 350108 China
| |
Collapse
|
48
|
|
49
|
Anastasaki A, Nikolaou V, Nurumbetov G, Wilson P, Kempe K, Quinn JF, Davis TP, Whittaker MR, Haddleton DM. Cu(0)-Mediated Living Radical Polymerization: A Versatile Tool for Materials Synthesis. Chem Rev 2015; 116:835-77. [DOI: 10.1021/acs.chemrev.5b00191] [Citation(s) in RCA: 339] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Athina Anastasaki
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Vasiliki Nikolaou
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
| | - Gabit Nurumbetov
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
| | - Paul Wilson
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Kristian Kempe
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - John F. Quinn
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Thomas P. Davis
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Michael R. Whittaker
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - David M. Haddleton
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| |
Collapse
|
50
|
Photo-induced single-electron transfer living radical polymerization (SET-LRP) of MMA in the presence of ZnO. IRANIAN POLYMER JOURNAL 2015. [DOI: 10.1007/s13726-015-0328-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|