1
|
Wang H, Yang L, Yang Y, Zhang D, Hao G. Multifunctional natural starch-based hydrogels: Critical characteristics, formation mechanisms, various applications, future perspectives. Carbohydr Polym 2025; 357:123458. [PMID: 40158989 DOI: 10.1016/j.carbpol.2025.123458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/11/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
With the growth of the global population and increasing concern for environmental issues, the development of sustainable and eco-friendly materials has become increasingly important. Starch, as a renewable resource, is one of the most abundant polysaccharides in nature, with the advantages of good biocompatibility, high biodegradability, and low cost. Starch-based hydrogels (SBHs) have attracted widespread attention due to their unique physical and chemical properties. This article provides a comprehensive review of the latest research progress in SBHs, discussing their main characteristics, formation mechanisms, diverse applications, and future development trends. First, it outlines the biocompatibility, degradability, water absorption and retention, environmental responsiveness, and mechanical strength of SBHs. Then, it elaborates in detail on the formation mechanisms of SBHs, including physical crosslinking (hydrogen bonding, electrostatic interactions, host-guest and coordination interactions), chemical crosslinking (such as initiators, heat, light, radiation, and click reactions), and synergistic effects. Subsequently, it analyzes the applications of SBHs in cutting-edge fields such as flexible sensors, medical dressings, drug delivery, tissue engineering, soil protection, wastewater treatment, and food packaging. Finally, it summarizes the challenges in current research and provides an outlook on future development trends, emphasizing the importance of further optimizing the performance of SBHs to meet broader industrial needs and environmental protection goals. This review not only provides a systematic theoretical framework for the study of SBHs but also charts a course for their innovative applications in the field of sustainable materials, playing a significant role in advancing the continuous development of this area.
Collapse
Affiliation(s)
- Hong Wang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China
| | - Liang Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China.
| | - Yanning Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China
| | - Dongsheng Zhang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Gangling Hao
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China.
| |
Collapse
|
2
|
Hou J, Chen G, Hao X, Xu J, Waterhouse GIN, Zhang Z, Yu L. Coral-Inspired Zinc Acrylate Polymer Utilizing Coumarin as the Fluorescent Unit for Marine Antifouling. Biomacromolecules 2025; 26:1799-1815. [PMID: 39960235 DOI: 10.1021/acs.biomac.4c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
The need for low-cost and effective antifouling solutions drives innovation in the fields of chemistry, materials science, and biology. In this work, guided by the antifouling strategies used by fluorescent corals, a series of fluorescent zinc acrylate polymer coatings containing coumarin units (ZAR-coumarin) was successfully prepared. The ZAR-coumarin coatings demonstrated excellent antifouling properties due to the synergistic action of multiple antifouling mechanisms, including fluorescent antifouling, natural bactericidal activity, and self-polishing surface renewal (due to ester group (-COO-Zn-OOC-) cleavage). Compared with zinc acrylate coatings without coumarin units (ZAR), the introduction of coumarin units significantly improved the inhibition efficiency for both bacteria and algae. In marine environment tests, the ZAR-AMCO-1, ZAR-ADMCO-1, and ZAR-CAMCO-1 coatings containing optimized amounts of different types of coumarin units maintained good antifouling properties over a 160-day field test period. This research presents an innovative approach to creating marine antifouling coatings.
Collapse
Affiliation(s)
- Jianwei Hou
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Guobo Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xinghai Hao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiali Xu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | | | - Zhiming Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Sanya Oceanographic Institution, Ocean University of China; Sanya Oceanographic Laboratory, Sanya 572024, China
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Sanya Oceanographic Institution, Ocean University of China; Sanya Oceanographic Laboratory, Sanya 572024, China
| |
Collapse
|
3
|
Zhang Y, He C, Xu H. Functional Heteroatom Substituted Hyperbranched Polymers: Recent Developments and Perspectives. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39977665 DOI: 10.1021/acsami.4c22844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Heteroatom-substituted hyperbranched polymers (HBPs) have emerged as a versatile class of functional materials, combining the structural merits of hyperbranched architectures with the unique chemical functionalities imparted by heteroatoms such as boron, silicon, phosphorus, sulfur, selenium, and tellurium. These polymers exhibit distinct physicochemical properties, including low viscosity, excellent solubility, high chemical reactivity, and tunable functionality, which position them as promising candidates for diverse applications. This Review highlights the recent advances in heteroatom substituted HBPs, categorizing them from the element group of their heteroatoms (from Group III to Group VI, as well as transition and rare-earth metals). The pivotal role of heteroatoms in modulating polymer properties is explored, with key applications highlighted across four principal domains: fluorescent materials, flame retardants, stimuli-responsive polymers, and polymer modifications. By integrating insights from chemistry, materials science, and interdisciplinary research, this Review underscores the potential of heteroatom-substituted HBPs in addressing current material challenges.
Collapse
Affiliation(s)
- Yuanbo Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chaowei He
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Shi X, Zhong Q, Zhang S. Starch-calcium inclusion complexes: Optimizing transparency, anti-fogging, and fluorescence in thermoplastic starch. Carbohydr Polym 2025; 348:122842. [PMID: 39562115 DOI: 10.1016/j.carbpol.2024.122842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/14/2024] [Accepted: 10/06/2024] [Indexed: 11/21/2024]
Abstract
With the increasing demand for anti-fogging transparent material and environmental concern, developing sustainable intrinsically hydrophilic and anti-fogging thermoplastic material is important. In this work, thermoplastic starch (TPS) films with good anti-fogging and optical properties were prepared via coordinative interactions with calcium chloride (CaCl2), zinc chloride (ZnCl2) and magnesium chloride (MgCl2). Among them, TPS with the incorporation of CaCl2 exhibited excellent anti-fogging and high optical transparency. Notably, the haze of TPS-0.2Ca just increased from 2.5 % to 3.8 %, with transparency remaining robust at 80 %. FTIR, XPS and 2D-WAXD results demonstrated the formation of inclusion complexes between Ca2+ and hydroxyl groups, which could modulate the hydrophobicity and hydrophilicity of TPS. Moreover, DMA, POM, and AFM results revealed that the formation of starch-calcium inclusion complex was crucial for achieving uniform intensity distribution, reduced crystalline areas, minimized light scattering, and decreased surface roughness, thereby contributing to the high transparency and low haze of TPS-Ca. Furthermore, TPS-Ca samples exhibited inherent fluorescent properties under UV light, showing the potential as disposable and eco-friendly fluorescence materials. This work provides new insights into design of sustainable TPS-based materials that combine robust antifogging performance with advanced optical property.
Collapse
Affiliation(s)
- Xingxing Shi
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Quanfa Zhong
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Shuidong Zhang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
5
|
He Y, Rui W, Yan Z, Feng W, Zhao C, Yan H. Recent Advances of Organic-Inorganic Hybrid Fluorescent Hyperbranched Polymer: Synthesis, Performance Regulation Strategies and Applications. Chempluschem 2024; 89:e202400302. [PMID: 39230969 DOI: 10.1002/cplu.202400302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024]
Abstract
The organic-inorganic hybrid fluorescent hyperbranched polymer, including hyperbranched polysiloxane and hyperbranched polyborate, have attracted much attention due to their excellent optical properties and wide range of applications. Hyperbranched polysiloxane and polyborates, prepared by introducing Si or B elements into organic polymer chains at the molecular level through rational molecular design and novel synthesis methods, exhibit outstanding photophysical properties as an indispensable branch of organic-inorganic hybrid fluorescent materials. Herein, this review highlights the recent research progress on hyperbranched polysiloxanes and hyperbranched polyborates, including strategies for regulating their emission wavelengths, quantum yields, and fluorescence lifetimes, potential emission mechanisms, and various applications. Finally, some challenges and promising future directions in the field of organic-inorganic hybrid fluorescent polymers are summarized.
Collapse
Affiliation(s)
- Yanyun He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Wu Rui
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Zhao Yan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Weixu Feng
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Chenyu Zhao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Hongxia Yan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
6
|
Wang W, Xia Y, Wu M, Wu M, Chen J. Nonconjugated amylopectin-grafted copolymers with dual fluorescence/low-temperature phosphorescence emission and superior processability. Int J Biol Macromol 2024; 278:134875. [PMID: 39182865 DOI: 10.1016/j.ijbiomac.2024.134875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/13/2024] [Accepted: 08/17/2024] [Indexed: 08/27/2024]
Abstract
Nonconjugated fluorescent polymers devoid of large π-π conjugated structures have received considerable attention due to their significant academic importance and broad application potentials in various fields. Herein, we report an effective strategy to fabricate multifunctional fluorescent amylopectin derivatives and reveal their unique aspects of aggregation-induced emission (AIE), cryogenic long-persistent phosphorescence (~6 s) and excellent processabilities characteristics, which are extremely different from traditional luminogens. These amylopectin-graft-poly(n-butyl acrylate-co-1-vinylimidazole) copolymers (Amylopectin-BVs) prepared by the grafting-from method employing RAFT and experienced subsequently with metal-ligand cross-linking. Specifically, clustering-triggered fluorescent emission or cryogenic long-persistent phosphorescence of amylopectin could be achieved by the aggregation of oxygen and nitrogen atoms along with conformation rigidification, which shows great promise in optoelectronic and biological applications.
Collapse
Affiliation(s)
- Wentao Wang
- Anhui Engineering Research Center of Highly Reactive Micro-Nano Powders, School of Materials and Environmental Engineering, Chizhou University, Chizhou 247000, PR China.
| | - Yutong Xia
- Anhui Engineering Research Center of Highly Reactive Micro-Nano Powders, School of Materials and Environmental Engineering, Chizhou University, Chizhou 247000, PR China
| | - Mang Wu
- Anhui Engineering Research Center of Highly Reactive Micro-Nano Powders, School of Materials and Environmental Engineering, Chizhou University, Chizhou 247000, PR China
| | - Min Wu
- Anhui Engineering Research Center of Highly Reactive Micro-Nano Powders, School of Materials and Environmental Engineering, Chizhou University, Chizhou 247000, PR China
| | - Jianbing Chen
- Anhui Engineering Research Center of Highly Reactive Micro-Nano Powders, School of Materials and Environmental Engineering, Chizhou University, Chizhou 247000, PR China.
| |
Collapse
|
7
|
Radhakrishnan K, Kumar JV, Bhagyalakshmi J, Devanesan S, Mythili R, Reddy IN, Bai C. Sustainable synthesis of fluorescent polymer carbon dots@PVA for sensitive chlortetracycline detection. LUMINESCENCE 2024; 39:e4846. [PMID: 39090987 DOI: 10.1002/bio.4846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Antibiotic residues persist in the environment and represent serious health hazards; thus, it is important to develop sensitive and effective detection techniques. This paper presents a bio-inspired way to make water-soluble fluorescent polymer carbon dots (PCDs@PVA) by heating biomass precursors and polyvinyl alcohol (PVA) together. For example, the synthesized PCDs@PVA are very stable with enhanced emission intensity. This property was observed in a wide range of environmental conditions, including those with changing temperatures, pH levels, UV light, and ionic strength. PCDs@PVA detected the antibiotic chlortetracycline (CTCs) with great selectivity against structurally related compounds and a low detection limit of 20 nM, demonstrating outstanding sensitivity and specificity. We confirmed the sensor's practical application through real sample analysis, yielding recovery rates of 98%-99% in samples of milk, honey, and river water. The synthesized PCDs@PVA fluorescence sensor was successfully used for CTCs detection in real samples.
Collapse
Affiliation(s)
- Kothalam Radhakrishnan
- Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore, India
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, India
| | - J Vinoth Kumar
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - J Bhagyalakshmi
- Department of Veterinary Anatomy, NTR College of Veterinary Science, Gannavaram, India
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - R Mythili
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - I Neelakanta Reddy
- School of Mechanical Engineering, College of Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Cheolho Bai
- School of Mechanical Engineering, College of Engineering, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
8
|
Medha, Sethi S, Mahajan P, Thakur S, Sharma N, Singh N, Kumar A, Kaur A, Kaith BS. Design and evaluation of fluorescent chitosan-starch hydrogel for drug delivery and sensing applications. Int J Biol Macromol 2024; 274:133486. [PMID: 38944079 DOI: 10.1016/j.ijbiomac.2024.133486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Composite bio-based hydrogels have been obtaining a significant attention in recent years as one of the most promising drug delivery systems. In the present study, the preparation of composite chitosan-starch hydrogel using maleic acid as a cross-linker was optimized with the help of response surface methodology. The synthesized hydrogel was fluorescent owing to clustering of large number of functional groups. Different analytical techniques, including XRD, FTIR, SEM, XPS, fluorescence and BET were utilized to characterize the prepared hydrogel. XRD analysis confirmed the formation of non-crystalline hydrogel with random arrangement of macromolecular chains. The composite hydrogel exhibited good swelling percentage with pH sensitivity, hemocompatibility and degradability. BET analysis confirmed that the variation in concentration of crosslinker significantly influences the pore volume of the hydrogel. The synthesized composite chitosan-starch hydrogel was utilized as a prospective candidate for controlling drug release. Cefixime as a model drug was loaded onto the synthesized hydrogel utilizing the swelling diffusion method. SEM micrographs showed uniform distribution of drug molecules in the drug loaded hydrogel. In vitro drug release experiments indicated the swelling dependent drug release behaviour of chitosan-starch hydrogel with higher drug release at pH 7.4 (93.08 %) compared to pH 1.2 (67.85 %). The composite chitosan-starch hydrogel was able to prolong and control the drug release up to 12 h. The drug release from the hydrogel followed Korsmeyer-Peppas and Makoid-Banakar model with Fickian diffusion mechanism. Further, the composite hydrogel displayed excitation dependent fluorescence emission with most intense blue emission band at 425 nm with an excitation wavelength of 350 nm. The inclusion of cefixime drug in the hydrogel matrix significantly reduced the fluorescence intensity; the decrease was linearly correlated to the concentration of the drug. Moreover, the fluorescence emission the chitosan-starch hydrogel was found to be dependent upon pH. The synthesized hydrogel is expected to be a potential candidate for controlled drug release as well as for fluorescent sensing applications.
Collapse
Affiliation(s)
- Medha
- Department of Chemistry, DAV University Jalandhar, Punjab 144012, India.
| | - Sapna Sethi
- Department of Chemistry, DAV University Jalandhar, Punjab 144012, India.
| | - Pariva Mahajan
- Department of Chemistry, DAV University Jalandhar, Punjab 144012, India.
| | - Swati Thakur
- Department of Chemistry, DAV University Jalandhar, Punjab 144012, India.
| | - Neeraj Sharma
- Laboratory of Bioproduct Chemistry, Centre of Innovation and Applied Bioprocessing (CIAB), Mohali, Punjab 140306, India.
| | - Narveer Singh
- Department of Physics, Lyallpur Khalsa College Jalandhar, Punjab 144008, India.
| | - Akshay Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| | - Amandeep Kaur
- Department of Chemistry, DAV University Jalandhar, Punjab 144012, India.
| | - Balbir Singh Kaith
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab 144011, India..
| |
Collapse
|
9
|
Xie H, Wang J, Lou Z, Hu L, Segawa S, Kang X, Wu W, Luo Z, Kwok RTK, Lam JWY, Zhang J, Tang BZ. Mechanochemical Fabrication of Full-Color Luminescent Materials from Aggregation-Induced Emission Prefluorophores for Information Storage and Encryption. J Am Chem Soc 2024; 146:18350-18359. [PMID: 38937461 PMCID: PMC11240258 DOI: 10.1021/jacs.4c02954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024]
Abstract
The development of luminescent materials via mechanochemistry embodies a compelling yet intricate frontier within materials science. Herein, we delineate a methodology for the synthesis of brightly luminescent polymers, achieved by the mechanochemical coupling of aggregation-induced emission (AIE) prefluorophores with generic polymers. An array of AIE moieties tethered to the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radical are synthesized as prefluorophores, which initially exhibit weak fluorescence due to intramolecular quenching. Remarkably, the mechanical coupling of these prefluorophores with macromolecular radicals, engendered through ball milling of generic polymers, leads to substantial augmentation of fluorescence within the resultant polymers. We meticulously evaluate the tunable emission of the AIE-modified polymers, encompassing an extensive spectrum from the visible to the near-infrared region. This study elucidates the potential of such materials in stimuli-responsive systems with a focus on information storage and encryption displays. By circumventing the complexity inherent to the conventional synthesis of luminescent polymers, this approach contributes a paradigm to the field of AIE-based polymers with implications for advanced technological applications.
Collapse
Affiliation(s)
- Huilin Xie
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Department of
Chemical and Biological Engineering, The
Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen
(CUHK-Shenzhen), Guangdong 518172, China
| | - Jingchun Wang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen
(CUHK-Shenzhen), Guangdong 518172, China
| | - Zhenchen Lou
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Shanghai
Frontiers Science Center of Molecule Intelligent Syntheses, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Lianrui Hu
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Shanghai
Frontiers Science Center of Molecule Intelligent Syntheses, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Shinsuke Segawa
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen
(CUHK-Shenzhen), Guangdong 518172, China
| | - Xiaowo Kang
- Department
of Biomedical Engineering, Southern University
of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Weijun Wu
- Department
of Biomedical Engineering, Southern University
of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Zhi Luo
- Department
of Biomedical Engineering, Southern University
of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Department of
Chemical and Biological Engineering, The
Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Department of
Chemical and Biological Engineering, The
Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jianquan Zhang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen
(CUHK-Shenzhen), Guangdong 518172, China
| | - Ben Zhong Tang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Department of
Chemical and Biological Engineering, The
Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen
(CUHK-Shenzhen), Guangdong 518172, China
| |
Collapse
|
10
|
Wang L, Yan H. Aliphatic hyperbranched polyphosphate: a novel multicolor RTP material with AIE character. RSC Adv 2024; 14:21219-21229. [PMID: 38974231 PMCID: PMC11224948 DOI: 10.1039/d4ra03099k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/23/2024] [Indexed: 07/09/2024] Open
Abstract
Long-lived photoluminescent probes are emerging as significant luminogens for biological imaging. However, currently, most long-lived luminescent materials contain expensive rare elements or cytotoxic bulky aromatic or conjugated units. Herein, a novel hyperbranched polyphosphate (HBPPE) was synthesized using triethyl phosphate (TEP) and ethylene glycol (EG) through a transesterification polycondensation reaction. The obtained HBPPE P1 can emit bright blue photoluminescence under UV light and show significant AIE character. Interestingly, the average photoluminescence lifetime of P1 is 12.82 μs. This suggests the first phosphorescent material without rare elements or aromatic structures attributed to the covalent-crystal-like structure. Besides, P1 shows an obvious red-shift along with the excitation wavelength, which emits blue, cyan, green, yellow and red photoluminescence, covering nearly all the visible light region. This study not only enriches the species of nonconventional multicolor AIE luminogens but also provides a concise method for the synthesis of HBPPE and demonstrates the possibility for phosphorescent materials without rare elements or bulky aromatic units.
Collapse
Affiliation(s)
| | - Hongxia Yan
- Northwestern Polytechnical University Xi'an 710129 China
| |
Collapse
|
11
|
Aktas Eken G, Huang Y, Prucker O, Rühe J, Ober C. Advancing Glucose Sensing Through Auto-Fluorescent Polymer Brushes: From Surface Design to Nano-Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309040. [PMID: 38334235 DOI: 10.1002/smll.202309040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/23/2023] [Indexed: 02/10/2024]
Abstract
Designing smart (bio)interfaces with the capability to sense and react to changes in local environments offers intriguing possibilities for new surface-based sensing devices and technologies. Polymer brushes make ideal materials to design such adaptive and responsive interfaces given their large variety of functional and structural possibilities as well as their outstanding abilities to respond to physical, chemical, and biological stimuli. Herein, a practical sensory interface for glucose detection based on auto-fluorescent polymer brushes decorated with phenylboronic acid (PBA) receptors is presented. The glucose-responsive luminescent surfaces, which are capable of translating conformational transitions triggered by pH variations and binding events into fluorescent readouts without the need for fluorescent dyes, are grown from both nanopatterned and non-patterned substrates. Two-photon laser scanning confocal microscopy and atomic force microscopy (AFM) analyses reveal the relationship between the brush conformation and glucose concentration and confirm that the phenylboronic acid functionalized brushes can bind glucose over a range of physiologically relevant concentrations in a reversible manner. The combination of auto-fluorescent polymer brushes with synthetic receptors presents a promising avenue for designing innovative and robust sensing systems, which are essential for various biomedical applications, among other uses.
Collapse
Affiliation(s)
- Gozde Aktas Eken
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Yuming Huang
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Oswald Prucker
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Jürgen Rühe
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
- Cluster of Excellence livMatS @FIT, Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, Goerges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Christopher Ober
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
12
|
Dimitriev O, Kysil D, Zaderko A, Isaieva O, Vasin A, Piryatinski Y, Fahlman M, Nazarov A. Photoluminescence quantum yield of carbon dots: emission due to multiple centers versus excitonic emission. NANOSCALE ADVANCES 2024; 6:2185-2197. [PMID: 38633041 PMCID: PMC11019485 DOI: 10.1039/d4na00033a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
Carbon dots (CDs) are recognized as promising fluorescent nanomaterials with bright emission and large variations of photoluminescence quantum yield (PLQY). However, there is still no unique approach for explanation of mechanisms and recipes for synthetic procedures/chemical composition of CDs responsible for the enhancement of PLQY. Here, we compare photophysical behavior and PLQY of two types of CDs synthesized by different routes, leading to the different extent of oxidation and composition. The first type of CDs represents a conjugated carbon system oxidized by F, N and O heteroatoms, whereas the second type represents a non-conjugated carbon system oxidized by oxygen. Photophysical data, photoemission spectroscopy and microscopy data yield the suggestion that in the first case, a structure with a distinct carbon core and highly oxidized electron-accepting shell is formed. This leads to the excitonic type non-tunable emission with single-exponent decay and high PLQY with a strong dependence on the solvent polarity, being as high as 93% in dioxane and as low as 30% in aqueous medium, but which is vulnerable to photobleaching. In the second case, the oxidized CDs do not indicate a clear core-shell structure and show poor solvatochromism, negligible photobleaching, low PLQY varying in the range of 0.7-2.3% depending on the solvent used, and tunable emission with multi-exponent decay, which can be described by the model of multiple emission centers acting through a clustering-triggered emission mechanism. The obtained results lead to a strategy that allows one to design carbon nanomaterials with principally different PLQYs that differ by orders of magnitude.
Collapse
Affiliation(s)
- Oleg Dimitriev
- V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine Pr. Nauky 41 Kyiv 03028 Ukraine
- Laboratory of Organic Electronics, Linköping University Norrköping 60174 Sweden
- Wallenberg Wood Science Center, Laboratory of Organic Electronics, Linköping University Norrköping 60174 Sweden
| | - Dmytro Kysil
- V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine Pr. Nauky 41 Kyiv 03028 Ukraine
| | - Alexander Zaderko
- Institute of High Technologies, Taras Shevchenko National University Kyiv 01033 Ukraine
| | - Oksana Isaieva
- V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine Pr. Nauky 41 Kyiv 03028 Ukraine
- National University "Kyiv-Mohyla Academy" Skovorody, 2 Kyiv 04070 Ukraine
| | - Andrii Vasin
- V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine Pr. Nauky 41 Kyiv 03028 Ukraine
- National Technical University "Igor Sikorsky Kyiv Polytechnic Institute" 37, Peremohy Ave. Kyiv 03056 Ukraine
| | - Yuri Piryatinski
- Institute of Physics, NAS of Ukraine Pr. Nauki 46 Kyiv 03028 Ukraine
| | - Mats Fahlman
- Laboratory of Organic Electronics, Linköping University Norrköping 60174 Sweden
- Wallenberg Wood Science Center, Laboratory of Organic Electronics, Linköping University Norrköping 60174 Sweden
| | - Alexei Nazarov
- V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine Pr. Nauky 41 Kyiv 03028 Ukraine
- National Technical University "Igor Sikorsky Kyiv Polytechnic Institute" 37, Peremohy Ave. Kyiv 03056 Ukraine
| |
Collapse
|
13
|
Li S, Li Y, Zhang S, Fang H, Huang Z, Zhang D, Ding A, Uvdal K, Hu Z, Huang K, Li L. Response strategies and biological applications of organic fluorescent thermometry: cell- and mitochondrion-level detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1968-1984. [PMID: 38511286 DOI: 10.1039/d4ay00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Temperature homeostasis is critical for cells to perform their physiological functions. Among the diverse methods for temperature detection, fluorescent temperature probes stand out as a proven and effective tool, especially for monitoring temperature in cells and suborganelles, with a specific emphasis on mitochondria. The utilization of these probes provides a new opportunity to enhance our understanding of the mechanisms and interconnections underlying various physiological activities related to temperature homeostasis. However, the complexity and variability of cells and suborganelles necessitate fluorescent temperature probes with high resolution and sensitivity. To meet the demanding requirements for intracellular/subcellular temperature detection, several strategies have been developed, offering a range of options to address this challenge. This review examines four fundamental temperature-response strategies employed by small molecule and polymer probes, including intramolecular rotation, polarity sensitivity, Förster resonance energy transfer, and structural changes. The primary emphasis was placed on elucidating molecular design and biological applications specific to each type of probe. Furthermore, this review provides an insightful discussion on factors that may affect fluorescent thermometry, providing valuable perspectives for future development in the field. Finally, the review concludes by presenting cutting-edge response strategies and research insights for mitigating biases in temperature sensing.
Collapse
Affiliation(s)
- Shuai Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yaoxuan Li
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Shiji Zhang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Haixiao Fang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
- Future Display Institute in Xiamen, Xiamen 361005, China.
| | - Ze Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Duoteng Zhang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Kajsa Uvdal
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, 58183, Sweden.
| | - Zhangjun Hu
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, 58183, Sweden.
| | - Kai Huang
- Future Display Institute in Xiamen, Xiamen 361005, China.
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
- Future Display Institute in Xiamen, Xiamen 361005, China.
| |
Collapse
|
14
|
Li X, Dai J, Zhang R, Wen T. Red-Shifted Luminescence of Acrylonitrile-Containing Copolymers: A Matter of One Methyl Unit. Macromol Rapid Commun 2024; 45:e2300666. [PMID: 38134449 DOI: 10.1002/marc.202300666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Copolymerization provides an effective approach to tune the photophysical properties of non-conventional luminescent polymers (NCLPs). In this study, the controlling of intrinsic emissions of polyacrylonitrile (PAN) copolymers is revealed by a delicate difference of secondary monomers. The introduction of methacrylate comonomers can induce a 70-nm red-shifting in the PL emission of copolymers compared with that of acrylate-containing copolymers. The mechanism of such "copolymerization induced red-shifting" in PAN copolymers is investigated. It is demonstrated that the presence of the α-methyl group in the copolymers can enhance the chain rigidity and through-space conjugation (TSC) of C≡N groups, resulting in the red-shifting of emission.
Collapse
Affiliation(s)
- Xinyu Li
- School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangdong, Guangzhou, 510640, P. R. China
| | - Junhao Dai
- School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangdong, Guangzhou, 510640, P. R. China
| | - Rui Zhang
- School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangdong, Guangzhou, 510640, P. R. China
| | - Tao Wen
- School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangdong, Guangzhou, 510640, P. R. China
| |
Collapse
|
15
|
Kaczmarek A, Wisniewska A, Mościcki T, Hoffman J. The Luminescence of Laser-Produced Carbon Nanodots: The Effect of Aggregation in PEI Solution. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1573. [PMID: 38612087 PMCID: PMC11012247 DOI: 10.3390/ma17071573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Carbon nanodots (CNDs) produced in pure water by the ablation of graphite with a nanosecond laser pulse exhibit weak photoluminescence. A small addition of polyethyleneimine (PEI) to the aqueous suspension of CNDs causes a significant increase in emissions. This paper presents experimental and theoretical studies of the emission properties of CND/PEI systems. The obtained CNDs responded to even trace amounts of PEI in solution (~0.014% v/v), resulting in a significant increase in the initial weak blue emission of CNDs and PEI taken separately. Morphology and size measurements showed that particle aggregation occurred in the presence of the polymer. A decrease in the calculated Stokes shift values was observed with increasing PEI content in the solution. This indicates a reduction in the number of non-radiative transitions, which explains the increase in the emission intensity of the CND/PEI systems. These results therefore confirmed that the increase in the emission of CND/PEI systems is caused by particle aggregation. Kinetic studies proved that the process is controlled mainly by diffusion, the initial stage of which has a dominant influence on determining the optical properties of the system.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland;
| | - Agnieszka Wisniewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland;
| | - Tomasz Mościcki
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland;
| | - Jacek Hoffman
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland;
| |
Collapse
|
16
|
Kumar A, Pullman D, Youssef G. Spectroscopic probing of ultraviolet-induced degradation in elastomeric polyurea. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123804. [PMID: 38181620 DOI: 10.1016/j.saa.2023.123804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
Aromatic polyurea has garnered assiduous research due to its excellent impact, shock, abrasion, moisture, and chemical resistance properties. Polyurea can be used in protective coating and impact mitigation applications but is inevitably exposed to harsh deployment conditions such as extended ultraviolet (UV) radiation. Fourier Transform Infrared (FTIR) spectroscopy, Terahertz-time domain spectroscopy (THz-TDS), and Excitation-Emission Matrix spectroscopy (EEMS) deciphered the effects of UV radiation on radiated polyurea samples under ambient and nitrogen-rich conditions. Samples were radiated continuously for up to 15 weeks in increments of 3 weeks. Comprehensive FTIR analyses revealed a monotonic increase in disordered hydrogen bonding as a function of exposure duration in an ambient environment. Otherwise, marginal changes were observed in UV-radiated samples under nitrogen. The hydrogen bond length exhibited significant variations in the former compared to their nitrogen atmosphere counterparts. The results infer the nitrogen shielding effect, protecting polyurea from the photodegradation and photo-oxidation observed in samples radiated under the ambient atmosphere. THz-TDS spectra affirmed the FTIR results by probing changes in the complex refractive index. Terahertz spectral peaks associated with torsional vibrations of intermolecular hydrogen bonds in polyurea were notably correlated with increased exposure duration in the ambient atmosphere. Changes in the complex index as a function of exposure duration under nitrogen are minimal. The excitation-emission spectra of polyurea samples reveal a strong fluorescent behavior in 9-week and 12-week ambient-exposed polyurea due to cluster-triggered emission mechanisms. The results synthesized based on three different spectroscopy techniques paint a holistic portrait of the adverse effects of extended ultraviolet radiation of macromolecules deployed in harsh environmental conditions.
Collapse
Affiliation(s)
- Amritesh Kumar
- Experimental Mechanics Laboratory, Mechanical Engineering Department, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - David Pullman
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - George Youssef
- Experimental Mechanics Laboratory, Mechanical Engineering Department, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.
| |
Collapse
|
17
|
Li B, Feng B, Wang J, Qin Y. Recent progress on polymerization-induced emission. LUMINESCENCE 2023. [PMID: 38013245 DOI: 10.1002/bio.4630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
The aggregate luminescence behaviors of polymeric luminescent materials have been attracting great attention. However, the importance of the polymerization process on luminescence, namely, polymerization-induced emission (PIE), has rarely been overviewed. In this review, recent advances in polymerization with PIE effects are summarized, including PIE with aromatic rings based on one-/two-/multi-component polymerizations, and PIE without aromatic rings according to disparate mechanisms of polymerizations. Typical examples are selected to elaborate the basic design principles, as well as the properties and potential applications of the luminous polymers. Moreover, the challenges and perspectives in this area are also discussed.
Collapse
Affiliation(s)
- Baixue Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, China
| | - Bingwen Feng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, China
| | - Jia Wang
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Yusheng Qin
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, China
| |
Collapse
|
18
|
Zhou Z, Chen X, Wang Y, Hu C, Li T, Wang S, Dong W, Qiao J. Branched Copolymers with Tunable Clusteroluminescence in High Quantum Yield. ACS Macro Lett 2023; 12:1523-1529. [PMID: 37889304 DOI: 10.1021/acsmacrolett.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A novel type of fluorescence without large conjugated structures called clusteroluminescence (CL) has attracted a great deal of attention in recent years. Despite its many advantages, the emerging CL still encounters difficulties of low quantum yield (QY) and preliminary mechanisms. In this work, the branched structure was introduced into poly(maleic anhydride-alt-vinyl acetate) by chain transfer monomer. The emission wavelength of the branched copolymers is red-shifted with the increase of branching degree, and the absolute QY of solids can reach up to 29.87%. Further characterizations reveal that the branched structure can improve the flexibility of polymer chains, thereby promoting the intrachain interactions of subgroups. Furthermore, in the case of branched anhydride copolymers, the equilibrium between intrachain interactions and nonradiative transitions holds a crucial significance in determining the QY. This endeavor not only offers new insights into the mechanism of CL but also presents a novel approach to surmount the low QY of anhydride copolymers, thus broadening the horizons of CLgens to unexplored domains.
Collapse
Affiliation(s)
- Zixuan Zhou
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xiang Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Chenxi Hu
- SINOPEC, Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Shibo Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jinliang Qiao
- SINOPEC, Beijing Research Institute of Chemical Industry, Beijing 100013, China
| |
Collapse
|
19
|
Tang X, Jiang B, Gong Y, Jin Y, He J, Xie H, Guo S, Liu Y. Designing Nonconventional Luminescent Materials with Efficient Emission in Dilute Solutions via Modulation of Dynamic Hydrogen Bonds. Molecules 2023; 28:5240. [PMID: 37446901 DOI: 10.3390/molecules28135240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 07/15/2023] Open
Abstract
Nonconventional luminescent materials (NLMs) which do not contain traditional aromatic chromophores are of great interest due to their unique chemical structures, optical properties, and their potential applications in various areas, such as cellular imaging and chemical sensing. However, most reported NLMs show weak or no emission in dilute solutions, which severely limits their applications. In this work, dynamic hydrogen bonds were utilized to design NLMs with efficient emission in dilute solutions. To further validate the results, polymers P1 and P2 were successfully prepared and investigated. It was found that the luminescence quantum efficiency of P1 and P2 at a concentration of 0.1 mg/mL in water solution was 8.9 and 0.6%, respectively. The high efficiency can be attributed to the fact that polymer P1 has more intra- or intermolecular dynamic hydrogen bonds and other short interactions than P2 in dilute solutions, allowing P1 to achieve the through-space conjugation effect to increase the degree of system conjugation, restrict molecular motion, and decrease nonradiative transitions, which can effectively improve luminescence. In addition, polymer P2 exhibits the characteristics of clustering-triggered emission, excitation wavelength-dependent and concentration-dependent fluorescence properties, excellent photobleaching resistance, low cytotoxicity, and selective recognition of Fe3+. The present study investigates the manipulation of luminescence properties of NLMs in dilute solutions through the modulation of dynamic hydrogen bonds. This approach can serve as a semi-empirical technique for designing and building innovative NLMs in the times ahead.
Collapse
Affiliation(s)
- Xuansi Tang
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China
| | - Bingli Jiang
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yongyang Gong
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China
| | - Yuxin Jin
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Jiao He
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China
| | - Huihong Xie
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China
| | - Song Guo
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China
| | - Yuanli Liu
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
20
|
Laatsch BF, Brandt M, Finke B, Fossum CJ, Wackett MJ, Lowater HR, Narkiewicz-Jodko A, Le CN, Yang T, Glogowski EM, Bailey-Hartsel SC, Bhattacharyya S, Hati S. Polyethylene Glycol 20k. Does It Fluoresce? ACS OMEGA 2023; 8:14208-14218. [PMID: 37180871 PMCID: PMC10168656 DOI: 10.1021/acsomega.3c01124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023]
Abstract
Polyethylene glycol (PEG) is a polyether compound commonly used in biological research and medicine because it is biologically inert. This simple polymer exists in variable chain lengths (and molecular weights). As they are devoid of any contiguous π-system, PEGs are expected to lack fluorescence properties. However, recent studies suggested the occurrence of fluorescence properties in non-traditional fluorophores like PEGs. Herein, a thorough investigation has been conducted to explore if PEG 20k fluoresces. Results of this combined experimental and computational study suggested that although PEG 20k could exhibit "through-space" delocalization of lone pairs of electrons in aggregates/clusters, formed via intermolecular and intramolecular interactions, the actual contributor of fluorescence between 300 and 400 nm is the stabilizer molecule, i.e., 3-tert-butyl-4-hydroxyanisole present in the commercially available PEG 20k. Therefore, the reported fluorescence properties of PEG should be taken with a grain of salt, warranting further investigation.
Collapse
Affiliation(s)
- Bethany F. Laatsch
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54701, United States
| | - Michael Brandt
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54701, United States
| | - Brianna Finke
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54701, United States
| | - Carl J. Fossum
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54701, United States
| | - Miles J. Wackett
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54701, United States
| | - Harrison R. Lowater
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54701, United States
| | - Alex Narkiewicz-Jodko
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54701, United States
| | - Christine N. Le
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54701, United States
| | - Thao Yang
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54701, United States
| | - Elizabeth M. Glogowski
- Department of Materials Science and Biomedical Engineering, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54701, United States
| | - Scott C. Bailey-Hartsel
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54701, United States
| | - Sudeep Bhattacharyya
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54701, United States
| | - Sanchita Hati
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54701, United States
| |
Collapse
|
21
|
Tomás H, Rodrigues J. Dendrimers and dendrimer-based nano-objects for oncology applications. NEW TRENDS IN SMART NANOSTRUCTURED BIOMATERIALS IN HEALTH SCIENCES 2023:41-78. [DOI: 10.1016/b978-0-323-85671-3.00002-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
Cheng X, Hu H, Wu Y, Ma Z, Ma Z. Photoinduced Clusteroluminescence Redshift of Poly(methyl acrylate) via Radicals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56185-56192. [PMID: 36493313 DOI: 10.1021/acsami.2c19121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
One-step photopolymerization and photochromism of clusteroluminescence (CL) polymers mean that the polymer materials can be prepared on a large scale and applied widely. Herein, we reported unique photochromic CL polymers prepared by one-step radical photopolymerization. Seven copolymerized films (PMAxBA) with methyl acrylate and butyl acrylate as monomers, a cross-linked PMA (PMA-CL) film, a double-network PMAPBA film based on the first network PMA-CL, and four PMA films with increasing content of photoinitiator ethoxy benzoin (BEE) were prepared to study CL formation and transition. Experimental results prove that increasing the ratio of the PMA chains in PMAxBA enhances the photochromic effect, which verifies the main role of PMA chains with the shorter branched alkanes. Surprisingly, cross-linking in PMA-CL strengthens interchain packing and interchain through-space interactions (TSIs), leading to the formation of larger clusters and further CL redshift from 410 to 491 nm, whereas the PBA chains filled in the cross-linked network weakens interchain TSIs among PMA chains and makes CL red shift from 410 to 472 nm. In addition, as the BEE content increases in the PMA films, a higher radical concentration also promotes the formation of TSIs and clusters, which benefits the photochromism. For applications, colorless, dissolvable, and thermoplastic PMA featuring photochromism in this case can be widely used in information loading, rewriting, and multifunctional coating. This work provides a new strategy to enrich the properties of CL polymers toward diverse applications.
Collapse
Affiliation(s)
- Xin Cheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huan Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yu Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhimin Ma
- College of Engineering, Peking University, Beijing 100871, China
| | - Zhiyong Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
23
|
Su G, Li Z, Gong J, Zhang R, Dai R, Deng Y, Tang BZ. Information-Storage Expansion Enabled by a Resilient Aggregation-Induced-Emission-Active Nanocomposite Hydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207212. [PMID: 36168849 DOI: 10.1002/adma.202207212] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Advanced materials with high performance and distinctive function are one of the main driving forces for the development of human society. The selection of appropriate materials and adequately utilizing their features to apply them in a specific area rationally are of great significance but remain challenging. Herein, an aggregation-induced emission (AIE)-active nanocomposite (NC) hydrogel is developed by introducing a pH-responsive AIE luminogen (AIEgen) into a Laponite XLS/polyacrylamide-based NC hydrogel (Laponite is a trademark of the company BYK Additives Ltd.). The AIEgen can protonate to interact with the negatively charged clay through the electrostatic interaction, which results in a drastic fluorescence enhancement due to the restriction of intramolecular motion by the rigid clay to the protonated AIEgen. This behavior facilitates the input of fluorescent information with a high contrast ratio in the hydrogel by acid stimulation. Moreover, by utilizing the excellent resilience of the hydrogel, hierarchically inputting and displaying the information in the original and stretched states of the hydrogel film is realized, which achieves information-storage expansion and dual-encryption via switching between stretching and restoring the film. This work showcases fully and synergistically utilizing the superiorities of various advanced materials to achieve superior applications and should guide the future development of advanced materials in emerging areas.
Collapse
Affiliation(s)
- Gongmeiyue Su
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, P. R. China
| | - Zhao Li
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, P. R. China
| | - Junyi Gong
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong, 518172, P. R. China
| | - Ruoyao Zhang
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, P. R. China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, P. R. China
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
24
|
Clustering-triggered phosphorescence of nonconventional luminophores. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1378-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Jiang Q, Zhao L, Shi L, Guan S, Huang W, Xue X, Yang H, Jiang L, Jiang B. pH‐responsive amine‐based fluorescent polymers with on–off switchable and concentration‐dependent fluorescence behaviors. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qimin Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Liang Zhao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Lingyue Shi
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Shuyi Guan
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Wenyan Huang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Xiaoqiang Xue
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Hongjun Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Li Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Bibiao Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| |
Collapse
|
26
|
Wang X, Liu C, Xing Z, Suo H, Qu R, Li Q, Qin Y. Furfural-Based Polyamides with Tunable Fluorescence Properties via Ugi Multicomponent Polymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xue Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Chang Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Zhihao Xing
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Hongyi Suo
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Rui Qu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Qingzhong Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Yusheng Qin
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| |
Collapse
|
27
|
Fluorescence Behavior and Emission Mechanisms of Poly(ethylene succinamide) and Its Applications in Fe3+ Detection and Data Encryption. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Chowdhury P, Banerjee A, Saha B, Bauri K, De P. Stimuli-Responsive Aggregation-Induced Emission (AIE)-Active Polymers for Biomedical Applications. ACS Biomater Sci Eng 2022; 8:4207-4229. [PMID: 36054823 DOI: 10.1021/acsbiomaterials.2c00656] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
At high concentration or in the aggregated state, most of the traditional luminophores suffer from the general aggregation-caused quenching (ACQ) effect, which significantly limits their biomedical applications. On the contrary, a few fluorophores exhibit an aggregation-induced emission (AIE) feature which is just the opposite of ACQ. The luminophores with aggregation-induced emission (AIEgens) have exhibited noteworthy advantages to get tunable emission, excellent photostability, and biocompatibility. Incorporating AIEgens into polymer design has yielded diversified polymer systems with fascinating photophysical characteristics. Again, stimuli-responsive polymers are capable of undergoing chemical and/or physical property changes on receiving signals from single or multiple stimuli. The combination of the AIE property and stimuli responses in a single polymer platform provides a feasible and effective strategy for the development of smart polymers with promising biomedical applications. Herein, the advancements in stimuli-responsive polymers with AIE characteristics for biomedical applications are summarized. AIE-active polymers are first categorized into conventional π-π conjugated and nonconventional fluorophore systems and then subdivided based on various stimuli, such as pH, redox, enzyme, reactive oxygen species (ROS), and temperature. In each section, the design strategies of the smart polymers and their biomedical applications, including bioimaging, cancer theranostics, gene delivery, and antimicrobial examples, are introduced. The current challenges and future perspectives of this field are also stated at the end of this review article.
Collapse
Affiliation(s)
- Pampa Chowdhury
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Arnab Banerjee
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Biswajit Saha
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Kamal Bauri
- Department of Chemistry, Raghunathpur College, Raghunathpur, 723133 Purulia, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| |
Collapse
|
29
|
Sheng Y, Su M, Xiao H, Shi Q, Sun X, Zhang R, Bao H, Wan W. Barbier Hyperbranching Polymerization‐Induced Emission from an AB‐Type Monomer. Chemistry 2022; 28:e202201194. [DOI: 10.1002/chem.202201194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yu‐Jing Sheng
- School of Materials Science and Engineering Shandong University of Science and Technology Qingdao 266590 P. R. China
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Min Su
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Hang Xiao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- College of Environmental Science and Engineering Engineering Research Center of Polymer Green Recycling of Ministry of Education Fujian Key Laboratory of Pollution Control &Resource Reuse Fujian Normal University Fuzhou 350007 P. R. China
| | - Quan‐Xi Shi
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- College of Chemistry Fuzhou University Fuzhou 350108 (P. R. China
| | - Xiao‐Li Sun
- College of Environmental Science and Engineering Engineering Research Center of Polymer Green Recycling of Ministry of Education Fujian Key Laboratory of Pollution Control &Resource Reuse Fujian Normal University Fuzhou 350007 P. R. China
| | - Ruliang Zhang
- School of Materials Science and Engineering Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Wen‐Ming Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| |
Collapse
|
30
|
Wang S, Jiang X, Sun C, Kong XZ. Full Green Detection of Antibiotic Tetracyclines Using Fluorescent Poly(ethylene glycol) as the Sensor and the Mechanism Study. ACS Biomater Sci Eng 2022; 8:3957-3968. [PMID: 35976991 DOI: 10.1021/acsbiomaterials.2c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tetracyclines are well-known antibiotics and widely used against a variety of bacterial infections. Their monitoring and detection have been an important issue. To this end, a vast number of methods have been developed; fluorescence sensing is one of the most reported. However, most of the reported sensors are made from transition metals with sophisticated multiprocesses; polymers are hardly seen for this purpose, particularly biocompatible ones. Herein, an aqueous solution of poly(ethylene glycol) (PEG), well known for being biocompatible, is shown to emit under excitation of 280 nm, while the solutions of selected tetracyclines, namely, doxycycline (DOX) and tetracycline (TC), are non-emissive under the same conditions. In the binary solutions of PEG-DOX or PEG-TC, PEG emission is sharply quenched with high sensitivity and selectivity. PEG was then used as a sensor for DOX and TC detections in water with high performance compared to reported studies. The same tests were also done by DOX spiking in milk and tap water, demonstrating that DOX was practically fully recovered. The quenching mechanism was ascribed to the interaction between the O atoms of PEG in clusters and specific heteroatom groups on tetracycline molecules through hydrogen bonding, elucidated from FTIR and NMR analyses. Therefore, this work provides a novel, fully green, easy to operate, low cost, and reliable protocol for tetracycline monitoring and detection and opens new potential application for PEG.
Collapse
Affiliation(s)
- Suisui Wang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xubao Jiang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Chunqi Sun
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiang Zheng Kong
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
31
|
Intrinsically fluorescent polyureas toward conformation-assisted metamorphosis, discoloration and intracellular drug delivery. Nat Commun 2022; 13:4551. [PMID: 35931687 PMCID: PMC9355952 DOI: 10.1038/s41467-022-32053-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/13/2022] [Indexed: 11/08/2022] Open
Abstract
Peptidomimetic polymers have attracted increasing interest because of the advantages of facile synthesis, high molecular tunability, resistance to degradation, and low immunogenicity. However, the presence of non-native linkages compromises their ability to form higher ordered structures and protein-inspired functions. Here we report a class of amino acid-constructed polyureas with molecular weight- and solvent-dependent helical and sheet-like conformations as well as green fluorescent protein-mimic autofluorescence with aggregation-induced emission characteristics. The copolymers self-assemble into vesicles and nanotubes and exhibit H-bonding-mediated metamorphosis and discoloration behaviors. We show that these polymeric vehicles with ultrahigh stability, superfast responsivity and conformation-assisted cell internalization efficiency could act as an “on-off” switchable nanocarrier for specific intracellular drug delivery and effective cancer theranosis in vitro and in vivo. This work provides insights into the folding and hierarchical assembly of biomacromolecules, and a new generation of bioresponsive polymers and nonconventional luminescent aliphatic materials for diverse applications. Biomimetic materials are of interest but can often suffer from limitations caused by the non-native linkages used. Here, the authors report on the creation of amino acid constructed polyureas which can self-assemble into vesicles and nanotubes with aggregation induced fluorescence and the potential for drug delivery applications.
Collapse
|
32
|
Kausar F, Rasheed T, Tuoqeer Anwar M, Ali J. Revisiting the Role of Sulfur based Compounds in monitoring of Various analytes through spectroscopical investigations. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Bendrea AD, Cianga L, Ailiesei GL, Göen Colak D, Popescu I, Cianga I. Thiophene α-Chain-End-Functionalized Oligo(2-methyl-2-oxazoline) as Precursor Amphiphilic Macromonomer for Grafted Conjugated Oligomers/Polymers and as a Multifunctional Material with Relevant Properties for Biomedical Applications. Int J Mol Sci 2022; 23:7495. [PMID: 35886844 PMCID: PMC9317439 DOI: 10.3390/ijms23147495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Because the combination of π-conjugated polymers with biocompatible synthetic counterparts leads to the development of bio-relevant functional materials, this paper reports a new oligo(2-methyl-2-oxazoline) (OMeOx)-containing thiophene macromonomer, denoted Th-OMeOx. It can be used as a reactive precursor for synthesis of a polymerizable 2,2'-3-OMeOx-substituted bithiophene by Suzuki coupling. Also a grafted polythiophene amphiphile with OMeOx side chains was synthesized by its self-acid-assisted polymerization (SAAP) in bulk. The results showed that Th-OMeOx is not only a reactive intermediate but also a versatile functional material in itself. This is due to the presence of 2-bromo-substituted thiophene and ω-hydroxyl functional end-groups, and due to the multiple functionalities encoded in its structure (photosensitivity, water self-dispersibility, self-assembling capacity). Thus, analysis of its behavior in solvents of different selectivities revealed that Th-OMeOx forms self-assembled structures (micelles or vesicles) by "direct dissolution".Unexpectedly, by exciting the Th-OMeOx micelles formed in water with λabs of the OMeOx repeating units, the intensity of fluorescence emission varied in a concentration-dependent manner.These self-assembled structures showed excitation-dependent luminescence as well. Attributed to the clusteroluminescence phenomenon due to the aggregation and through space interactions of electron-rich groups in non-conjugated, non-aromatic OMeOx, this behavior certifies that polypeptides mimic the character of Th-OMeOx as a non-conventional intrinsic luminescent material.
Collapse
Affiliation(s)
- Anca-Dana Bendrea
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “PetruPoni” Institute of Macromolecular Chemistry, 41 A, Grigore-GhicaVoda Alley, 700487 Iasi, Romania;
| | - Luminita Cianga
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “PetruPoni” Institute of Macromolecular Chemistry, 41 A, Grigore-GhicaVoda Alley, 700487 Iasi, Romania;
| | - Gabriela-Liliana Ailiesei
- NMR Spectroscopy Department, “PetruPoni” Institute of Macromolecular Chemistry, 41 A, Grigore-GhicaVoda Alley, 700487 Iasi, Romania;
| | - Demet Göen Colak
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey;
| | - Irina Popescu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, “PetruPoni” Institute of Macromolecular Chemistry, 41 A, Grigore-GhicaVoda Alley, 700487 Iasi, Romania;
| | - Ioan Cianga
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “PetruPoni” Institute of Macromolecular Chemistry, 41 A, Grigore-GhicaVoda Alley, 700487 Iasi, Romania;
| |
Collapse
|
34
|
Anionic polymerization of nonaromatic maleimide to achieve full-color nonconventional luminescence. Nat Commun 2022; 13:3717. [PMID: 35764631 PMCID: PMC9240025 DOI: 10.1038/s41467-022-31547-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/22/2022] [Indexed: 01/01/2023] Open
Abstract
Nonconventional or nonconjugated luminophore without polycyclic aromatics or extended π-conjugation is a rising star in the area of luminescent materials. However, continuously tuning the emission color within a broad visible region via rational molecular design remains quite challenging because the mechanism of nonconventional luminescence is not fully understood. Herein, we present a new class of nonconventional luminophores, poly(maleimide)s (PMs), with full-color emission that can be finely regulated by anionic polymerization even at ambient temperature. Interestingly, the general characteristics of nonconventional luminescence, cluster-triggered emission, e.g., concentration-enhanced emission, are not observed in PMs. Instead, PMs have features similar to aggregation-caused quenching due to boosted intra/inter-molecular charge transfer. Such a biocompatible luminescent material synthesized from a low-cost monomer shows great prospects in large-scale production and applications, including security printing, fingerprint identification, metal ion recognition, etc. It also provides a new platform of rational molecular design to achieve full-color nonconventional luminescence without any aromatics. Nonconventional luminophores without extended π-conjugation is a rising star in the area of luminescent materials but continuously tuning the emission color within a broad visible region via rational molecular design remains challenging. Here, the authors present poly(maleimide)s as a new class of nonconventional luminophores with fully tunable room temperature color emission that can be regulated by anionic polymerization
Collapse
|
35
|
Luo Y, Yu G, Liu F, Feng Y, Zhao P, Yue J. Structure-Dependent Nontraditional Intrinsic Fluorescence of Aliphatic Hyperbranched Polyureas. Bioconjug Chem 2022; 33:1319-1327. [PMID: 35729781 DOI: 10.1021/acs.bioconjchem.2c00208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nontraditional intrinsic fluorescence (NTIF) of polymers containing heteroatoms has gained considerable attention due to its promising applications in label-free bioimaging. Aliphatic hyperbranched polyureas (aBPUs), which have recently shown great promise in the field of nanomedicine, bear controllable urea groups distributed on the branch points and thus are potential candidate luminogens. However, their NTIF properties and how their structures influence the NTIF properties have not been illustrated yet. Here, we addressed these issues by synthesizing a series of aBPUs with different degrees of branching (DBs) or different modifications. aBPUs exhibited an obvious NTIF phenomenon and with the increase of DBs, the NTIF enhanced as well. Chemical modifications either at the branching ends or in the interior of aBPUs could affect the NTIF performances, which were highly dependent on the types of modification. Disruption of the intra-/intermolecular hydrogen-bonding interactions decreased the NTIF. In addition, poly(ethylene glycol) (PEG)-modified aBPUs could self-assemble into nanospheres, and the formation of nanoassembly led to 89% enhancement on NTIF compared with the homogeneous solution of aBPUs-PEG in dimethylformamide (DMF). Finally, aBPUs-PEG nanoassembly demonstrated a capability in realizing label-free material imaging in vitro. These results shed light on the rational design of the polymer structures to achieve desired fluorescence with unconventional luminophores.
Collapse
Affiliation(s)
- Yao Luo
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Guoyi Yu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Fei Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yanwen Feng
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Pei Zhao
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jun Yue
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
36
|
Deb Roy JS, Chowdhury D, Sanfui MH, Hassan N, Mahapatra M, Ghosh NN, Majumdar S, Chattopadhyay PK, Roy S, Singha NR. Ratiometric pH Sensing, Photophysics, and Cell Imaging of Nonaromatic Light-Emitting Polymers. ACS APPLIED BIO MATERIALS 2022; 5:2990-3005. [PMID: 35579235 DOI: 10.1021/acsabm.2c00297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Here, four nontraditional fluorescent polymers (NTFPs) of varying N,N-dimethyl-2-propenamide (DMPA) and butyl prop-2-enoate (BPE) mole ratios, i.e., 2:1 (NTFP1), 4:1 (NTFP2), 8:1 (NTFP3), and 16:1 (NTFP4), are prepared via random polymerization in water. The maximum fluorescence enhancement of NTFP3 makes it suitable for ratiometric pH sensing, Cu(II) sensing, and pH-dependent cell imaging of Madin-Darby canine kidney (MDCK) cells. The oxygen donor functionalities of NTFP3 involved in binding and sensing with Cu(II) ions are studied by absorption, emission, electron paramagnetic resonance, Fourier transform infrared (FTIR), and O1s/Cu2p X-ray photoelectron spectroscopies (XPS). The spectral responses of the ratiometric pH sensor within 1.5-11.5 confirm 22 and 44 nm red shifts in absorption and ratiometric emission, respectively. The striking color changes from blue (436 nm) to green (480 nm) via an increase in pH are thought to be the stabilization of the charged canonical form of tertiary amide, i.e., -C(O-)═N+(CH3)2, realized from the changes in the absorption/fluorescence spectra and XPS/FTIR analyses. The through-space n-π* interactions in the NTFP3 aggregate, N-branching-associated rigidity, and nonconventional intramolecular hydrogen bondings of adjacent NTFP3 moieties in the NTFP3 aggregate contribute to aggregation-enhanced emissions (AEEs). Here, structures of NTFP3, NTFP3 aggregate, and Cu(II)-NTFP3; absorption; n-π* interactions; hydrogen bondings; AEEs; and binding with Cu(II) are ascertained by density functional theory, time-dependent density functional theory, and reduced density gradient calculations. The excellent limits of detection and Stern-Volmer constants of NTFP3 are 2.24 nM/0.14234 ppb and 4.26 × 103 M-1 at pH = 6.5 and 0.95 nM/0.06037 ppb and 4.90 × 103 M-1 at pH = 8.0, respectively. Additionally, the Stokes shift and binding energy of NTFP3 are 13,636 cm-1/1.69 eV and -4.64 eV, respectively. The pH-dependent MDCK cell imaging ability of noncytotoxic NTFP3 is supported via fluorescence imaging and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.
Collapse
Affiliation(s)
- Joy Sankar Deb Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Deepak Chowdhury
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Md Hussain Sanfui
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Nadira Hassan
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Manas Mahapatra
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Narendra Nath Ghosh
- Department of Chemistry, University of Gour Banga, Mokdumpur, Malda, West Bengal 732103, India
| | - Swapan Majumdar
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala 799022, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| | - Subhasis Roy
- Department of Chemical Engineering, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal 700106, India
| |
Collapse
|
37
|
Wei KN, Zhang QJ, Zhang YQ, Zeng X, Xiao X, Huang Y, Chen K, Tao Z. Clustering emission of cucurbit[n]urils in the solid- and solution-state induced by the outer surface interactions of cucurbit[n]urils. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121015. [PMID: 35180484 DOI: 10.1016/j.saa.2022.121015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Atypical luminescent compounds that do not contain conventional chromophores emit light due to clustering and have important basic research value and a broad range of potential applications. To date, most atypical luminescent compounds are small molecules or polymers containing groups such as cyano, carbonyl and hydroxyl. In this work, driven by some sporadic and accidental luminescence phenomena observed for cucurbit[n]urils (Q[n]s), the luminescent properties and mechanism of Q[n]s in the solid- and solution-state were systematically studied and the clustering emission of Q[n]s confirmed. Our experiments have revealed that the self-induced outer-surface interactions of Q[n]s (OSIQ) are the most important driving force resulting in the clustering emission of Q[n]s. Substances that can weaken the effect of self-induced OSIQ, such as the presence of various aromatic compounds and anions, may weaken or quench the clustering emission of Q[n]s. This not only reveals the new characteristics and mechanism of the clustering emission of Q[n]s, but also provides new insights on how to utilize the clustering emission of Q[n]s and construct new types of macrocyclic luminescence systems.
Collapse
Affiliation(s)
- Kai-Ni Wei
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Qian-Jun Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Yun-Qian Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xi Zeng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Ying Huang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China; The Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang 550025, China.
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
38
|
Zhang H, Nie C, Cao D, Cheng X, Guan R. Constructing unconventional fluorescent molecules by imidazoline ring and its salt of carboxylic acid and their application. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Tang S, Zhao Z, Chen J, Yang T, Wang Y, Chen X, Lv M, Yuan WZ. Unprecedented and Readily Tunable Photoluminescence from Aliphatic Quaternary Ammonium Salts**. Angew Chem Int Ed Engl 2022; 61:e202117368. [DOI: 10.1002/anie.202117368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Saixing Tang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Lab of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University No. 800 Dongchuan Rd., Minhang District Shanghai 200240 China
| | - Zihao Zhao
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Lab of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University No. 800 Dongchuan Rd., Minhang District Shanghai 200240 China
| | - Jinquan Chen
- State Key Laboratory of Precison Spectroscopy East China Normal University Shanghai 200241 China
| | - Tianjia Yang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Lab of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University No. 800 Dongchuan Rd., Minhang District Shanghai 200240 China
| | - Yunzhong Wang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Lab of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University No. 800 Dongchuan Rd., Minhang District Shanghai 200240 China
| | - Xiaohong Chen
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Lab of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University No. 800 Dongchuan Rd., Minhang District Shanghai 200240 China
| | - Meng Lv
- State Key Laboratory of Precison Spectroscopy East China Normal University Shanghai 200241 China
| | - Wang Zhang Yuan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Lab of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University No. 800 Dongchuan Rd., Minhang District Shanghai 200240 China
| |
Collapse
|
40
|
Chen Y, Xie Y, Li Z. Room-Temperature Phosphorescence of Nicotinic Acid and Isonicotinic Acid: Efficient Intermolecular Hydrogen-Bond Interaction in Molecular Array. J Phys Chem Lett 2022; 13:1652-1659. [PMID: 35147440 DOI: 10.1021/acs.jpclett.2c00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pure organic room-temperature phosphorescence (RTP) has attracted wide interest due to its unique advantages and promising applications. However, it is still challenging to develop efficient RTP through precise molecular design. In this work, RTP is observed from two simple aromatic acids, nicotinic acid (NA) and isonicotinic acid (INA), in the crystal state. Single crystal structure analysis indicates that an intense hydrogen bond between the pyridine nitrogen atom and the carboxyl group results in zigzag and linear molecular packing modes in NA and INA crystal. From theoretical calculations, the hydrogen bond can effectively promote the intersystem crossing process and stabilize triplet exciton. The identical molecular orientations in the molecular array contribute to the larger dipole moment of INA as compared to that of NA, which should be responsible for the red-shifted photoluminescence and RTP of INA. When the hydrogen bond is destructed by grinding or deprotonation, the RTP decreases sharply, further confirming the crucial role of the hydrogen bond on RTP.
Collapse
Affiliation(s)
- Yi Chen
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yujun Xie
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
41
|
Hu R, Wang J, Qin A, Tang BZ. Aggregation-Induced Emission-Active Biomacromolecules: Progress, Challenges, and Opportunities. Biomacromolecules 2022; 23:2185-2196. [PMID: 35171563 DOI: 10.1021/acs.biomac.1c01516] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biomacromolecules featuring aggregation-induced-emission (AIE) characteristics generally present new properties and performances that are silent in the molecular state, providing endless possibilities for the evolution of biomedical applications. Tremendous achievements based on the research of AIE-active biomacromolecules have been made in synthetic exploration, material development, and practical applications. In this Perspective, we give a brief account in the development of AIE-active biomacromolecules. Remarkable progresses have been made in the exploration of AIE-active biomacromolecule preparation, structure-property relationships, and the relevant biomedical applications. The existing challenges and promising opportunities, as well as the future directions in AIE-active biomacromolecule research, are also discussed. It is expected that this Perspective can act as a trigger for the innovation of AIE-active biomacromolecule research and aggregate science.
Collapse
Affiliation(s)
- Rong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, 510641 Guangzhou, China.,School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jia Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, 510641 Guangzhou, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, 510641 Guangzhou, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, 510641 Guangzhou, China.,Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City 518172, Guangdong, China.,Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
42
|
Takebuchi H, Jin RH. Photoluminescent polymer micelles with thermo-/pH-/metal responsibility and their features in selective optical sensing of Pd(ii) cations. RSC Adv 2022; 12:5720-5731. [PMID: 35425587 PMCID: PMC8981652 DOI: 10.1039/d1ra08756h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Photoluminescent polymers can be divided into two types of structures: one is the well-known conventional π-conjugated rigid chain polymers bearing π-conjugated chromophores in their side chains, and the other is the common flexible polymers without π-conjugated chromophores in their main or side chains but with a feature of clustering electron-rich and/or dipole groups in their main and/or side chains. In this work, we found a new photoluminescent polymer comprising theophylline (T) and imidazole (I) residues in a suitable ratio in the side chains on the common polystyrenic block (PVB-T/I). We synthesized a block copolymer (denoted as P2) consisting of hydrophobic PVB-T/I and hydrophilic poly(N-isopropylacrylamide), and we investigated its self-assembly into micelles and their micellar features, such as thermo-responsibility, fluorescence emission, pH, and metal ion-dependent photoluminescence, in detail. Especially, the micelles self-assembled from P2 showed intrinsic blue emission which was emitted from the charge transfer association between T and I residues in the intra-chains. Weakening the association by adjustment of the pH or addition of metal ions could evidently reduce the photoluminescence in the micellar state. Very interestingly, among many metal cations, only Pd2+, which can chelate strongly with theophylline, strongly quenched the photoluminescence from the micelles. Therefore, the polymer micelles functioned as an optical sensor for Pd(ii) ion not only by spectroscopy but also with the naked eye.
Collapse
Affiliation(s)
- Haruka Takebuchi
- Department of Material and Life Chemistry, Kanagawa University 3-2-7 Rokkakubashi Yokohama 221-8686 Japan
| | - Ren-Hua Jin
- Department of Material and Life Chemistry, Kanagawa University 3-2-7 Rokkakubashi Yokohama 221-8686 Japan
| |
Collapse
|
43
|
Tang S, Zhao Z, Chen J, Yang T, Wang Y, Chen X, Lv M, Yuan WZ. Unprecedented and Readily Tunable Photoluminescence from Aliphatic Quaternary Ammonium Salts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Saixing Tang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Zihao Zhao
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Jinquan Chen
- East China Normal University State Key Laboratory of Precison Spectroscopy CHINA
| | - Tianjia Yang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Yunzhong Wang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Xiaohong Chen
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Meng Lv
- East China Normal University State Key Laboratory of Precison Spectroscopy CHINA
| | - Wang Zhang Yuan
- Shanghai Jiao Tong University Department of Polymer Science and Engineering Dongchuan Road No. 800Room 433, Architecture Engineering Building, Minhang Campus 200240 Shanghai CHINA
| |
Collapse
|
44
|
Deng J, Jia H, Xie W, Wu H, Li J, Wang H. Nontraditional Organic/Polymeric Luminogens with Red‐Shifted Fluorescence Emissions. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Junwen Deng
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 China
| | - Haoyuan Jia
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 China
| | - Wendi Xie
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 China
| | - Hangrui Wu
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 China
| | - Jingyun Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 China
| | - Huiliang Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 China
| |
Collapse
|
45
|
Ma L, Liu J, Li C, Xiao Y, Wu S, Zhang B. A facile and economical method to synthesize a novel wide gamut fluorescent copolyester with outstanding properties. Polym Chem 2022. [DOI: 10.1039/d1py01222c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of high molecular weight copolyesters PExBTyAm were synthesized by a simple and economical two-step polycondensation method, and for the first time we found that the copolyesters exhibited an green fluorescence under 365 nm UV light.
Collapse
Affiliation(s)
- Lele Ma
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing 100190, P.R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jiajian Liu
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing 100190, P.R. China
| | - Chuncheng Li
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing 100190, P.R. China
| | - Yaonan Xiao
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing 100190, P.R. China
| | - Shaohua Wu
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing 100190, P.R. China
| | - Bo Zhang
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing 100190, P.R. China
| |
Collapse
|
46
|
Novel aggregation induced emission materials from natural Helianthus tuberosus, sustainable of inulin for room temperature phosphorescence. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Yang T, Zhou J, Shan B, Li L, Zhu C, Ma C, Gao H, Chen G, Zhang K, Wu P. Hydrated hydroxide complex dominates the AIE property of nonconjugated polymeric luminophores. Macromol Rapid Commun 2021; 43:e2100720. [PMID: 34962323 DOI: 10.1002/marc.202100720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/01/2021] [Indexed: 11/11/2022]
Abstract
Nontraditional intrinsic luminescence (NTIL) which always accompanied with aggregation-induced emission (AIE) features has received considerable attention due to their importance in the understanding of basic luminescence principle and potential practical applications. However, the rational modulation of the NTIL of nonconventional luminophores remains difficult, on account of the limited understanding of emission mechanisms. Herein, the emission colour of nonconjugated poly(methyl vinyl ether-alt-maleic anhydride) (PMVEMA) could be readily regulated from blue to red by controlling the alkalinity during the hydrolysis process. The nontraditional photoluminescence with AIE property was from the new formed p-band state, resulting from the strong overlapping of p orbitals of the clustered O atoms through space interactions. Hydrated hydroxide complexes embedded in the entangled polymer chain make big difference on the clustering of O atoms which dominates the AIE property of nonconjugated PMVEMA. These new insights into the photoluminescence mechanism of NTIL should stimulate additional experimental and theoretical studies and could benefit the molecular-level design of nontraditional chromophores for optoelectronics and other applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Taiqun Yang
- Taiqun Yang, Lei Li, Chun Zhu, Chaoqun Ma, Hui Gao, Guoqing Chen, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China.,Taiqun Yang, Jiafeng Zhou, Bingqian Shan, Kun Zhang and Peng Wu, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Laboratory of Interface and Water Science, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663, North Zhongshan Road, Shanghai, 200062, China
| | - Jiafeng Zhou
- Taiqun Yang, Jiafeng Zhou, Bingqian Shan, Kun Zhang and Peng Wu, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Laboratory of Interface and Water Science, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663, North Zhongshan Road, Shanghai, 200062, China
| | - Bingqian Shan
- Taiqun Yang, Jiafeng Zhou, Bingqian Shan, Kun Zhang and Peng Wu, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Laboratory of Interface and Water Science, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663, North Zhongshan Road, Shanghai, 200062, China
| | - Lei Li
- Taiqun Yang, Lei Li, Chun Zhu, Chaoqun Ma, Hui Gao, Guoqing Chen, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Chun Zhu
- Taiqun Yang, Lei Li, Chun Zhu, Chaoqun Ma, Hui Gao, Guoqing Chen, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Chaoqun Ma
- Taiqun Yang, Lei Li, Chun Zhu, Chaoqun Ma, Hui Gao, Guoqing Chen, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Hui Gao
- Taiqun Yang, Lei Li, Chun Zhu, Chaoqun Ma, Hui Gao, Guoqing Chen, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Guoqing Chen
- Taiqun Yang, Lei Li, Chun Zhu, Chaoqun Ma, Hui Gao, Guoqing Chen, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Kun Zhang
- Taiqun Yang, Jiafeng Zhou, Bingqian Shan, Kun Zhang and Peng Wu, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Laboratory of Interface and Water Science, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663, North Zhongshan Road, Shanghai, 200062, China
| | - Peng Wu
- Taiqun Yang, Jiafeng Zhou, Bingqian Shan, Kun Zhang and Peng Wu, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Laboratory of Interface and Water Science, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663, North Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
48
|
Wang J, Zhang L, Li Z. Aggregation-Induced Emission Luminogens with Photoresponsive Behaviors for Biomedical Applications. Adv Healthc Mater 2021; 10:e2101169. [PMID: 34783194 DOI: 10.1002/adhm.202101169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/25/2021] [Indexed: 12/25/2022]
Abstract
Fluorescent biomedical materials can visualize subcellular structures and therapy processes in vivo. The aggregation-induced emission (AIE) phenomenon helps suppress the quenching effect in the aggregated state suffered by conventional fluorescent materials, thereby contributing to design strategies for fluorescent biomedical materials. Photoresponsive biomedical materials have attracted attention because of the inherent advantages of light; i.e., remote control, high spatial and temporal resolution, and environmentally friendly characteristics, and their combination with AIE facilitates development of fluorescent molecules with efficient photochemical reactions upon light irradiation. In this review, organic compounds with AIE features for biomedical applications and design strategies for photoresponsive AIE luminogens (AIEgens) are first summarized briefly. Applications are then reviewed, with the employment of photoresponsive and AIE-active molecules for photoactivation imaging, super-resolution imaging, light-induced drug delivery, photodynamic therapy with photochromic behavior, and bacterial targeting and killing being discussed at length. Finally, the future outlook for AIEgens is considered with the aim of stimulating innovative work for further development of this field.
Collapse
Affiliation(s)
- Jiaqiang Wang
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Liyao Zhang
- School of Life Sciences Tianjin University Tianjin 300072 China
| | - Zhen Li
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
- Department of Chemistry Wuhan University Wuhan 430072 China
- Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
49
|
Zhang H, Tang BZ. Through-Space Interactions in Clusteroluminescence. JACS AU 2021; 1:1805-1814. [PMID: 34841401 PMCID: PMC8611663 DOI: 10.1021/jacsau.1c00311] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 05/16/2023]
Abstract
Conventional π-conjugated luminophores suffer from problems such as emission quenching, biotoxicity, environmental pollution, etc. The emerging nonconjugated and nonaromatic clusteroluminogens (CLgens) are expected to overcome these stubborn drawbacks, so research of CLgens shows great significance not only for practical application but also for the construction of fundamental photophysical theories. This perspective summarizes the unusual features of CLgens in comparison to traditional chromophores, such as nonconjugated molecular structures, unmatched absorption and excitation, excitation-dependent luminescence, multiple emission peaks, and room-temperature phosphorescence. Different from the theory of through-bond conjugation in π-conjugated luminophores, through-space interactions, including through-space n···n interaction and through-space n···π interaction, are regarded as the emitting sources of nonconjugated CLgens. In addition, the formation of network clusters is proposed as an efficient strategy to improve the performance of CLgens, and their potential applications of anticounterfeiting, photoelectronic devices, and bioimaging are prospected.
Collapse
Affiliation(s)
- Haoke Zhang
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Hangzhou 311215, China
- Guangdong
Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- Shenzhen
Institute of Aggregate Science and Technology, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen 518172, China
- Center
for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute,
State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- AIE Institute, Guangzhou 510530, China
| |
Collapse
|
50
|
Bagchi D, Maity A, De SK, Chakraborty A. Effect of Metal Ions on the Intrinsic Blue Fluorescence Property and Morphology of Aromatic Amino Acid Self-Assembly. J Phys Chem B 2021; 125:12436-12445. [PMID: 34734524 DOI: 10.1021/acs.jpcb.1c07392] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal ions are known to strongly bind with different proteins and peptides, resulting in alteration of their different physicochemical properties. In this work, we investigate the effect of metal ions of different nuclear charges and sizes on the intrinsic blue luminescence of the self-assembled structures formed by aromatic amino acids, namely, phenylalanine and tryptophan, using spectroscopic and imaging techniques. The study reveals that the intrinsic blue fluorescence of amino acid assemblies is influenced by metal ions and the pH of the medium. The metal ions with a higher charge to radius ratio promote clusterization which results in the enhancement of the intrinsic fluorescence, an effect known as "clusteroluminescence" of the amino acids aggregates. The imaging study reveals that metal ions with a higher charge to size ratio inhibit the large fibrillation of aromatic amino acids by promoting the formation of small nonfibrillar aggregates through increased hydrophobicity in the medium. The nanoaggregates are assumed to be responsible for the enhancement in the blue "clusteroluminescence".
Collapse
Affiliation(s)
- Debanjan Bagchi
- Indian Institute of Technology Indore, Discipline of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Avijit Maity
- Indian Institute of Technology Indore, Discipline of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Soumya Kanti De
- Indian Institute of Technology Indore, Discipline of Chemistry, Indore 453552, Madhya Pradesh, India
| | - Anjan Chakraborty
- Indian Institute of Technology Indore, Discipline of Chemistry, Indore 453552, Madhya Pradesh, India
| |
Collapse
|