1
|
Profir M, Roşu OA, Creţoiu SM, Gaspar BS. Friend or Foe: Exploring the Relationship between the Gut Microbiota and the Pathogenesis and Treatment of Digestive Cancers. Microorganisms 2024; 12:955. [PMID: 38792785 PMCID: PMC11124004 DOI: 10.3390/microorganisms12050955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Digestive cancers are among the leading causes of cancer death in the world. However, the mechanisms of cancer development and progression are not fully understood. Accumulating evidence in recent years pointing to the bidirectional interactions between gut dysbiosis and the development of a specific type of gastrointestinal cancer is shedding light on the importance of this "unseen organ"-the microbiota. This review focuses on the local role of the gut microbiota imbalance in different digestive tract organs and annexes related to the carcinogenic mechanisms. Microbiota modulation, either by probiotic administration or by dietary changes, plays an important role in the future therapies of various digestive cancers.
Collapse
Affiliation(s)
- Monica Profir
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Oana Alexandra Roşu
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Surgery Clinic, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania;
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
2
|
Ren M, Yang L, He L, Wang J, Zhao W, Yang C, Yang S, Cheng H, Huang M, Gou M. Non-viral Gene Therapy for Melanoma Using Lysenin from Eisenia Foetida. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306076. [PMID: 38445883 PMCID: PMC11077637 DOI: 10.1002/advs.202306076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/01/2024] [Indexed: 03/07/2024]
Abstract
Earthworms, long utilized in traditional medicine, serve as a source of inspiration for modern therapeutics. Lysenin, a defensive factor in the coelom fluid of the earthworm Eisenia fetida, has multiple bioactivities. However, the inherent toxicity of Lysenin as a pore-forming protein (PFP) restricts its application in therapy. Here, a gene therapy strategy based on Lysenin for cancer treatment is presented. The formulation consists of polymeric nanoparticles complexed with the plasmid encoding Lysenin. After transfection in vitro, melanoma cells can express Lysenin, resulting in necrosis, autophagy, and immunogenic cell death. The secretory signal peptide alters the intracellular distribution of the expressed product of Lysenin, thereby potentiating its anticancer efficacy. The intratumor injection of Lysenin gene formulation can efficiently kill the transfected melanoma cells and activate the antitumor immune response. Notably, no obvious systemic toxicity is observed during the treatment. Non-viral gene therapy based on Lysenin derived from Eisenia foetida exhibits potential in cancer therapy, which can inspire future cancer therapeutics.
Collapse
Affiliation(s)
- Min Ren
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Ling Yang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Liming He
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Jie Wang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Wei Zhao
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Chunli Yang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Shuai Yang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Hao Cheng
- Huahang Microcreate Technology Co., LtdChengduSichuan610041China
| | - Meijuan Huang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical OncologyCancer CenterWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Maling Gou
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| |
Collapse
|
3
|
Bacteria and bacterial derivatives as delivery carriers for immunotherapy. Adv Drug Deliv Rev 2022; 181:114085. [PMID: 34933064 DOI: 10.1016/j.addr.2021.114085] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
There is growing interest in the role of microorganisms in human health and disease, with evidence showing that new types of biotherapy using engineered bacterial therapeutics, including bacterial derivatives, can address specific mechanisms of disease. The complex interactions between microorganisms and metabolic/immunologic pathways underlie many diseases with unmet medical needs, suggesting that targeting these interactions may improve patient treatment. Using tools from synthetic biology and chemical engineering, non-pathogenic bacteria or bacterial products can be programmed and designed to sense and respond to environmental signals to deliver therapeutic effectors. This review describes current progress in biotherapy using live bacteria and their derivatives to achieve therapeutic benefits against various diseases.
Collapse
|
4
|
Baindara P, Mandal SM. Bacteria and bacterial anticancer agents as a promising alternative for cancer therapeutics. Biochimie 2020; 177:164-189. [PMID: 32827604 DOI: 10.1016/j.biochi.2020.07.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/04/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
Cancer is the leading cause of deaths worldwide, though significant advances have occurred in its diagnosis and treatment. The development of resistance against chemotherapeutic agents, their side effects, and non-specific toxicity urge to screen for the novel anticancer agent. Hence, the development of novel anticancer agents with a new mechanism of action has become a major scientific challenge. Bacteria and bacterially produced bioactive compounds have recently emerged as a promising alternative for cancer therapeutics. Bacterial anticancer agents such as antibiotics, bacteriocins, non-ribosomal peptides, polyketides, toxins, etc. These are adopted different mechanisms of actions such as apoptosis, necrosis, reduced angiogenesis, inhibition of translation and splicing, and obstructing essential signaling pathways to kill cancer cells. Also, live tumor-targeting bacteria provided a unique therapeutic alternative for cancer treatment. This review summarizes the anticancer properties and mechanism of actions of the anticancer agents of bacterial origin and antitumor bacteria along with their possible future applications in cancer therapeutics.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, 65212, USA.
| | - Santi M Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India.
| |
Collapse
|
5
|
Kheirandish MH, Jaliani HZ, Rahmani B, Nikukar H. Specific targeting of a pore-forming toxin (listeriolysin O) to LHRH-positive cancer cells using LHRH targeting peptide. Toxicon 2019; 164:82-86. [DOI: 10.1016/j.toxicon.2019.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/01/2019] [Accepted: 04/12/2019] [Indexed: 11/26/2022]
|
6
|
Fotoohi-Ardakani G, Kheirollahi M, Zarei Jaliani H, Noorian M, Ansariniyia H. Targeting MCF-7 Cell Line by Listeriolysin O Pore Forming Toxin Fusion with AHNP Targeted Peptide. Adv Biomed Res 2019; 8:33. [PMID: 31259162 PMCID: PMC6543864 DOI: 10.4103/abr.abr_18_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Tumor-targeting peptides are attracting subjects in cancer therapy. These peptides, which are widely studied, deliver therapeutic agents to the specific sites of tumors. In this study, we produced a new form of recombinant listeriolysin O (LLO) with genetically fused Anti-HER2/neu peptide (AHNP) sequence adding to its C-terminal end. The aim of the study was to engineer this pore-forming toxin to make it much more specific to tumor cells. Materials and Method and Results Two forms of the toxin (with and without peptide) were subcloned into a bacterial expression plasmid. Subcloning was performed using a polymerase chain reaction (PCR) product as a megaprimer in a quick-change PCR to introduce the whole insert gene into the expression plasmid. After expression of two recombinant forms of LLO in BL21 DE3 cells, purification was performed using Ni-NTA affinity column. MDA-MB-231 and MCF-7 cell lines (as negative and positive controls, respectively) were treated with both LLO toxins to evaluate their cytotoxicity and specificity. The IC50 of LLO on MDA-MB-231 and MCF-7 cells was 21 and 5 ng/ml, respectively. In addition, IC50 for the fusion AHNP-LLO toxin was 140 and 60 ng/ml, respectively. It was found that the cytotoxicity of the new engineered AHNP-LLO toxin has decreased by about 9x compared to the wild-type toxin and the specificity of the AHNP-LLO toxin has been also reduced. Conclusions Results show that the C-terminal of the LLO should not be modified and it seems that N-terminal of the toxin should be preferred for engineering and adding peptide modules.
Collapse
Affiliation(s)
- Gholamreza Fotoohi-Ardakani
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Medical Genetics, School of Medicine, Protein Engineering Laboratory, Shahidsadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Kheirollahi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Zarei Jaliani
- Department of Medical Genetics, School of Medicine, Protein Engineering Laboratory, Shahidsadoughi University of Medical Sciences, Yazd, Iran
| | - Mohadese Noorian
- Department of Medical Genetics, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Hossein Ansariniyia
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Science, Yazd, Iran
| |
Collapse
|
7
|
Koo S, Cheley S, Bayley H. Redirecting Pore Assembly of Staphylococcal α-Hemolysin by Protein Engineering. ACS CENTRAL SCIENCE 2019; 5:629-639. [PMID: 31041382 PMCID: PMC6487460 DOI: 10.1021/acscentsci.8b00910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Indexed: 05/03/2023]
Abstract
α-Hemolysin (αHL), a β-barrel pore-forming toxin (βPFT), is secreted as a water-soluble monomer by Staphylococcus aureus. Upon binding to receptors on target cell membranes, αHL assembles to form heptameric membrane-spanning pores. We have previously engineered αHL to create a protease-activatable toxin that is activated by site-specific proteolysis including by tumor proteases. In this study, we redesigned αHL so that it requires 2-fold activation on target cells through (i) binding to specific receptors, and (ii) extracellular proteolytic cleavage. To assess our strategy, we constructed a fusion protein of αHL with galectin-1 (αHLG1, αHL-Galectin-1 chimera). αHLG1 was cytolytic toward cells that lack a receptor for wild-type αHL. We then constructed protease-activatable mutants of αHLG1 (PAMαHLG1s). PAMαHLG1s were activated by matrix metalloproteinase 2 (MMP-2) and had approximately 50-fold higher cytolytic activity toward MMP-2 overexpressing cells (HT-1080 cells) than toward non-overexpressing cells (HL-60 cells). Our approach provides a novel strategy for tailoring pore-forming toxins for therapeutic applications.
Collapse
Affiliation(s)
- Sunwoo Koo
- Department
of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, 8447 Riverside Parkway, Bryan, Texas 77807, United States
- E-mail: . Phone: 1-979-436-0381
| | - Stephen Cheley
- Department
of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1 Alberta, Canada
| | - Hagan Bayley
- Department
of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield
Road, Oxford, OX1 3TA England, United Kingdom
- E-mail: . Phone: +44 1865 285101
| |
Collapse
|
8
|
Karpiński TM, Adamczak A. Anticancer Activity of Bacterial Proteins and Peptides. Pharmaceutics 2018; 10:54. [PMID: 29710857 PMCID: PMC6027124 DOI: 10.3390/pharmaceutics10020054] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 12/12/2022] Open
Abstract
Despite much progress in the diagnosis and treatment of cancer, tumour diseases constitute one of the main reasons of deaths worldwide. The side effects of chemotherapy and drug resistance of some cancer types belong to the significant current therapeutic problems. Hence, searching for new anticancer substances and medicines are very important. Among them, bacterial proteins and peptides are a promising group of bioactive compounds and potential anticancer drugs. Some of them, including anticancer antibiotics (actinomycin D, bleomycin, doxorubicin, mitomycin C) and diphtheria toxin, are already used in the cancer treatment, while other substances are in clinical trials (e.g., p28, arginine deiminase ADI) or tested in in vitro research. This review shows the current literature data regarding the anticancer activity of proteins and peptides originated from bacteria: antibiotics, bacteriocins, enzymes, nonribosomal peptides (NRPs), toxins and others such as azurin, p28, Entap and Pep27anal2. The special attention was paid to the still poorly understood active substances obtained from the marine sediment bacteria. In total, 37 chemical compounds or groups of compounds with antitumor properties have been described in the present article.
Collapse
Affiliation(s)
- Tomasz M Karpiński
- Department of Genetics and Pharmaceutical Microbiology, Poznań University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland.
| | - Artur Adamczak
- Department of Botany, Breeding and Agricultural Technology of Medicinal Plants, Institute of Natural Fibres and Medicinal Plants, Kolejowa 2, 62-064 Plewiska, Poland.
| |
Collapse
|
9
|
|
10
|
Gurnev PA, Nestorovich EM. Channel-forming bacterial toxins in biosensing and macromolecule delivery. Toxins (Basel) 2014; 6:2483-540. [PMID: 25153255 PMCID: PMC4147595 DOI: 10.3390/toxins6082483] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 12/19/2022] Open
Abstract
To intoxicate cells, pore-forming bacterial toxins are evolved to allow for the transmembrane traffic of different substrates, ranging from small inorganic ions to cell-specific polypeptides. Recent developments in single-channel electrical recordings, X-ray crystallography, protein engineering, and computational methods have generated a large body of knowledge about the basic principles of channel-mediated molecular transport. These discoveries provide a robust framework for expansion of the described principles and methods toward use of biological nanopores in the growing field of nanobiotechnology. This article, written for a special volume on "Intracellular Traffic and Transport of Bacterial Protein Toxins", reviews the current state of applications of pore-forming bacterial toxins in small- and macromolecule-sensing, targeted cancer therapy, and drug delivery. We discuss the electrophysiological studies that explore molecular details of channel-facilitated protein and polymer transport across cellular membranes using both natural and foreign substrates. The review focuses on the structurally and functionally different bacterial toxins: gramicidin A of Bacillus brevis, α-hemolysin of Staphylococcus aureus, and binary toxin of Bacillus anthracis, which have found their "second life" in a variety of developing medical and technological applications.
Collapse
Affiliation(s)
- Philip A Gurnev
- Physics Department, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
11
|
Stachowiak R, Łyżniak M, Grabowska M, Roeske K, Jagielski T, Bielecki J, Budziszewska BK, Hoser G, Kawiak J. Cytotoxicity of purified listeriolysin O on mouse and human leukocytes and leukaemia cells. BMC Biotechnol 2014; 14:77. [PMID: 25134983 PMCID: PMC4149758 DOI: 10.1186/1472-6750-14-77] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 08/07/2014] [Indexed: 11/24/2022] Open
Abstract
Background Listeriolysin O (LLO) is the main virulence factor of Listeria monocytogenes and facilitates the intracellular survival of the pathogen. Some of its characteristics endorse the growing popularity of LLO for use in biotechnology, particularly in the development of novel vaccines. Here, we evaluate the use of LLO to eradicate leukaemia cells. Results A purified LLO preparation was obtained by affinity chromatography. The LLO preparation procedure was optimized and purified LLO was tested for optimal conditions of storage including temperature, application of proteinase inhibitors and serum components. We demonstrated the possibility of regulating LLO activity by adjusting cell membrane cholesterol content. The LLO preparation had haemolytic activity and had a cytotoxic effect on the human T-leukaemia Jurkat cell line as well as mouse and human peripheral blood mononuclear cells. Conclusions LLO has a very potent cytotoxic activity towards human leukocytes. Importantly, the cytotoxic activity was easily regulated in vitro and could be restricted to areas containing malignant cells, raising the possibility of future clinical application of LLO for leukaemia treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jerzy Kawiak
- Medical Centre of Postgraduate Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| |
Collapse
|
12
|
Poenick S, Jahnke HG, Eichler M, Frost S, Lilie H, Robitzki AA. Comparative label-free monitoring of immunotoxin efficacy in 2D and 3D mamma carcinoma in vitro models by impedance spectroscopy. Biosens Bioelectron 2014; 53:370-6. [DOI: 10.1016/j.bios.2013.09.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/20/2013] [Accepted: 09/24/2013] [Indexed: 01/18/2023]
|
13
|
Pirie CM, Liu DV, Wittrup KD. Targeted cytolysins synergistically potentiate cytoplasmic delivery of gelonin immunotoxin. Mol Cancer Ther 2013; 12:1774-82. [PMID: 23832121 DOI: 10.1158/1535-7163.mct-12-1023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Targeted endocytic uptake is a first step toward tissue-specific cytoplasmic macromolecular delivery; however, inefficient escape from the endolysosomal compartment makes this generally impractical at present. We report here a targeted cytolysin approach that dramatically potentiates endosomal release of an independently targeted potent gelonin immunotoxin. Fibronectin domains engineered for affinity to EGF receptor or carcinoembryonic antigen were fused to the plant toxin gelonin or bacterial pore-forming cytolysins. These fusion proteins display synergistic activity in both antigen-specific cytotoxicity in vitro, enhancing potency by several orders of magnitude, and in tumor growth inhibition in vivo. In addition, the number of internalized gelonin molecules required to induce apoptosis is reduced from approximately 5 × 10(6) to less than 10(3). Targeted potentiation shows promise for enhancing cytoplasmic delivery of other macromolecular payloads such as DNA, siRNA, and miRNA.
Collapse
Affiliation(s)
- Christopher M Pirie
- Corresponding Author: K. Dane Wittrup, Massachusetts Institute of Technology, Building 76-261, 77 Massachusetts Avenue, Cambridge, MA 02139.
| | | | | |
Collapse
|
14
|
Sun R, Liu Y. Listeriolysin O as a strong immunogenic molecule for the development of new anti-tumor vaccines. Hum Vaccin Immunother 2013; 9:1058-68. [PMID: 23399758 PMCID: PMC3899140 DOI: 10.4161/hv.23871] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/23/2013] [Accepted: 02/03/2013] [Indexed: 11/19/2022] Open
Abstract
The pore-forming toxin listeriolysin O (LLO), which is produced by Listeria monocytogenes, mediates bacterial phagosomal escape and facilitates bacterial multiplication during infection. This toxin has recently gained attention because of its confirmed role in the controlled and specific modulation of the immune response. Currently, cancer immunotherapies are focused on conquering the immune tolerance induced by poorly immunogenic tumor antigens and eliciting strong, lasting immunological memory. An effective way to achieve these goals is the co-administration of potent immunomodulatory adjuvant components with vaccine vectors. LLO, a toxin that belongs to the family of cholesterol-dependent cytolysins (CDCs), exhibits potent cell type-non-specific toxicity and is a source of dominant CD4(+) and CD8(+) T cell epitopes. According to recent research, in addition to its effective cytotoxicity as a cancer immunotherapeutic drug, the non-specific adjuvant property of LLO makes it promising for the development of efficacious anti-tumor vaccines.
Collapse
Affiliation(s)
- Rui Sun
- Department of Pathology; Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences; School of Basic Medicine; Peking Union Medical College; Beijing, P.R. China
| | - Yuqin Liu
- Department of Pathology; Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences; School of Basic Medicine; Peking Union Medical College; Beijing, P.R. China
- Cell Resource Center; Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences; School of Basic Medicine; Peking Union Medical College; Beijing, P.R. China
| |
Collapse
|
15
|
Lawrence SL, Feil SC, Holien JK, Kuiper MJ, Doughty L, Dolezal O, Mulhern TD, Tweten RK, Parker MW. Manipulating the Lewis antigen specificity of the cholesterol-dependent cytolysin lectinolysin. Front Immunol 2012. [PMID: 23181061 PMCID: PMC3500998 DOI: 10.3389/fimmu.2012.00330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The cholesterol-dependent cytolysins (CDCs) attack cells by punching large holes in their membranes. Lectinolysin from Streptococcus mitis is unique among CDCs due to the presence of an N-terminal lectin domain that enhances the pore-forming activity of the toxin. We recently determined the crystal structures of the lectin domain in complex with various glycans. These structures revealed the molecular basis for the Lewis antigen specificity of the toxin. Based on this information we have used in silico molecular modeling to design a mutant toxin, which we predicted would increase its specificity for Lewis y, an antigen found on the surface of cancer cells. Surprisingly, we found by surface plasmon resonance binding experiments that the resultant mutant lectin domain exhibited higher specificity for Lewis b antigens instead. We then undertook comparative crystallographic and molecular dynamics simulation studies of the wild-type and mutant lectin domains to understand the molecular basis for the disparity between the theoretical and experimental results. The crystallographic results revealed that the net number of interactions between Lewis y and wild-type versus mutant was unchanged whereas there was a loss of a hydrogen bond between mutant and Lewis b compared to wild-type. In contrast, the molecular dynamics studies revealed that the Lewis b antigen spent more time in the binding pocket of the mutant compared to wild-type and the reverse was true for Lewis y. The results of these simulation studies are consistent with the conclusions drawn from the surface plasmon resonance studies. This work is part of a program to engineer lectinolysin so that it will target and kill specific cells in human diseases.
Collapse
Affiliation(s)
- Sara L Lawrence
- Biota Structural Biology Laboratory and Australian Cancer Research Foundation Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research Fitzroy, VIC, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Feil SC, Lawrence S, Mulhern TD, Holien JK, Hotze EM, Farrand S, Tweten RK, Parker MW. Structure of the lectin regulatory domain of the cholesterol-dependent cytolysin lectinolysin reveals the basis for its lewis antigen specificity. Structure 2012; 20:248-58. [PMID: 22325774 PMCID: PMC3682648 DOI: 10.1016/j.str.2011.11.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/25/2011] [Accepted: 11/03/2011] [Indexed: 10/14/2022]
Abstract
The cholesterol-dependent cytolysins (CDCs) punch holes in target cell membranes through a highly regulated process. Streptococcus mitis lectinolysin (LLY) exhibits another layer of regulation with a lectin domain that enhances the pore-forming activity of the toxin. We have determined the crystal structures of the lectin domain by itself and in complex with various glycans that reveal the molecular basis for the Lewis antigen specificity of LLY. A small-angle X-ray scattering study of intact LLY reveals the molecule is flat and elongated with the lectin domain oriented so that the Lewis antigen-binding site is exposed. We suggest that the lectin domain enhances the pore-forming activity of LLY by concentrating toxin molecules at fucose-rich sites on membranes, thus promoting the formation of prepore oligomers on the surface of susceptible cells.
Collapse
Affiliation(s)
- Susanne C. Feil
- Biota Structural Biology Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Sara Lawrence
- Biota Structural Biology Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Terrence D. Mulhern
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jessica K. Holien
- Biota Structural Biology Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Eileen M. Hotze
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Stephen Farrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rodney K. Tweten
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael W. Parker
- Biota Structural Biology Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|