1
|
Nam K, Lee DY. Self-Organization via Dewetting in Polymeric Assemblies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400255. [PMID: 38597696 DOI: 10.1002/smll.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/08/2024] [Indexed: 04/11/2024]
Abstract
Dewetting is a spontaneous process involving a thin liquid film that minimizes interfacial energy by reducing the surface area via the generation of defects on the film. In industry, dewetting is regarded as a problem that results in defects or a heterogeneous surface; however, in this study, dewetting is intentionally induced to create various patterns at intended positions spontaneously with polymeric materials and nanoparticles. The dewetting-induced patterning process is conducted by controlling the capillary force and evaporation ratio through an evaporative self-assembly system. The linear-polymeric arrays on the substrate played an important role in modifying the surface geometry and treatment for a heterogeneous surface, and an additional patterning process is performed on patterned arrays to create dewetting-induced self-organizing patterns. Here, this method is used to introduce material arrays with specific shapes such as dots, dumbbells, potbellies, Vs, and trapezoids.
Collapse
Affiliation(s)
- Kibeom Nam
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong Yun Lee
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
2
|
Meissner C, Bhamla MS, Emrick T, Crosby AJ. Fabricating mesoscale polymer ribbons with tunable mechanical properties via evaporative deposition and dewetting. SOFT MATTER 2024; 20:5324-5330. [PMID: 38853612 DOI: 10.1039/d4sm00368c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Synthetic replication of the precise mesoscale control found in natural systems poses substantial experimental challenges due to the need for manipulation across multiple length scales (from nano- to millimeter). We address this challenge by using a 'flow coating' method to fabricate polymer ribbons with precisely tunable dimensions and mechanical properties. Overcoming barriers that previously limited the achievable range of properties with this method, we eliminate the need for substrate patterning and post-processing etching to facilitate the production of high aspect ratio, filament-like ribbons across a range of polymers-from glassy polystyrene to elastomeric poly(butadiene), as well as poly(butadiene-block-styrene). Our method uniquely enables the preservation of chemical fidelity, composition, and dimensions of these ribbons, leveraging polymers with elastic moduli from GPa to tens of MPa to achieve multi-scale features. We demonstrate the role of the elastocapillary length (γ/E) in determining morphological outcomes, revealing the increase in curvature with lower elastic modulus. This finding underscores the intricate relationship among surface tension, elastic modulus, and resultant structural form, enabling control over the morphology of mesoscale ribbons. The soft (MPa) polybutadiene-based ribbons exemplify our method's utility, offering structures with significant extensibility, resilience, and ease of handling, thus expanding the potential for future applications. This work advances our understanding of the fundamental principles governing mesoscale structure formation and unlocks new possibilities for designing soft materials with tailored properties, mirroring the complexity and functionality observed in nature.
Collapse
Affiliation(s)
- Cornelia Meissner
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Conte Center for Polymer Research, 120 Governors Drive, Amherst, MA 01003, USA.
| | - M Saad Bhamla
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Todd Emrick
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Conte Center for Polymer Research, 120 Governors Drive, Amherst, MA 01003, USA.
| | - Alfred J Crosby
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Conte Center for Polymer Research, 120 Governors Drive, Amherst, MA 01003, USA.
| |
Collapse
|
3
|
Chang H, Li D, Zhang X, Xu R, Zhang J, Song Y. Size‐dependent electrophoretic motion of polystyrene particles at polyethylene glycol–dextran interfaces. Electrophoresis 2022; 43:2112-2119. [DOI: 10.1002/elps.202200125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/12/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Hui Chang
- Department of Marine Engineering Dalian Maritime University Dalian P. R. China
| | - Deyu Li
- Department of Marine Engineering Dalian Maritime University Dalian P. R. China
| | - Xiangyu Zhang
- Department of Marine Engineering Dalian Maritime University Dalian P. R. China
| | - Runxin Xu
- Department of Navigation Dalian Maritime University Dalian P. R. China
| | - Junyan Zhang
- Department of Marine Engineering Dalian Maritime University Dalian P. R. China
| | - Yongxin Song
- Department of Marine Engineering Dalian Maritime University Dalian P. R. China
| |
Collapse
|
4
|
Song Y, Yu W, Liu Z, Huang Y, Li M, Li D. Electrokinetic transportation and differentiation of copper and aluminum particles in oil with an oil-water interface. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Pareek D, Roach KG, Gonzalez MA, Büsing L, Parisi J, Gütay L, Schäfer S. Micro-patterned deposition of MoS 2 ultrathin-films by a controlled droplet dragging approach. Sci Rep 2021; 11:13993. [PMID: 34234194 PMCID: PMC8263556 DOI: 10.1038/s41598-021-93278-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/16/2021] [Indexed: 01/19/2023] Open
Abstract
Micropatterning of transition metal dichalcogenide (TMDC) ultrathin-films and monolayers has been demonstrated by various multi-step approaches. However, directly achieving a patterned growth of TMDC films is still considered to be challenging. Here, we report a solution-based approach for the synthesis of patterned MoS2 layers by dragging a precursor solution droplet with variable velocities across a substrate. Utilizing the pronounced shearing velocity dependence in a Landau-Levich deposition regime, MoS2 films with a spatially modulated thickness with alternating mono/bi- and few-layer regions are obtained after precursor annealing. Generally, the presented facile methodology allows for the direct preparation of micro-structured functional materials, extendable to other TMDC materials and even van der Waals heterostructures.
Collapse
Affiliation(s)
- Devendra Pareek
- Ultrafast Nanoscale Dynamics, Institute of Physics, Carl Von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Kathryna G Roach
- Ultrafast Nanoscale Dynamics, Institute of Physics, Carl Von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Marco A Gonzalez
- Ultrafast Nanoscale Dynamics, Institute of Physics, Carl Von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Lukas Büsing
- Ultrafast Nanoscale Dynamics, Institute of Physics, Carl Von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Jürgen Parisi
- Ultrafast Nanoscale Dynamics, Institute of Physics, Carl Von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Levent Gütay
- Ultrafast Nanoscale Dynamics, Institute of Physics, Carl Von Ossietzky University of Oldenburg, Oldenburg, Germany.
| | - Sascha Schäfer
- Ultrafast Nanoscale Dynamics, Institute of Physics, Carl Von Ossietzky University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
6
|
Jeon J, Tan ATL, Lee J, Park JE, Won S, Kim S, Bedewy M, Go J, Kim JK, Hart AJ, Wie JJ. High-Speed Production of Crystalline Semiconducting Polymer Line Arrays by Meniscus Oscillation Self-Assembly. ACS NANO 2020; 14:17254-17261. [PMID: 33232120 DOI: 10.1021/acsnano.0c07268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Evaporative self-assembly of semiconducting polymers is a low-cost route to fabricating micrometer and nanoscale features for use in organic and flexible electronic devices. However, in most cases, rate is limited by the kinetics of solvent evaporation, and it is challenging to achieve uniformity over length- and time-scales that are compelling for manufacturing scale-up. In this study, we report high-throughput, continuous printing of poly(3-hexylthiophene) (P3HT) by a modified doctor blading technique with oscillatory meniscus motion-meniscus-oscillated self-assembly (MOSA), which forms P3HT features ∼100 times faster than previously reported techniques. The meniscus is pinned to a roller, and the oscillatory meniscus motion of the roller generates repetitive cycles of contact-line formation and subsequent slip. The printed P3HT lines demonstrate reproducible and tailorable structures: nanometer scale thickness, micrometer scale width, submillimeter pattern intervals, and millimeter-to-centimeter scale coverage with highly defined boundaries. The line width as well as interval of P3HT patterns can be independently controlled by varying the polymer concentration levels and the rotation rate of the roller. Furthermore, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals that this dynamic meniscus control technique dramatically enhances the crystallinity of P3HT. The MOSA process can potentially be applied to other geometries, and to a wide range of solution-based precursors, and therefore will develop for practical applications in printed electronics.
Collapse
Affiliation(s)
- Jisoo Jeon
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Alvin T L Tan
- Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jaeyong Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 37673, Republic of Korea
| | - Jeong Eun Park
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sukyoung Won
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sanha Kim
- Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mostafa Bedewy
- Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jamison Go
- Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jin Kon Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 37673, Republic of Korea
| | - A John Hart
- Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeong Jae Wie
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
7
|
Kolegov K, Barash L. Applying droplets and films in evaporative lithography. Adv Colloid Interface Sci 2020; 285:102271. [PMID: 33010576 DOI: 10.1016/j.cis.2020.102271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 01/03/2023]
Abstract
This review covers experimental results of evaporative lithography and analyzes existing mathematical models of this method. Evaporating droplets and films are used in different fields, such as cooling of heated surfaces of electronic devices, diagnostics in health care, creation of transparent conductive coatings on flexible substrates, and surface patterning. A method called evaporative lithography emerged after the connection between the coffee ring effect taking place in drying colloidal droplets and naturally occurring inhomogeneous vapor flux densities from liquid-vapor interfaces was established. Essential control of the colloidal particle deposit patterns is achieved in this method by producing ambient conditions that induce a nonuniform evaporation profile from the colloidal liquid surface. Evaporative lithography is part of a wider field known as "evaporative-induced self-assembly" (EISA). EISA involves methods based on contact line processes, methods employing particle interaction effects, and evaporative lithography. As a rule, evaporative lithography is a flexible and single-stage process with such advantages as simplicity, low price, and the possibility of application to almost any substrate without pretreatment. Since there is no mechanical impact on the template in evaporative lithography, the template integrity is preserved in the process. The method is also useful for creating materials with localized functions, such as slipperiness and self-healing. For these reasons, evaporative lithography attracts increasing attention and has a number of noticeable achievements at present. We also analyze limitations of the approach and ways of its further development.
Collapse
|