1
|
Spaggiari C, Yamukujije C, Pieroni M, Annunziato G. Quorum sensing inhibitors (QSIs): a patent review (2019-2023). Expert Opin Ther Pat 2025:1-17. [PMID: 40219759 DOI: 10.1080/13543776.2025.2491382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
INTRODUCTION The collective behavior of bacteria is regulated by Quorum Sensing (QS), in which bacteria release chemical signals and express virulence genes in a cell density-dependent manner. Quorum Sensing inhibitors (QSIs) are a large class of natural and synthetic compounds that have the potential to competitively inhibit the Quorum Sensing (QS) systems of several pathogens blocking their virulence mechanisms. They are considered promising compounds to deal with antimicrobial resistance, providing an opportunity to develop new drugs against these targets. AREAS COVERED The present review represents a comprehensive analysis of patents and patent applications available on Espacenet and Google Patent, from 2019 to 2023 referring to the therapeutic use of Quorum Sensing inhibitors. EXPERT OPINION Unlike classical antibiotics, which target the basic cellular metabolic processes, QSIs provide a promising alternative to attenuating virulence and pathogenicity without putting selective pressure on bacteria. The general belief is that QSIs pose no or little selective pressure on bacteria since these do not affect their growth. To date, QSIs are seen as the most promising alternative to traditional antibiotics. The next big step in this area of research is its succession to the clinical stage.
Collapse
Affiliation(s)
| | | | - Marco Pieroni
- Department of Food and Drugs, University of Parma, Parma, Italy
| | | |
Collapse
|
2
|
Senthil R, Archunan G, Vithya D, Saravanan KM. Hexadecanoic acid analogs as potential CviR-mediated quorum sensing inhibitors in Chromobacterium violaceum: an in silico study. J Biomol Struct Dyn 2025; 43:3635-3644. [PMID: 38165661 DOI: 10.1080/07391102.2023.2299945] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/20/2023] [Indexed: 01/04/2024]
Abstract
Chromobacterium violaceum is a Gram-negative, rod-shaped and opportunistic human pathogen. C. violaceum is resistant to various antibiotics due to the production of quorum sensing (QS)-controlled virulence factor and biofilm formation. Hence, we need to find alternative strategies to overcome the antimicrobial resistance and biofilm formation in Gram-negative bacteria. QS is a mechanism in which bacteria's ability to regulate the virulence factors and biofilm formations leads to disease progression. Previously, hexadecanoic acid was identified as a CviR-mediated quorum-sensing inhibitor. In this study, we aimed to discover potential analogs of hexadecanoic acid as a CviR-mediated quorum-sensing inhibitor against C. violaceum by using ADME/T prediction, density functional theory, molecular docking, molecular dynamics and free energy binding calculations. ADME/T properties predicted for analogs were acceptable for human oral absorption and feasibility. The highest occupied molecular orbitals and lowest unoccupied molecular orbitals gap energies predicted and found oleic acid with -0.3748 energies. Docosatrienoic acid exhibited the highest binding affinity -8.15 Kcal/mol and strong and stable interactions with the amino acid residues on the active site of the CviR protein. These compounds on MD simulations for 100 ns show strong hydrogen-bonding interactions with the protein and remain stable inside the active site. Our results suggest hexadecanoic acid analogs could serve as anti-QS and anti-biofilm molecules for treating C. violaceum infections. However, further validation and investigation of these inhibitors against CviR are needed to claim their candidacy for clinical trials.
Collapse
Affiliation(s)
- Renganathan Senthil
- Department of Bioinformatics, School of Lifesciences, Vel's Institute of Science, Technology and Advanced Studies, Pallavaram, Chennai, Tamil Nadu, India
- Lysine Biotech Private Limited, Taramani, Chennai, Tamil Nadu, India
| | - Govindaraju Archunan
- Dean-Research, Maruthupandiyar College (Affiliated to Bharathidasan University), Thanjavur, Tamil Nadu, India
| | - Dharmaraj Vithya
- Department of Biotechnology, Dhanalakshmi Srinivasan College of Arts and Science for Women (Affiliated to Bharathidasan University), Perambalur, Tamil Nadu, India
| | - Konda Mani Saravanan
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Portaccio L, Vergine M, De Pascali M, De Bellis L, Luvisi A. Diffusible Signal Factors and Xylella fastidiosa: A Crucial Mechanism Yet to Be Revealed. BIOLOGY 2025; 14:303. [PMID: 40136559 PMCID: PMC11939919 DOI: 10.3390/biology14030303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
Xylella fastidiosa (Xf) is a xylem-limited Gram-negative phytopathogen responsible for severe plant diseases globally. Colonization and dissemination on host plants are regulated primarily by diffusible signal factors (DSFs) and quorum sensing (QS) molecules regulating biofilm formation, motility, and virulence factor synthesis. DSFs play a critical role in the transition of bacteria from adhesion to dispersal phases, influencing plant infection and transmission by vector. Because of Xf's host range (over 550 plant species), effective containment strategies are highly demanded. In this review, we discuss the molecular mechanism of DSF-mediated signalling in Xf, especially concerning its role in pathogenicity and adaptation. Moreover, we shed light on innovative approaches to manage Xf, including quorum-quenching (QQ) strategies and transgenic plants targeted to disrupt QS pathways. Improved knowledge of DSF interactions with host plants and bacterial communities could provide an entry point for novel, sustainable disease control strategies to decrease Xf's agricultural and ecological impact.
Collapse
Affiliation(s)
- Letizia Portaccio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.P.); (M.D.P.); (L.D.B.); (A.L.)
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.P.); (M.D.P.); (L.D.B.); (A.L.)
| | - Mariarosaria De Pascali
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.P.); (M.D.P.); (L.D.B.); (A.L.)
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.P.); (M.D.P.); (L.D.B.); (A.L.)
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.P.); (M.D.P.); (L.D.B.); (A.L.)
| |
Collapse
|
4
|
Patil RS, Sharma S, Bhaskarwar AV, Nambiar S, Bhat NA, Koppolu MK, Bhukya H. TetR and OmpR family regulators in natural product biosynthesis and resistance. Proteins 2025; 93:38-71. [PMID: 37874037 DOI: 10.1002/prot.26621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
This article provides a comprehensive review and sequence-structure analysis of transcription regulator (TR) families, TetR and OmpR/PhoB, involved in specialized secondary metabolite (SSM) biosynthesis and resistance. Transcription regulation is a fundamental process, playing a crucial role in orchestrating gene expression to confer a survival advantage in response to frequent environmental stress conditions. This process, coupled with signal sensing, enables bacteria to respond to a diverse range of intra and extracellular signals. Thus, major bacterial signaling systems use a receptor domain to sense chemical stimuli along with an output domain responsible for transcription regulation through DNA-binding. Sensory and output domains on a single polypeptide chain (one component system, OCS) allow response to stimuli by allostery, that is, DNA-binding affinity modulation upon signal presence/absence. On the other hand, two component systems (TCSs) allow cross-talk between the sensory and output domains as they are disjoint and transmit information by phosphorelay to mount a response. In both cases, however, TRs play a central role. Biosynthesis of SSMs, which includes antibiotics, is heavily regulated by TRs as it diverts the cell's resources towards the production of these expendable compounds, which also have clinical applications. These TRs have evolved to relay information across specific signals and target genes, thus providing a rich source of unique mechanisms to explore towards addressing the rapid escalation in antimicrobial resistance (AMR). Here, we focus on the TetR and OmpR family TRs, which belong to OCS and TCS, respectively. These TR families are well-known examples of regulators in secondary metabolism and are ubiquitous across different bacteria, as they also participate in a myriad of cellular processes apart from SSM biosynthesis and resistance. As a result, these families exhibit higher sequence divergence, which is also evident from our bioinformatic analysis of 158 389 and 77 437 sequences from TetR and OmpR family TRs, respectively. The analysis of both sequence and structure allowed us to identify novel motifs in addition to the known motifs responsible for TR function and its structural integrity. Understanding the diverse mechanisms employed by these TRs is essential for unraveling the biosynthesis of SSMs. This can also help exploit their regulatory role in biosynthesis for significant pharmaceutical, agricultural, and industrial applications.
Collapse
Affiliation(s)
- Rachit S Patil
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Siddhant Sharma
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Aditya V Bhaskarwar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Souparnika Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Niharika A Bhat
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Mani Kanta Koppolu
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Hussain Bhukya
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| |
Collapse
|
5
|
Waters JK, Eijkelkamp BA. Bacterial acquisition of host fatty acids has far-reaching implications on virulence. Microbiol Mol Biol Rev 2024; 88:e0012624. [PMID: 39475267 DOI: 10.1128/mmbr.00126-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
SUMMARYThe lipid homeostasis pathways of bacterial pathogens have been studied comprehensively for their biochemical functionality. However, new and refined technologies have supported the interrogation of bacterial lipid and fatty acid homeostasis mechanisms in more complex environments, such as mammalian host niches. In particular, emerging findings on the breadth and depth of host fatty acid uptake have demonstrated their importance beyond merely fatty acid utilization for membrane synthesis, as they can contribute to virulence factor regulation, pathogenesis, and group-based behaviors. Lipid homeostasis is also intertwined with other metabolic and physiological processes in the bacterial cells, which appear to be largely unique per species, but overarching themes can be derived. This review combines the latest biochemical and structural findings and places these in the context of bacterial pathogenesis, thereby shedding light on the far-reaching implications of lipid homeostasis on bacterial success.
Collapse
Affiliation(s)
- Jack K Waters
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Gu Y, Yu H, Kuang J, Ma X, Tahir MS, He S, Liao Y. Genomic insights into bamboo witches' broom disease: pathogenicity and phytohormone biosynthesis in Aciculosporium take. Front Microbiol 2024; 15:1432979. [PMID: 39600575 PMCID: PMC11590067 DOI: 10.3389/fmicb.2024.1432979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Bamboo witches' broom disease (WBD), caused by Aciculosporium take Miyake, devastates bamboo forests. Understanding the genome and pathogenic factors of pathogen is crucial for disease control. We employed single-molecule real-time sequencing, Illumina paired-end sequencing, and chromatin interaction mapping techniques to assemble the genome of A. take CCTCC-M2023413, analyze pathogenicity- and phytohormone-biosynthesis-related genes, and compare it to 12 other WBD pathogens. The genome of A. take is 59.24 Mb in size, with 54.32% repeats, 7 chromosomes, 7,105 protein-coding genes, 84 ribosomal RNAs, and 115 transfer RNAs. Predictive analysis of pathogenicity genes found 237 carbohydrate-active enzymes, 1,069 membrane transport proteins, 1,040 pathogen-host interaction genes, 315 virulence factors, and 70 effectors. Most of pathogenicity genes overlapped with repeat-rich regions. Additionally, 172 genes were linked to auxin biosynthesis, 53 to brassinosteroid biosynthesis, and 2 to cis-zeatin biosynthesis. Comparative genomic analysis identified 77 core orthogroups shared by 13 WBD pathogens, played roles in metabolites, genetic information processing, pathogenesis, cis-zeatin biosynthesis, lifespan, and quorum sensing. The miaA gene, crucial for cis-zeatin biosynthesis, is structurally conserved and sequence-diverse among 13 WBD pathogens, with upregulated expression during bamboo WBD pathogenesis. This highlights that cis-zeatin is significant contributor to host pathogenesis, and miaA is a new potential target for controlling WBD. This study provides important insights on preventing and controlling bamboo WBD.
Collapse
Affiliation(s)
- Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Yaan, China
| | - Haoyue Yu
- College of Life Sciences, Sichuan Agricultural University, Yaan, China
| | - Jiayan Kuang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Muhammad Salman Tahir
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sainan He
- College of Life Sciences, Sichuan Agricultural University, Yaan, China
| | - Yingchong Liao
- College of Life Sciences, Sichuan Agricultural University, Yaan, China
| |
Collapse
|
7
|
Xia L, Chen M, Li G, An T. Can photocatalysis inhibit interspecies bacterial cooperation to quench the formation of robust complex bacterial biofilms in water environments? WATER RESEARCH 2024; 262:122137. [PMID: 39059198 DOI: 10.1016/j.watres.2024.122137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Bacterial biofilms pose significant a public health risk as an environmental reservoir for opportunistic aquatic bacterial pathogens. Understanding the interspecies roles of complex bacterial biofilms under different stimuli and regulatory mechanisms of stress responses is the key to controlling their dissemination. Herein, two-species mixture (TSM) biofilms (Staphylococcus aureus and Pseudomonas aeruginosa) were constructed in a flowthrough reactor. Compared with the single-species biofilms, the TSM biofilm had higher growth activity to reach maturity faster, forming a staggered community structure. Moreover, the TSM biofilm exhibited greatly improved resistance to different antibiotics (16-128 times higher), especially to those that act on protein synthesis and cell membrane integrity, when compared to single planktonic microorganisms. In the presence of stimuli, photocatalysis effectively inactivated the TSM biofilm within 10 h, a 4-fold shorter inactivation time compared to UVC irradiation. In addition, photocatalysis effectively depleted the extracellular polymers of the TSM biofilm and inhibited secretion of their interspecies quorum sensing signaling molecule autoinducer-2 (AI-2). However, the expression of AI-2 induced related virulence factors, and biofilm growth-related genes were initially up-regulated 3 - 10 fold for the TSM biofilm within the first 2 - 4 h of photocatalysis, followed by significant down-regulation. Furthermore, the addition of the AI-2 precursor 4,5-dihydroxy-2,3-pentanedione effectively delayed the photocatalytic inactivation efficiency of the TSM biofilm compared to the control. These results suggest that photocatalysis can effectively inactivate biofilms by inhibiting interspecies cooperation by quenching AI-2 in the TSM biofilm. This work sheds light on controlling biofilms in public health engineering systems.
Collapse
Affiliation(s)
- Longji Xia
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Min Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
8
|
Wu L, Li L, Qiao L, Li C, Zhang S, Yin X, Du Z, Sun Y, Qiu J, Chang X, Wang B, Hua Z. Programmable Bacteria with Dynamic Virulence Modulation System for Precision Antitumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404069. [PMID: 39058336 PMCID: PMC11423194 DOI: 10.1002/advs.202404069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Engineered bacteria-mediated antitumor approaches have been proposed as promising immunotherapies for cancer. However, the off-target bacterial toxicity narrows the therapeutic window. Living microbes will benefit from their controllable immunogenicity within tumors for safer antitumor applications. In this study, a genetically encoded microbial activation strategy is reported that uses tunable and dynamic expression of surface extracellular polysaccharides to improve bacterial biocompatibility while retaining therapeutic efficacy. Based on screening of genes associated with Salmonella survival in macrophages, a novel attenuated Salmonella chassis strain AIS (htrA gene-deficient) highly enriched in tumors after administration and rapidly cleared from normal organs are reported. Subsequently, an engineered bacterial strain, AISI-H, is constructed based on the AIS strain and an optimized quorum-sensing regulatory system. The AISI-H strain can achieve recovery of dynamic tumor-specific bacterial virulence through a novel HTRA-RCSA axis-based and quorum-sensing synthetic gene circuit-mediated increase in extracellular polysaccharide content. These strains act "off" in normal organs to avoid unwanted immune activation and "on" in tumors for precise tumor suppression in mice. The AISI-H strain shows significant tumor inhibition and potent activation of anticancer immunity in a melanoma mouse model. The AISI-H strain exhibits excellent biocompatibility. This bacterial regulation strategy expands the applications of microbe-based antitumor therapeutics.
Collapse
Affiliation(s)
- Leyang Wu
- Department of Neurology of Nanjing Drum Tower Hospital and The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu, 21008, P. R. China
- Nanjing Generecom Biotechnology Co., Ltd., Nanjing, Jiangsu, 210023, P. R. China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories, Inc., Changzhou, Jiangsu, 213164, P. R. China
| | - Lin Li
- Department of Neurology of Nanjing Drum Tower Hospital and The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu, 21008, P. R. China
| | - Liyuan Qiao
- Department of Neurology of Nanjing Drum Tower Hospital and The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu, 21008, P. R. China
| | - Chenyang Li
- Department of Neurology of Nanjing Drum Tower Hospital and The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu, 21008, P. R. China
| | - Shuhui Zhang
- Department of Neurology of Nanjing Drum Tower Hospital and The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu, 21008, P. R. China
| | - Xingpeng Yin
- Department of Neurology of Nanjing Drum Tower Hospital and The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu, 21008, P. R. China
| | - Zengzheng Du
- Department of Neurology of Nanjing Drum Tower Hospital and The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu, 21008, P. R. China
| | - Ying Sun
- Department of Neurology of Nanjing Drum Tower Hospital and The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu, 21008, P. R. China
| | - Jiahui Qiu
- Department of Neurology of Nanjing Drum Tower Hospital and The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu, 21008, P. R. China
| | - Xiaoyao Chang
- Department of Neurology of Nanjing Drum Tower Hospital and The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu, 21008, P. R. China
| | - Bohao Wang
- Department of Neurology of Nanjing Drum Tower Hospital and The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu, 21008, P. R. China
| | - Zichun Hua
- Department of Neurology of Nanjing Drum Tower Hospital and The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu, 21008, P. R. China
- Nanjing Generecom Biotechnology Co., Ltd., Nanjing, Jiangsu, 210023, P. R. China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories, Inc., Changzhou, Jiangsu, 213164, P. R. China
- Faculty of Pharmaceutical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453002, P. R. China
| |
Collapse
|
9
|
Zuberi A, Ahmad N, Ahmad H, Saeed M, Ahmad I. Beyond antibiotics: CRISPR/Cas9 triumph over biofilm-associated antibiotic resistance infections. Front Cell Infect Microbiol 2024; 14:1408569. [PMID: 39035353 PMCID: PMC11257871 DOI: 10.3389/fcimb.2024.1408569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 07/23/2024] Open
Abstract
A complex structure known as a biofilm is formed when a variety of bacterial colonies or a single type of cell in a group sticks to a surface. The extracellular polymeric compounds that encase these cells, often consisting of proteins, eDNA, and polysaccharides, exhibit strong antibiotic resistance. Concerns about biofilm in the pharmaceutical industry, public health, and medical fields have sparked a lot of interest, as antibiotic resistance is a unique capacity exhibited by these biofilm-producing bacteria, which increases morbidity and death. Biofilm formation is a complicated process that is controlled by several variables. Insights into the processes to target for the therapy have been gained from multiple attempts to dissect the biofilm formation process. Targeting pathogens within a biofilm is profitable because the bacterial pathogens become considerably more resistant to drugs in the biofilm state. Although biofilm-mediated infections can be lessened using the currently available medications, there has been a lot of focus on the development of new approaches, such as bioinformatics tools, for both treating and preventing the production of biofilms. Technologies such as transcriptomics, metabolomics, nanotherapeutics and proteomics are also used to develop novel anti-biofilm agents. These techniques help to identify small compounds that can be used to inhibit important biofilm regulators. The field of appropriate control strategies to avoid biofilm formation is expanding quickly because of this spurred study. As a result, the current article addresses our current knowledge of how biofilms form, the mechanisms by which bacteria in biofilms resist antibiotics, and cutting-edge treatment approaches for infections caused by biofilms. Furthermore, we have showcased current ongoing research utilizing the CRISPR/Cas9 gene editing system to combat bacterial biofilm infections, particularly those brought on by lethal drug-resistant pathogens, concluded the article with a novel hypothesis and aspirations, and acknowledged certain limitations.
Collapse
Affiliation(s)
- Azna Zuberi
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States
- Department of Obs & Gynae, Northwestern University, Chicago, IL, United States
| | - Nayeem Ahmad
- Department of Biophysics, All India Institute of Medical Science, New Delhi, India
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Hafiz Ahmad
- Department of Medical Microbiology & Immunology, Ras Al Khaimah (RAK) College of Medical Sciences, Ras Al Khaimah (RAK) Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Mohd Saeed
- Department of Biology, College of Science University of Hail, Hail, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
10
|
Noda M, Noguchi S, Danshiitsoodol N, Hara T, Sugiyama M. Non-pathogenic Heyndrickxia coagulans (Bacillus coagulans) 29-2E inhibits the virulence of pathogenic Salmonella Typhimurium by quorum-sensing regulation. J Biosci Bioeng 2024; 137:445-452. [PMID: 38553372 DOI: 10.1016/j.jbiosc.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/19/2024] [Accepted: 03/07/2024] [Indexed: 05/20/2024]
Abstract
Bacteria produce and release small signal molecules, autoinducers, as an indicator of their cell density. The system, called a quorum-sensing (QS) system, is used to control not only virulence factors but also antibiotic production, sporulation, competence, and biofilm formation in bacteria. Different from antibiotics, QS inhibitors are expected to specifically repress the virulence factors in pathogenic bacteria without inhibiting growth or bactericidal effects. Therefore, since QS inhibitors have little risk of antibiotic-resistant bacteria emergence, they have been proposed as promising anti-bacterial agents. In the present study, we aimed to find new QS inhibitors that prohibit the signaling cascade of autoinducer 3 (AI-3) recognized by a QseCB two-component system that regulates some virulence factors of pathogens, such as enterohemorrhagic Escherichia coli (EHEC) and Salmonella enterica subsp. enterica serovar Typhimurium. We have established the method for QS-inhibitor screening using a newly constructed plasmid pLES-AQSA. E. coli DH5α transformed with the pLES-AQSA can produce β-galactosidase that converts 5-bromo-4-chloro-3-indolyl β-d-galactopyranoside (X-gal) into blue pigment (5-bromo-4-chloro-indoxyl) under the control of the QseCB system. By screening, Heyndrickxia coagulans (formerly Bacillus coagulans) 29-2E was found to produce an exopolysaccharide (EPS)-like water-soluble polymer that prohibits QseCB-mediated β-galactosidase production without antibacterial activities. Further, the simultaneous injection of the 29-2E strain significantly improves the survival rate of Salmonella Typhimurium-infected silkworm larvae (from 0% to 83.3%), suggesting that the substance may be a promising inhibitor against the virulence of pathogens without risk of the emergence of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Masafumi Noda
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Shino Noguchi
- Department of Pharmaceutical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Narandalai Danshiitsoodol
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Toshinori Hara
- Section of Clinical Laboratory, Division of Clinical Support, Hiroshima University Hospital, Kasumi 1-2-3 Minami-ku, Hiroshima 734-8551, Japan
| | - Masanori Sugiyama
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan.
| |
Collapse
|
11
|
Gonzales M, Jacquet P, Gaucher F, Chabrière É, Plener L, Daudé D. AHL-Based Quorum Sensing Regulates the Biosynthesis of a Variety of Bioactive Molecules in Bacteria. JOURNAL OF NATURAL PRODUCTS 2024; 87:1268-1284. [PMID: 38390739 DOI: 10.1021/acs.jnatprod.3c00672] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Bacteria are social microorganisms that use communication systems known as quorum sensing (QS) to regulate diverse cellular behaviors including the production of various secreted molecules. Bacterial secondary metabolites are widely studied for their bioactivities including antibiotic, antifungal, antiparasitic, and cytotoxic compounds. Besides playing a crucial role in natural bacterial niches and intermicrobial competition by targeting neighboring organisms and conferring survival advantages to the producer, these bioactive molecules may be of prime interest to develop new antimicrobials or anticancer therapies. This review focuses on bioactive compounds produced under acyl homoserine lactone-based QS regulation by Gram-negative bacteria that are pathogenic to humans and animals, including the Burkholderia, Serratia, Pseudomonas, Chromobacterium, and Pseudoalteromonas genera. The synthesis, regulation, chemical nature, biocidal effects, and potential applications of these identified toxic molecules are presented and discussed in light of their role in microbial interactions.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
- Gene&GreenTK, Marseille 13005, France
| | | | | | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
| | | | | |
Collapse
|
12
|
Cui R, Zhang J, Liu X, Hu C, Zhou F, Zhang M, Wang X, Zou Q, Huang W. Dronedarone Enhances the Antibacterial Activity of Polymyxin B and Inhibits the Quorum Sensing System by Interacting with LuxS. ACS Infect Dis 2024; 10:961-970. [PMID: 38317424 DOI: 10.1021/acsinfecdis.3c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Quorum sensing (QS) is considered an appealing target for interference with bacterial infections. β-Adrenergic blockers are promising anti-QS agents but do not have antibacterial activity. We assessed the potential ability of adrenergic receptor inhibitors to enhance the antibacterial activity of polymyxin B (PB) against Klebsiella pneumoniae and determined that dronedarone has the most potent activity both in vitro and in vivo. We found that dronedarone increases the thermal stability of LuxS, decreases the production of AI-2, and affects the biofilm formation of K. pneumoniae. We also identified the direct binding of dronedarone to LuxS. However, the mechanism by which dronedarone enhances the antibacterial activity of PB has not been elucidated and is worthy of further exploration. Our study provides a basis for the future development of drug combination regimens.
Collapse
Affiliation(s)
- Ruiqin Cui
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
- Department of Medical Laboratory, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Xiaodi Liu
- Department of Infectious Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Chunxia Hu
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
- Department of Medical Laboratory, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Fan Zhou
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
- Department of Medical Laboratory, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Min Zhang
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Xiao Wang
- Department of Pharmacy, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Wei Huang
- Department of Medical Laboratory, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| |
Collapse
|
13
|
Singothu S, Bhandari V. Computational assessment of marine natural products as LasR inhibitors for attenuating quorum sensing in Pseudomonas aeruginosa. J Biomol Struct Dyn 2024:1-15. [PMID: 38379380 DOI: 10.1080/07391102.2024.2319110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/11/2024] [Indexed: 02/22/2024]
Abstract
The Quorum Sensing (QS) system in bacteria has become a focal point for researchers aiming to develop novel antimicrobials to combat multidrug-resistant bacteria. Pseudomonas aeruginosa, an opportunistic Gram-negative bacterium, has developed resistance against a variety of antimicrobial agents, making it a formidable pathogen responsible for nosocomial infections. QS system mainly controls the expression of genes responsible for biofilm formation and virulence of bacteria. Within the QS system of P. aeruginosa, the transcription activator LasR plays a pivotal role and is an appealing target for the development of antimicrobial agents. In this study, we employed molecular docking and molecular dynamics simulations to identify potential inhibitors of LasR by screening marine natural products (MNPs) from the CMNPD database. We identified ten MNPs with excellent docking scores (less than -11.7 kcal/mol) against LasR, surpassing the binding energy of the co-crystal 3-oxo-C12-HSL (-8.594 kcal/mol) and the reference compound cladodionen (-6.71 kcal/mol). Furthermore, we selected five of these MNPs with the highest MM/GBSA binding energies for extensive 100 ns molecular simulations to assess their stability. The molecular dynamics simulations indicated three MNPs, namely CMNPD10886, CMNPD20987, and CMNPD20960, maintained high stability throughout the 100 ns simulation period, as evidenced by their root mean square deviation, root mean square fluctuation, radius of gyration, and hydrogen bond interactions within the ligand-protein complex analysis. Furthermore, essential dynamics (PCA and DCCM) were performed to analyse the correlated motion of amino acids. These findings suggest that these compounds hold potential as inhibitors of LasR, offering promising prospects for the development of treatments against infections.
Collapse
Affiliation(s)
- Siva Singothu
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Vasundhra Bhandari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| |
Collapse
|
14
|
Alfei S. Shifting from Ammonium to Phosphonium Salts: A Promising Strategy to Develop Next-Generation Weapons against Biofilms. Pharmaceutics 2024; 16:80. [PMID: 38258091 PMCID: PMC10819902 DOI: 10.3390/pharmaceutics16010080] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Since they are difficult and sometimes impossible to treat, infections sustained by multidrug-resistant (MDR) pathogens, emerging especially in nosocomial environments, are an increasing global public health concern, translating into high mortality and healthcare costs. In addition to having acquired intrinsic abilities to resist available antibiotic treatments, MDR bacteria can transmit genetic material encoding for resistance to non-mutated bacteria, thus strongly decreasing the number of available effective antibiotics. Moreover, several pathogens develop resistance by forming biofilms (BFs), a safe and antibiotic-resistant home for microorganisms. BFs are made of well-organized bacterial communities, encased and protected in a self-produced extracellular polymeric matrix, which impedes antibiotics' ability to reach bacteria, thus causing them to lose efficacy. By adhering to living or abiotic surfaces in healthcare settings, especially in intensive care units where immunocompromised older patients with several comorbidities are hospitalized BFs cause the onset of difficult-to-eradicate infections. In this context, recent studies have demonstrated that quaternary ammonium compounds (QACs), acting as membrane disruptors and initially with a low tendency to develop resistance, have demonstrated anti-BF potentialities. However, a paucity of innovation in this space has driven the emergence of QAC resistance. More recently, quaternary phosphonium salts (QPSs), including tri-phenyl alkyl phosphonium derivatives, achievable by easy one-step reactions and well known as intermediates of the Wittig reaction, have shown promising anti-BF effects in vitro. Here, after an overview of pathogen resistance, BFs, and QACs, we have reviewed the QPSs developed and assayed to this end, so far. Finally, the synthetic strategies used to prepare QPSs have also been provided and discussed to spur the synthesis of novel compounds of this class. We think that the extension of the knowledge about these materials by this review could be a successful approach to finding effective weapons for treating chronic infections and device-associated diseases sustained by BF-producing MDR bacteria.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 4, 16148 Genova, Italy
| |
Collapse
|
15
|
Ham S, Ryoo HS, Jang Y, Lee SH, Lee JY, Kim HS, Lee JH, Park HD. Isolation of a quorum quenching bacterium effective to various acyl-homoserine lactones: Its quorum quenching mechanism and application to a membrane bioreactor. CHEMOSPHERE 2024; 347:140735. [PMID: 37977541 DOI: 10.1016/j.chemosphere.2023.140735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Biofouling, caused by microbial biofilm formation on the membrane surface and in pores, is a major operational problem in membrane bioreactors (MBR). Many quorum quenching (QQ) bacteria have been isolated and applied to MBR to reduce biofouling. However, for more effective MBR biofouling control, novel approaches for isolating QQ bacteria and applying them in MBR are needed. Therefore, Listeria grayi (HEMM-2) was isolated using a mixture of different N-acyl homoserine lactones (AHLs). HEMM-2 degraded various AHLs, regardless of the length and oxo group in the carbon chain, with quorum sensing (QS) inhibition ratios of 47-61%. This QQ activity was attributed to extracellular substances in HEMM-2 cell-free supernatant (CFS). Furthermore, the HEMM-2 CFS negatively regulated QS-related gene expression, inhibiting Pseudomonas aeruginosa and activated sludge-biofilm formation by 53-75%. Surprisingly, when the HEMM-2 CFS was directly injected into a laboratory-scale MBR system, biofouling was not significantly affected. Biofouling was only controlled by cell suspension (CS) of HEMM-2, indicating the importance of QQ bacteria in MBR. The HEMM-2 CS increased operation time to reach 0.4 bar, a threshold transmembrane pressure for complete biofouling, from 315 h to 371 h. Taken together, HEMM-2, which is effective in the degradation of various AHLs, and its applicable method to MBR may be considered a potent approach for controlling biofouling and understanding the behavior of QQ bacteria in MBR systems.
Collapse
Affiliation(s)
- Soyoung Ham
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen, 72076, Germany
| | - Hwa-Soo Ryoo
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yongsun Jang
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sang-Hoon Lee
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ji-Yoon Lee
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Han-Shin Kim
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Jeong-Hoon Lee
- Eco Lab Center, SK Ecoplant Co.,Ltd., 19, Yulgok-ro 2-gil, Jongro-gu, Seoul, 03143, Republic of Korea
| | - Hee-Deung Park
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
16
|
Flores-Percino D, Osorio-Llanes E, Sepulveda Y, Castellar-López J, Madera RB, Rada WR, Meléndez CM, Mendoza-Torres E. Mechanisms of the Quorum Sensing Systems of Pseudomonas aeruginosa: Host and Bacteria. Curr Med Chem 2024; 31:5755-5767. [PMID: 37605403 DOI: 10.2174/0929867331666230821110440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/25/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023]
Abstract
Quorum-sensing is a communication mechanism between bacteria with the ability to activate signaling pathways in the bacterium and in the host cells. Pseudomonas aeruginosa is a pathogen with high clinical relevance due to its vast virulence factors repertory and wide antibiotic resistance mechanisms. Due to this, it has become a pathogen of interest for developing new antimicrobial agents in recent years. P. aeruginosa has three major QS systems that regulate a wide gene range linked with virulence factors, metabolic regulation, and environment adaption. Consequently, inhibiting this communication mechanism would be a strategy to prevent the pathologic progression of the infections caused by this bacterium. In this review, we aim to overview the current studies about the signaling mechanisms of the QS system of P. aeruginosa and its effects on this bacterium and the host.
Collapse
Affiliation(s)
- Diana Flores-Percino
- Department of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Estefanie Osorio-Llanes
- Department of Microbiology, Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Barranquilla, Colombia
- Department of Medicine, Faculty of Health Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Seccional Barranquilla, Barranquilla, Colombia
| | - Yanireth Sepulveda
- Department of Microbiology, Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Barranquilla, Colombia
| | - Jairo Castellar-López
- Department of Microbiology, Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Barranquilla, Colombia
| | - Ricardo Belón Madera
- Department of Medicine, Faculty of Health Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Seccional Barranquilla, Barranquilla, Colombia
| | - Wendy Rosales Rada
- Department of Microbiology, Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Barranquilla, Colombia
| | - Carlos Mario Meléndez
- Department of Chemistry, Faculty of Basic Sciencies, Grupo de Investigación en Química Orgánica y Biomédica, Universidad del Atlántico, Barranquilla, Colombia
| | - Evelyn Mendoza-Torres
- Department of Medicine, Faculty of Health Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Seccional Barranquilla, Barranquilla, Colombia
| |
Collapse
|
17
|
Ballante F, Turkina MV, Ntzouni M, Magnusson KE, Vikström E. Modified N-acyl-L-homoserine lactone compounds abrogate Las-dependent quorum-sensing response in human pathogen Pseudomonas aeruginosa. Front Mol Biosci 2023; 10:1264773. [PMID: 37908228 PMCID: PMC10613653 DOI: 10.3389/fmolb.2023.1264773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
Quorum sensing (QS) is a mode of cell-cell communication that bacteria use to sense population density and orchestrate collective behaviors. The common opportunistic human pathogen Pseudomonas aeruginosa employs QS to regulate a large set of genes involved in virulence and host-pathogen interactions. The Las circuit positioned on the top of the QS hierarchy in P. aeruginosa makes use of N-acyl-L-homoserine lactones (AHLs) as signal molecules, like N-3-oxo-dodecanoyl-L-homoserine lactone (3O-C12-HSL). Disabling QS circuits by certain small-molecule compounds, known as quorum-sensing inhibitors (QSIs), has been proposed as a strategy to attenuate bacterial pathogenicity. In this study, four new AHL analogs were designed by incorporating a tert-butoxycarbonyl Boc group in amide and β-keto (3-oxo) moiety. Compounds were evaluated on a molecular and phenotypic basis as a QSI using the screening strategy linked to the assignment of the Las QS system in P. aeruginosa. Using a LasR-based bioreporter, we found that the compounds decreased LasR-controlled light activity and competed efficiently with natural 3O-C12-HSL. The compounds reduced the production of the cognate 3O-C12-HSL and certain virulence traits, like total protease activity, elastase activity, pyocyanin production, and extracellular DNA release. Furthermore, a quantitative proteomic approach was used to study the effect of the compounds on QS-regulated extracellular proteins. Among the four compounds tested, one of them showed the most significant difference in the appearance of the 3O-C12-HSL-responsive reference proteins related to QS communication and virulence, i.e., a distinct activity as a QSI. Moreover, by combining experimental data with computational chemistry, we addressed the effect of LasR protein flexibility on docking precision and assessed the advantage of using a multi-conformational docking procedure for binding mode prediction of LasR modulators. Thus, the four new AHL compounds were tested for their interaction with the AHL-binding site in LasR to identify the key interferences with the activity of LasR. Our study provides further insight into molecular features that are required for small-molecule modulation of LasR-dependent QS communication in P. aeruginosa. This should facilitate rational design of the next generation of antivirulence tools to study and manipulate QS-controlled fitness in bacteria and, thereby, handle bacterial infections in a new way.
Collapse
Affiliation(s)
- Flavio Ballante
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Maria V. Turkina
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Maria Ntzouni
- Core Facility, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Karl-Eric Magnusson
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Elena Vikström
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
18
|
Kim U, Lee SY, Oh SW. A review of mechanism analysis methods in multi-species biofilm of foodborne pathogens. Food Sci Biotechnol 2023; 32:1665-1677. [PMID: 37780597 PMCID: PMC10533759 DOI: 10.1007/s10068-023-01317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilms are an aggregation of microorganisms that have high resistance to antimicrobial agents. In the food industry, it has been widely studied that foodborne pathogens on both food surfaces and food-contact surfaces can form biofilms thereby threatening the safety of the food. In the natural environment, multi-species biofilms formed by more than two different microorganisms are abundant. In addition, the resistance of multi-species biofilms to antimicrobial agents is higher than that of mono-species biofilms. Therefore, studies to elucidate the mechanisms of multi-species biofilms formed by foodborne pathogens are still required in the food industry. In this review paper, we summarized the novel analytical methods studied to evaluate the mechanisms of multi-species biofilms formed by foodborne pathogens by dividing them into four categories: spatial distribution, bacterial interaction, extracellular polymeric substance production and quorum sensing analytical methods.
Collapse
Affiliation(s)
- Unji Kim
- Department of Food and Nutrition, Kookmin University, Seoul, 02727 Republic of Korea
| | - So-Young Lee
- Department of Food and Nutrition, Kookmin University, Seoul, 02727 Republic of Korea
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, Seoul, 02727 Republic of Korea
| |
Collapse
|
19
|
Rajan PP, Kumar P, Mini M, Jayakumar D, Vaikkathillam P, Asha S, Mohan A, S M. Antibiofilm potential of gallic acid against Klebsiella pneumoniae and Enterobacter hormaechei: in-vitro and in-silico analysis. BIOFOULING 2023; 39:948-961. [PMID: 37975308 DOI: 10.1080/08927014.2023.2279996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
Biofilm refers to a community of microorganisms that adhere to a substrate and play a crucial role in microbial pathogenesis and developing infections associated with medical devices. Enterobacter hormaechei and Klebsiella pneumoniae are classified as significant nosocomial pathogens within the ESKAPE category and cause diverse infections. In addition to their reputation as prolific biofilm formers, these pathogens are increasingly becoming drug-resistant and pose a substantial threat to the healthcare setting. Due to the inherent resistance of biofilms to conventional therapies, novel strategies are imperative for effectively controlling E. hormaechei and K. pneumoniae biofilms. This study aimed to assess the anti-biofilm activity of gallic acid (GA) against E. hormaechei and K. pneumoniae. The results of biofilm quantification assays demonstrated that GA exhibited significant antibiofilm activity against E. hormaechei and K. pneumoniae at concentrations of 4 mg mL-1, 2 mg mL-1, 1 mg mL-1, and 0.5 mg mL-1. Similarly, GA exhibited a dose-dependent reduction in violacein production, a QS-regulated purple pigment, indicating its ability to suppress violacein production and disrupt QS mechanisms in Chromobacterium violaceum. Additionally, computational tools were utilized to identify the potential target involved in the biofilm formation pathway. The computational analysis further indicated the strong binding affinity of GA to essential biofilm regulators, MrkH and LuxS, suggesting its potential in targeting the c-di-GMP and quorum sensing (QS) pathways to hinder biofilm formation in K. pneumoniae. These compelling findings strongly advocate GA as a promising drug candidate against biofilm-associated infections caused by E. hormaechei and K. pneumoniae.
Collapse
Affiliation(s)
- Pooja P Rajan
- Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India
| | - Praveen Kumar
- Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India
| | - Minsa Mini
- Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India
| | - Devi Jayakumar
- Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India
| | | | - Sneha Asha
- Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India
| | - Aparna Mohan
- Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India
| | - Manjusree S
- Department of Microbiology, Government Medical College, Thiruvananthapuram, Kerala, India
| |
Collapse
|
20
|
Singh N, Mishra S, Mondal A, Sharma D, Jain N, Aseri GK. Potential of Desert Medicinal Plants for Combating Resistant Biofilms in Urinary Tract Infections. Appl Biochem Biotechnol 2023; 195:5568-5582. [PMID: 35666381 DOI: 10.1007/s12010-022-03950-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022]
Abstract
Urinary tract infections (UTIs) are among the most prevalent bacterial infections worldwide, with 11% of the global population getting infected every year. These infections are largely attributed to quorum sensing (QS)-dependent ability of pathogens to form biofilms in the urinary tract. Antimicrobial resistance is increasing, and the use of antimicrobial medicines in the future is yet uncertain. The desert medicinal plants have great potential to treat several diseases as per the available ethnobotanical database. Some of these plants have been used in folklore medicines to treat urinary tract infections also. There are many bioactive compounds derived from these desert medicinal plants that have been documented to possess antimicrobial as well as antibiofilm activity against uropathogens. The minimum biofilm inhibitory concentration (MBIC) of these plant extracts have been reported in the range of 31.5-250 μg/mL. The rising prevalence of drug-resistant diseases necessitates standardised modern analytical technologies to detect and isolate novel bioactive compounds from medicinal plants. This review seeks to combine the studies of desert plants with antimicrobial and anti-quorum sensing properties, supporting their sustainable use in treatment of urinary tract infections.
Collapse
Affiliation(s)
- Neha Singh
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, 303002, India
| | - Shivam Mishra
- Kusuma School of Biological Sciences, India Institute of Technology Delhi, New Delhi, 110016, India
| | - Asmita Mondal
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, 303002, India
| | - Deepansh Sharma
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, 303002, India
| | - Neelam Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India.
| | - G K Aseri
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, 303002, India.
| |
Collapse
|
21
|
Nagi M, Chapple ILC, Sharma P, Kuehne SA, Hirschfeld J. Quorum Sensing in Oral Biofilms: Influence on Host Cells. Microorganisms 2023; 11:1688. [PMID: 37512861 PMCID: PMC10386421 DOI: 10.3390/microorganisms11071688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Quorum sensing molecules (QSMs) in the oral cavity regulate biofilm formation, the acquisition of iron, stress responses, and the expression of virulence factors. However, knowledge of the direct QSM-host interactions in the oral environment is limited, although their understanding could provide greater insight into the cross-kingdom communication occurring during oral disease development. This review aims to explore the literature on oral QSM-host interactions and to highlight areas of advancement in this field. The studies included in this review encompass an array of cell types and oral QSMs, with particular emphasis on immune cells and their relationship to periodontal diseases. It can be inferred from the current literature that QSMs are utilised by host cells to detect bacterial presence and, in the majority of cases, elicit an immune response towards the environmental QSMs. This may provide a base to target QSMs as a novel treatment of oral diseases. However, N-acyl homoserine lactone (AHL) detection methods remain an area for development, through which a greater understanding of the influence of oral QSMs on host cells could be achieved.
Collapse
Affiliation(s)
- Malee Nagi
- Oral Microbiology Group, School of Dentistry, Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B5 7EG, UK
- Periodontal Research Group, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham B5 7EG, UK
| | - Iain L C Chapple
- Periodontal Research Group, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham B5 7EG, UK
| | - Praveen Sharma
- Periodontal Research Group, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham B5 7EG, UK
- NIHR Birmingham Biomedical Research Centre, Birmingham B5 7EG, UK
| | - Sarah A Kuehne
- Oral Microbiology Group, School of Dentistry, Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B5 7EG, UK
- Periodontal Research Group, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham B5 7EG, UK
| | - Josefine Hirschfeld
- Periodontal Research Group, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham B5 7EG, UK
| |
Collapse
|
22
|
Kouakou YI, Lee RJ. Interkingdom Detection of Bacterial Quorum-Sensing Molecules by Mammalian Taste Receptors. Microorganisms 2023; 11:1295. [PMID: 37317269 PMCID: PMC10221136 DOI: 10.3390/microorganisms11051295] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023] Open
Abstract
Bitter and sweet taste G protein-coupled receptors (known as T2Rs and T1Rs, respectively) were originally identified in type II taste cells on the tongue, where they signal perception of bitter and sweet tastes, respectively. Over the past ~15 years, taste receptors have been identified in cells all over the body, demonstrating a more general chemosensory role beyond taste. Bitter and sweet taste receptors regulate gut epithelial function, pancreatic β cell secretion, thyroid hormone secretion, adipocyte function, and many other processes. Emerging data from a variety of tissues suggest that taste receptors are also used by mammalian cells to "eavesdrop" on bacterial communications. These receptors are activated by several quorum-sensing molecules, including acyl-homoserine lactones and quinolones from Gram-negative bacteria such as Pseudomonas aeruginosa, competence stimulating peptides from Streptococcus mutans, and D-amino acids from Staphylococcus aureus. Taste receptors are an arm of immune surveillance similar to Toll-like receptors and other pattern recognition receptors. Because they are activated by quorum-sensing molecules, taste receptors report information about microbial population density based on the chemical composition of the extracellular environment. This review summarizes current knowledge of bacterial activation of taste receptors and identifies important questions remaining in this field.
Collapse
Affiliation(s)
- Yobouet Ines Kouakou
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Robert J. Lee
- Department of Otorhinolaryngology and Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Sethi S, Gupta R, Bharshankh A, Sahu R, Biswas R. Celebrating 50 years of microbial granulation technologies: From canonical wastewater management to bio-product recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162213. [PMID: 36796691 DOI: 10.1016/j.scitotenv.2023.162213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/27/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Microbial granulation technologies (MGT) in wastewater management are widely practised for more than fifty years. MGT can be considered a fine example of human innovativeness-driven nature wherein the manmade forces applied during operational controls in the biological process of wastewater treatment drive the microbial communities to modify their biofilms into granules. Mankind, over the past half a century, has been refining the knowledge of triggering biofilm into granules with some definite success. This review captures the journey of MGT from inception to maturation providing meaningful insights into the process development of MGT-based wastewater management. The full-scale application of MGT-based wastewater management is discussed with an understanding of functional microbial interactions within the granule. The molecular mechanism of granulation through the secretion of extracellular polymeric substances (EPS) and signal molecules is also highlighted in detail. The recent research interest in the recovery of useful bioproducts from the granular EPS is also emphasized.
Collapse
Affiliation(s)
- Shradhanjali Sethi
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh 201002, India; Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Rohan Gupta
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Ankita Bharshankh
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh 201002, India; Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Rojalin Sahu
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh 201002, India; Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India
| | - Rima Biswas
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh 201002, India; Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India.
| |
Collapse
|
24
|
Song H, Li Y, Wang Y. Two-component system GacS/GacA, a global response regulator of bacterial physiological behaviors. ENGINEERING MICROBIOLOGY 2023; 3:100051. [PMID: 39628522 PMCID: PMC11611043 DOI: 10.1016/j.engmic.2022.100051] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 12/06/2024]
Abstract
The signal transduction system of microorganisms helps them adapt to changes in their complex living environment. Two-component system (TCS) is a representative signal transduction system that plays a crucial role in regulating cellular communication and secondary metabolism. In Gram-negative bacteria, an unorthodox TCS consisting of histidine kinase protein GacS (initially called LemA) and response regulatory protein GacA is widespread. It mainly regulates various physiological activities and behaviors of bacteria, such as quorum sensing, secondary metabolism, biofilm formation and motility, through the Gac/Rsm (Regulator of secondary metabolism) signaling cascade pathway. The global regulatory ability of GacS/GacA in cell physiological activities makes it a potential research entry point for developing natural products and addressing antibiotic resistance. In this review, we summarize the progress of research on GacS/GacA from various perspectives, including the reaction mechanism, related regulatory pathways, main functions and GacS/GacA-mediated applications. Hopefully, this review will facilitate further research on GacS/GacA and promote its application in regulating secondary metabolism and as a therapeutic target.
Collapse
Affiliation(s)
- Huihui Song
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuying Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
25
|
Identification of AHL Synthase in Desulfovibrio vulgaris Hildenborough Using an In-Silico Methodology. Catalysts 2023. [DOI: 10.3390/catal13020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Sulfate-reducing bacteria (SRB) are anaerobic bacteria that form biofilm and induce corrosion on various material surfaces. The quorum sensing (QS) system that employs acyl homoserine lactone (AHL)-type QS molecules primarily govern biofilm formation. Studies on SRB have reported the presence of AHL, but no AHL synthase have been annotated in SRB so far. In this computational study, we used a combination of data mining, multiple sequence alignment (MSA), homology modeling and docking to decode a putative AHL synthase in the model SRB, Desulfovibrio vulgaris Hildenborough (DvH). Through data mining, we shortlisted 111 AHL synthase genes. Conserved domain analysis of 111 AHL synthase genes generated a consensus sequence. Subsequent MSA of the consensus sequence with DvH genome indicated that DVU_2486 (previously uncharacterized protein from acetyltransferase family) is the gene encoding for AHL synthase. Homology modeling revealed the existence of seven α-helices and six β sheets in the DvH AHL synthase. The amalgamated study of hydrophobicity, binding energy, and tunnels and cavities revealed that Leu99, Trp104, Arg139, Trp97, and Tyr36 are the crucial amino acids that govern the catalytic center of this putative synthase. Identifying AHL synthase in DvH would provide more comprehensive knowledge on QS mechanism and help design strategies to control biofilm formation.
Collapse
|
26
|
The Role of Quorum Sensing Molecules in Bacterial-Plant Interactions. Metabolites 2023; 13:metabo13010114. [PMID: 36677039 PMCID: PMC9863971 DOI: 10.3390/metabo13010114] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Quorum sensing (QS) is a system of communication of bacterial cells by means of chemical signals called autoinducers, which modulate the behavior of entire populations of Gram-negative and Gram-positive bacteria. Three classes of signaling molecules have been recognized, Al-1, Al-2, Al-3, whose functions are slightly different. However, the phenomenon of quorum sensing is not only concerned with the interactions between bacteria, but the whole spectrum of interspecies interactions. A growing number of research results confirm the important role of QS molecules in the growth stimulation and defense responses in plants. Although many of the details concerning the signaling metabolites of the rhizosphere microflora and plant host are still unknown, Al-1 compounds should be considered as important components of bacterial-plant interactions, leading to the stimulation of plant growth and the biological control of phytopathogens. The use of class 1 autoinducers in plants to induce beneficial activity may be a practical solution to improve plant productivity under field conditions. In addition, researchers are also interested in tools that offer the possibility of regulating the activity of autoinducers by means of degrading enzymes or specific inhibitors (QSI). Current knowledge of QS and QSI provides an excellent foundation for the application of research to biopreparations in agriculture, containing a consortia of AHL-producing bacteria and QS inhibitors and limiting the growth of phytopathogenic organisms.
Collapse
|
27
|
Khan N, Humm EA, Jayakarunakaran A, Hirsch AM. Reviewing and renewing the use of beneficial root and soil bacteria for plant growth and sustainability in nutrient-poor, arid soils. FRONTIERS IN PLANT SCIENCE 2023; 14:1147535. [PMID: 37089637 PMCID: PMC10117987 DOI: 10.3389/fpls.2023.1147535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
A rapidly increasing human population coupled with climate change and several decades of over-reliance on synthetic fertilizers has led to two pressing global challenges: food insecurity and land degradation. Therefore, it is crucial that practices enabling both soil and plant health as well as sustainability be even more actively pursued. Sustainability and soil fertility encompass practices such as improving plant productivity in poor and arid soils, maintaining soil health, and minimizing harmful impacts on ecosystems brought about by poor soil management, including run-off of agricultural chemicals and other contaminants into waterways. Plant growth promoting bacteria (PGPB) can improve food production in numerous ways: by facilitating resource acquisition of macro- and micronutrients (especially N and P), modulating phytohormone levels, antagonizing pathogenic agents and maintaining soil fertility. The PGPB comprise different functional and taxonomic groups of bacteria belonging to multiple phyla, including Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, among others. This review summarizes many of the mechanisms and methods these beneficial soil bacteria use to promote plant health and asks whether they can be further developed into effective, potentially commercially available plant stimulants that substantially reduce or replace various harmful practices involved in food production and ecosystem stability. Our goal is to describe the various mechanisms involved in beneficial plant-microbe interactions and how they can help us attain sustainability.
Collapse
Affiliation(s)
- Noor Khan
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ethan A. Humm
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Akshaya Jayakarunakaran
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ann M. Hirsch
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Ann M. Hirsch,
| |
Collapse
|
28
|
Shome S, Talukdar AD, Upadhyaya H. Antibacterial activity of curcumin and its essential nanoformulations against some clinically important bacterial pathogens: A comprehensive review. Biotechnol Appl Biochem 2022; 69:2357-2386. [PMID: 34826356 DOI: 10.1002/bab.2289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022]
Abstract
Multidrug-resistant bacterial infections can kill 700,000 individuals globally each year and is considered among the top 10 global health threats faced by humanity as the arsenal of antibiotics is becoming dry and alternate antibacterial molecule is in demand. Nanoparticles of curcumin exhibit appreciable broad-spectrum antibacterial activity using unique and novel mechanisms and thus the process deserves to be reviewed and further researched to clearly understand the mechanisms. Based on the antibiotic resistance, infection, and virulence potential, a list of clinically important bacteria was prepared after extensive literature survey and all recent reports on the antibacterial activity of curcumin and its nanoformulations as well as their mechanism of antibacterial action have been reviewed. Curcumin, nanocurcumin, and its nanocomposites with improved aqueous solubility and bioavailability are very potential, reliable, safe, and sustainable antibacterial molecule against clinically important bacterial species that uses multitarget mechanism such as inactivation of antioxidant enzyme, reactive oxygen species-mediated cellular damage, and inhibition of acyl-homoserine-lactone synthase necessary for quorum sensing and biofilm formation, thereby bypassing the mechanisms of bacterial antibiotic resistance. Nanoformulations of curcumin can thus be considered as a potential and sustainable antibacterial drug candidate to address the issue of antibiotic resistance.
Collapse
Affiliation(s)
- Soumitra Shome
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Anupam Das Talukdar
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | | |
Collapse
|
29
|
Wu M, Dong Q, Ma Y, Yang S, Zohaib Aslam M, Liu Y, Li Z. Potential antimicrobial activities of probiotics and their derivatives against Listeria monocytogenes in food field: A review. Food Res Int 2022; 160:111733. [DOI: 10.1016/j.foodres.2022.111733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 01/04/2023]
|
30
|
Jardou M, Brossier C, Guiyedi K, Faucher Q, Lawson R. Pharmacological hypothesis: A recombinant probiotic for taming bacterial β-glucuronidase in drug-induced enteropathy. Pharmacol Res Perspect 2022; 10:e00998. [PMID: 36082825 PMCID: PMC9460963 DOI: 10.1002/prp2.998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 11/07/2022] Open
Abstract
Advances in pharmacomicrobiomics have shed light on the pathophysiology of drug‐induced enteropathy associated with the therapeutic use of certain non‐steroidal anti‐inflammatory drugs, anticancer chemotherapies and immunosuppressants. The toxicity pathway results from the post‐glucuronidation release and digestive accumulation of an aglycone generated in the context of intestinal dysbiosis characterized by the expansion of β‐glucuronidase‐expressing bacteria. The active aglycone could trigger direct or indirect inflammatory signaling on the gut epithelium. Therefore, taming bacterial β‐glucuronidase (GUS) activity is a druggable target for preventing drug‐induced enteropathy. In face of the limitations of antibiotic strategies that can worsen intestinal dysbiosis and impair immune functions, we hereby propose the use of a recombinant probiotic capable of mimicking repressive conditions of GUS through an inducible plasmid vector.
Collapse
Affiliation(s)
- Manon Jardou
- INSERM, Univ. Limoges, Pharmacology & Transplantation, U1248, Limoges, France
| | - Clarisse Brossier
- INSERM, Univ. Limoges, Pharmacology & Transplantation, U1248, Limoges, France
| | - Kenza Guiyedi
- INSERM, Univ. Limoges, Pharmacology & Transplantation, U1248, Limoges, France
| | - Quentin Faucher
- INSERM, Univ. Limoges, Pharmacology & Transplantation, U1248, Limoges, France
| | - Roland Lawson
- INSERM, Univ. Limoges, Pharmacology & Transplantation, U1248, Limoges, France
| |
Collapse
|
31
|
Ramakrishnan R, Singh AK, Singh S, Chakravortty D, Das D. Enzymatic dispersion of biofilms: An emerging biocatalytic avenue to combat biofilm-mediated microbial infections. J Biol Chem 2022; 298:102352. [PMID: 35940306 PMCID: PMC9478923 DOI: 10.1016/j.jbc.2022.102352] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 01/01/2023] Open
Abstract
Drug resistance by pathogenic microbes has emerged as a matter of great concern to mankind. Microorganisms such as bacteria and fungi employ multiple defense mechanisms against drugs and the host immune system. A major line of microbial defense is the biofilm, which comprises extracellular polymeric substances that are produced by the population of microorganisms. Around 80% of chronic bacterial infections are associated with biofilms. The presence of biofilms can increase the necessity of doses of certain antibiotics up to 1000-fold to combat infection. Thus, there is an urgent need for strategies to eradicate biofilms. Although a few physicochemical methods have been developed to prevent and treat biofilms, these methods have poor efficacy and biocompatibility. In this review, we discuss the existing strategies to combat biofilms and their challenges. Subsequently, we spotlight the potential of enzymes, in particular, polysaccharide degrading enzymes, for biofilm dispersion, which might lead to facile antimicrobial treatment of biofilm-associated infections.
Collapse
Affiliation(s)
- Reshma Ramakrishnan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ashish Kumar Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Simran Singh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Debasis Das
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
32
|
Current Advances in the Concept of Quorum Sensing-Based Prevention of Spoilage of Fish Products by Pseudomonads. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microbial spoilage of fish is attributed to quorum sensing (QS)-based activities. QS is a communication process between the cells in which microorganisms secrete and sense the specific chemicals (autoinductors, AIs) that regulate proteolysis, lipolysis, and biofilm formation. These activities change the organoleptic characteristics and reduce the safety of the products. Although the microbial community of fish is diverse and may consist of a range of bacterial strains, the deterioration of fish-based products is attributed to the growth and activity of Pseudomonas spp. This work summarizes recent advancements to assess the influence of QS mechanisms on seafood spoilage by Pseudomonas spp. The quorum sensing inhibition (QSI) in the context of fish preservation has also been discussed. Detailed recognition of this phenomenon is crucial in establishing effective strategies to prevent the premature deterioration of fish-based products.
Collapse
|
33
|
Vahdati SN, Behboudi H, Navasatli SA, Tavakoli S, Safavi M. New insights into the inhibitory roles and mechanisms of D-amino acids in bacterial biofilms in medicine, industry, and agriculture. Microbiol Res 2022; 263:127107. [PMID: 35843196 DOI: 10.1016/j.micres.2022.127107] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
Biofilms are complex aggregates of microbes that are tightly protected by an extracellular matrix (ECM) and may attach to a surface or adhere together. A higher persistence of bacteria on biofilms makes them resistant not only to harsh conditions but also to various antibiotics which led to the emergence of problems in different applications. Recently, it has been discovered that many bacteria produce and release various D-amino acids (D-AAs) to inhibit biofilm formation, which made a great deal of interest in research into the control of bacterial biofilms in diverse fields, such as human health, industrial settings, and medical devices. D-AAs have various mechanisms to inhibit bacterial biofilms such as: (i) interfering with protein synthesis (ii) Inhibition of extracellular polymeric materials (EPS) productions (protein, eDNA, and polysaccharide) (iii) Inhibition of quorum sensing (autoinducers), and (iv) interfere with peptidoglycan synthesis, these various modes of action, enables these small molecules to inhibit both Gram-negative and Gram-positive bacterial biofilms. Since most biofilms are multi-species, D-AAs in combination with other antimicrobial agents are good choices to combat a variety of bacterial biofilms without displaying toxicity on human cells. This review article addressed the role of D-AAs in controlling several bacterial biofilms and described the possible or definite mechanisms involved in this process.
Collapse
Affiliation(s)
- Saeed Niazi Vahdati
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Hossein Behboudi
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran.
| | - Sepideh Aliniaye Navasatli
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Sara Tavakoli
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| |
Collapse
|
34
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
35
|
Yılmaz ZT, Odabaşoğlu HY, Şenel P, Yüzbaşıoğlu EÇ, Erdoğan T, Özdemir AD, Gölcü A, Odabaşoğlu M, Büyükgüngör O. Identification of a 3-(5-methyl-2-thiazolylamino)phthalide as a new minor groove agent. J Biomol Struct Dyn 2022; 41:4048-4064. [PMID: 35416121 DOI: 10.1080/07391102.2022.2061595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A new 3-(5-methyl-2-thiazolylamino)phthalide molecule, 3-((5-methylthiazol-2-yl)amino)isobenzofuran-1(3H)-one, was synthesized and characterized experimentally by FT-IR, NMR, UV-Vis, and single-crystal X-ray analysis and theoretically by quantum chemical calculations. The single-crystal X-ray studies revealed that the compound crystallizes in the monoclinic space group P-21/c with unit-cell parameters a = 8.0550(6) Å, b = 6.1386(3) Å, c = 23.3228(18) Å, β = 97.724(6)° and Z = 4. Optimized geometries and the vibrational frequencies were studied at the density functional theory (DFT) level by using the hybrid functional B3LYP with a 6-311 G (d,p) basis set. The title compound was evaluated for its anti-quorum sensing (anti-QS) activity on Chromobacterium violaceum 12472 and additionally for its antibacterial activity against Staphylococcus aureus 29213, Staphylococcus epidermidis 12228, Pseudomonas aeruginosa 27853, Escherichia coli 25922, and Proteus mirabilis 14153. The lowest MIC value was 0.24 μg/mL for S. aureus 29213 and the highest MIC value was 30.75 μg/mL for E. coli 25922. While anti-bacterial activity was observed in those other than the S. epidermidis and P. Mirabilis, anti-QS activity wasn't detected. Investigations on dsDNA binding affinity indicate that the title compound binds to dsDNA via the groove binding mode. Molecular docking calculations and molecular dynamics simulations results showed also that the title compound prefers binding to the minor groove of dsDNA and remains stable in the minor groove throughout the molecular dynamics simulation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Pelin Şenel
- Department of Chemistry, Faculty of Sciences and Letters, Istanbul Technical University, Maslak, Turkey Istanbul
| | - Elif Çepni Yüzbaşıoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Taner Erdoğan
- Department of Chemistry and Chemical Processing Technologies, Kocaeli Vocational School, Kocaeli University, Kocaeli, Turkey
| | - Ayşe Daut Özdemir
- Department of Chemistry, Faculty of Sciences and Letters, Istanbul Technical University, Maslak, Turkey Istanbul
| | - Ayşegül Gölcü
- Department of Chemistry, Faculty of Sciences and Letters, Istanbul Technical University, Maslak, Turkey Istanbul
| | - Mustafa Odabaşoğlu
- Department of Chemistry and Chemical Processing Technologies, Denizli Vocational School of Technical Sciences, Pamukkale University, Denizli, Turkey.,Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey
| | | |
Collapse
|
36
|
Tze-Yang Ng J, Tan YS. Accelerated Ligand-Mapping Molecular Dynamics Simulations for the Detection of Recalcitrant Cryptic Pockets and Occluded Binding Sites. J Chem Theory Comput 2022; 18:1969-1981. [PMID: 35175753 DOI: 10.1021/acs.jctc.1c01177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The identification and characterization of binding sites is a critical component of structure-based drug design (SBDD). Probe-based/cosolvent molecular dynamics (MD) methods that allow for protein flexibility have been developed to predict ligand binding sites. However, cryptic pockets that appear only upon ligand binding and occluded binding sites with no access to the solvent pose significant challenges to these methods. Here, we report the development of accelerated ligand-mapping MD (aLMMD), which combines accelerated MD with LMMD, for the detection of these challenging binding sites. The method was validated on five proteins with what we term "recalcitrant" cryptic pockets, which are deeply buried pockets that require extensive movement of the protein backbone to expose, and three proteins with occluded binding sites. In all the cases, aLMMD was able to detect and sample the binding sites. Our results suggest that aLMMD could be used as a general approach for the detection of such elusive binding sites in protein targets, thus providing valuable information for SBDD.
Collapse
Affiliation(s)
- Justin Tze-Yang Ng
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| |
Collapse
|
37
|
Fan Q, Wang H, Mao C, Li J, Zhang X, Grenier D, Yi L, Wang Y. Structure and Signal Regulation Mechanism of Interspecies and Interkingdom Quorum Sensing System Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:429-445. [PMID: 34989570 DOI: 10.1021/acs.jafc.1c04751] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Quorum sensing (QS) is a signaling mechanism for cell-to-cell communication between bacteria, fungi, and even eukaryotic hosts such as plant and animal cells. Bacteria in real life do not exist as isolated organisms but are found in complex, dynamic, and microecological environments. The study of interspecies QS and interkingdom QS is a valuable approach for exploring bacteria-bacteria interactions and bacteria-host interaction mechanisms and has received considerable attention from researchers. The correct combination of QS signals and receptors is key to initiating the QS process. Compared with intraspecies QS, the signal regulation mechanism of interspecies QS and interkingdom QS is often more complicated, and the distribution of receptors is relatively wide. The present review focuses on the latest progress with respect to the distribution, structure, and signal transduction of interspecies and interkingdom QS receptors and provides a guide for the investigation of new QS receptors in the future.
Collapse
Affiliation(s)
- Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Chenlong Mao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Jinpeng Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Xiaoling Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec G1 V 0A6, Canada
| | - Li Yi
- College of Life Science, Luoyang Normal University, Luoyang 471023, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| |
Collapse
|
38
|
A bioanalytical screening method for Enterococcus faecalis RNPP-type quorum sensing peptides in murine feces. Bioanalysis 2022; 14:151-167. [PMID: 35014887 DOI: 10.4155/bio-2021-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Bacteria coordinate their behavior as a group via communication with their peers, known as 'quorum sensing'. Enterococcus faecalis employs quorum sensing via RNPP-peptides which were not yet reported to be present in mammalian biofluids. Results: Solid phase extraction of murine feces was performed, followed by ultra high performance liquid chromatography (UHPLC-MS/MS) in multiple reaction monitoring (MRM) mode (in total <90 min/sample) for the nine known RNPP peptides. Limits of detection ranged between 0.045 and 52 nM. Adequate identification criteria allowed detection of RNPP quorum sensing peptides in 2/20 wild-type murine feces samples (i.e., cAM373 and cOB1). Conclusion: A fit-for-purpose UHPLC-MS/MS method detected these RNPP peptides in wild-type murine feces samples.
Collapse
|
39
|
Xie F, Shen J, Liu T, Zhou M, Johnston LJ, Zhao J, Zhang H, Ma X. Sensation of dietary nutrients by gut taste receptors and its mechanisms. Crit Rev Food Sci Nutr 2022; 63:5594-5607. [PMID: 34978220 DOI: 10.1080/10408398.2021.2021388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nutrients sensing is crucial for fundamental metabolism and physiological functions, and it is also an essential component for maintaining body homeostasis. Traditionally, basic taste receptors exist in oral cavity to sense sour, sweet, bitter, umami, salty and et al. Recent studies indicate that gut can sense the composition of nutrients by activating relevant taste receptors, thereby exerting specific direct or indirect effects. Gut taste receptors, also named as intestinal nutrition receptors, including at least bitter, sweet and umami receptors, have been considered to be activated by certain nutrients and participate in important intestinal physiological activities such as eating behavior, intestinal motility, nutrient absorption and metabolism. Additionally, gut taste receptors can regulate appetite and body weight, as well as maintain homeostasis via targeting hormone secretion or regulating the gut microbiota. On the other hand, malfunction of gut taste receptors may lead to digestive disorders, and then result in obesity, type 2 diabetes and gastrointestinal diseases. At present, researchers have confirmed that the brain-gut axis may play indispensable roles in these diseases via the secretion of brain-gut peptides, but the mechanism is still not clear. In this review, we summarize the current observation of knowledge in gut taste systems in order to shed light on revealing their important nutritional functions and promoting clinical implications.
Collapse
Affiliation(s)
- Fei Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiakun Shen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Min Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J Johnston
- West Central Research & Outreach Center, University of Minnesota, Morris, Minnesota, USA
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
40
|
Vargas ELG, de Almeida FA, de Freitas LL, Pinto UM, Vanetti MCD. Plant compounds and nonsteroidal anti-inflammatory drugs interfere with quorum sensing in Chromobacterium violaceum. Arch Microbiol 2021; 203:5491-5507. [PMID: 34417652 DOI: 10.1007/s00203-021-02518-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 07/21/2021] [Accepted: 08/06/2021] [Indexed: 12/29/2022]
Abstract
Chromobacterium violaceum is a Gram-negative, saprophytic bacterium that can infect humans and its virulence may be regulated by quorum sensing via N-acyl homoserine lactones. A virtual screening study with plant compounds and nonsteroidal anti-inflammatory drugs for inhibition of C. violaceum quorum sensing system has been performed. In vitro evaluation was done to validate the in silico results. Molecular docking showed that phytol, margaric acid, palmitic acid, dipyrone, ketoprofen, and phenylbutazone bound to structures of CviR proteins of different C. violaceum strains. Phytol presented higher binding affinities than AHLs and furanones, recognized inducers, and inhibitors of quorum sensing, respectively. When tested in vitro, phytol at a non-inhibitory concentration was the most efficient tested compound to reduce phenotypes regulated by quorum sensing. The results indicate that in silico compound prospection to inhibit quorum sensing may be a good tool for finding alternative lead molecules.
Collapse
Affiliation(s)
| | - Felipe Alves de Almeida
- Department of Nutrition, Universidade Federal de Juiz de Fora (UFJF), 35.032-620, Governador Valadares, MG, Brazil
| | - Leonardo Luiz de Freitas
- Department of Microbiology, Universidade Federal de Viçosa (UFV), 36.570-900, Viçosa, MG, Brazil
| | - Uelinton Manoel Pinto
- Department of Food and Experimental Nutrition, Food Research Center, Universidade de São Paulo (USP), 05.508-900, São Paulo, SP, Brazil
| | | |
Collapse
|
41
|
Quantifying the optimal strategy of population control of quorum sensing network in Escherichia coli. NPJ Syst Biol Appl 2021; 7:35. [PMID: 34475401 PMCID: PMC8413372 DOI: 10.1038/s41540-021-00196-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Biological functions of bacteria can be regulated by monitoring their own population density induced by the quorum sensing system. However, quantitative insight into the system’s dynamics and regulatory mechanism remain challenging. Here, we construct a comprehensive mathematical model of the synthetic quorum sensing circuit that controls population density in Escherichia coli. Simulations agree well with experimental results obtained under different ribosome-binding site (RBS) efficiencies. We present a quantitative description of the component dynamics and show how the components respond to isopropyl-β-D-1-thiogalactopyranoside (IPTG) induction. The optimal IPTG-induction range for efficiently controlling population density is quantified. The controllable area of population density by acyl-homoserine lactone (AHL) permeability is quantified as well, indicating that high AHL permeability should be treated with a high dose of IPTG, while low AHL permeability should be induced with low dose for efficiently controlling. Unexpectedly, an oscillatory behavior of the growth curve is observed with proper RBS-binding strengths and the oscillation is greatly restricted by the bacterial death induced by toxic metabolic by-products. Moreover, we identify that the mechanism underlying the emergence of oscillation is determined by the negative feedback loop structure within the signaling. Bifurcation analysis and landscape theory are further employed to study the stochastic dynamic and global stability of the system, revealing two faces of toxic metabolic by-products in controlling oscillatory behavior. Overall, our study presents a quantitative basis for understanding and new insights into the control mechanism of quorum sensing system, providing possible clues to guide the development of more rational control strategy.
Collapse
|
42
|
Dassanayake MK, Chong CH, Khoo TJ, Figiel A, Szumny A, Choo CM. Synergistic Field Crop Pest Management Properties of Plant-Derived Essential Oils in Combination with Synthetic Pesticides and Bioactive Molecules: A Review. Foods 2021; 10:2016. [PMID: 34574123 PMCID: PMC8467659 DOI: 10.3390/foods10092016] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022] Open
Abstract
The management of insect pests and fungal diseases that cause damage to crops has become challenging due to the rise of pesticide and fungicide resistance. The recent developments in studies related to plant-derived essential oil products has led to the discovery of a range of phytochemicals with the potential to combat pesticide and fungicide resistance. This review paper summarizes and interprets the findings of experimental work based on plant-based essential oils in combination with existing pesticidal and fungicidal agents and novel bioactive natural and synthetic molecules against the insect pests and fungi responsible for the damage of crops. The insect mortality rate and fractional inhibitory concentration were used to evaluate the insecticidal and fungicidal activities of essential oil synergists against crop-associated pests. A number of studies have revealed that plant-derived essential oils are capable of enhancing the insect mortality rate and reducing the minimum inhibitory concentration of commercially available pesticides, fungicides and other bioactive molecules. Considering these facts, plant-derived essential oils represent a valuable and novel source of bioactive compounds with potent synergism to modulate crop-associated insect pests and phytopathogenic fungi.
Collapse
Affiliation(s)
- Mackingsley Kushan Dassanayake
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Malaysia; (M.K.D.); (T.-J.K.)
| | - Chien Hwa Chong
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Jalan Broga, Semenyih 43500, Malaysia
| | - Teng-Jin Khoo
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Malaysia; (M.K.D.); (T.-J.K.)
| | - Adam Figiel
- Institute of Agricultural Engineering, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37a, 51-630 Wrocław, Poland;
| | - Antoni Szumny
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Chee Ming Choo
- Centre for Water Research, Faculty of Engineering, Built Environment and Information Technology, SEGi University Kota Damansara, Petaling Jaya 47810, Malaysia;
| |
Collapse
|
43
|
Vetrivel A, Natchimuthu S, Subramanian V, Murugesan R. High-Throughput Virtual Screening for a New Class of Antagonist Targeting LasR of Pseudomonas aeruginosa. ACS OMEGA 2021; 6:18314-18324. [PMID: 34308062 PMCID: PMC8296597 DOI: 10.1021/acsomega.1c02191] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/16/2021] [Indexed: 05/28/2023]
Abstract
Pseudomonas aeruginosa, an opportunistic human pathogen, causes fatal effects in patients with cystic fibrosis and immunocompromised individuals and leads to around 1000 deaths annually. The quorum sensing mechanism of P. aeruginosa plays a major role in promoting biofilm formation and expression of virulent genes. Hence, quorum sensing inhibition is a promising novel approach to treat these bacterial infections as these organisms show a wide range of antibiotic resistance. Among the interconnected quorum sensing network of P. aeruginosa, targeting the las system is of increased interest as its principal receptor protein LasR is the earliest activated gene. It is also shown to be involved in the regulation of other virulence-associated genes. In this study, we have applied high-throughput virtual screening, an in silico computational method to identify a new class of LasR inhibitors that could serve as potent antagonists to treat P. aeruginosa-associated infections. Three-tire structure-based virtual screening was performed on the Schrödinger small molecule database, which resulted in 12 top hit compounds with docking scores lesser than -11.0 kcal/mol. Three of these best-scored compounds CACPD2011a-0001928786 (C1), CACPD2011a-0001927437 (C2), and CACPD2011a-0000896051 (C3) were further analyzed. The binding free energies of these compounds in complex with the target protein LasR (3IX4) were evaluated, and the pharmacokinetic properties were determined. The stability of the docked complexes was assessed by running a molecular dynamics simulation for 100 ns. Molecular dynamics simulation analysis revealed that all three compounds were found to be in stable contact with the protein over the entire simulation period. The antagonistic effect of these compounds was validated using the LasR reporter gene assay in the presence of acyl homoserine lactone. Significant reduction in the β-galactosidase enzyme activity was achieved at 100 nM concentration for all three compounds pursued. Hence, the present study provides strong evidence that these three compounds could serve as quorum sensing inhibitors of P. aeruginosa LasR protein and can be a probable candidate to treat Pseudomonas-associated infections.
Collapse
Affiliation(s)
- Aishwarya Vetrivel
- Department
of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for
Women, Coimbatore 641043, Tamil Nadu, India
| | - Santhi Natchimuthu
- Department
of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for
Women, Coimbatore 641043, Tamil Nadu, India
| | | | - Rajeswari Murugesan
- Department
of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for
Women, Coimbatore 641043, Tamil Nadu, India
| |
Collapse
|
44
|
Chahande AM, Lathigara D, Prabhune AA, Devi RN. Red fluorescent ultra-small gold nanoclusters functionalized with signal molecules to probe specificity in quorum sensing receptors in gram-negative bacteria. Arch Microbiol 2021; 203:4293-4301. [PMID: 34109439 DOI: 10.1007/s00203-021-02338-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 02/03/2023]
Abstract
Ultra-small (size < 2 nm) gold nanoclusters (AuNCs) are used as fluorescent probes which have excellent applications in bioimaging and sensing due to their emission in visible and NIR spectral region. Here, this property is exploited for understanding the quorum sensing phenomenon in bacteria which is regulated by signal molecules which are specific to various species. AuNCs are then functionalized with the signal molecules, Acyl Homoserine Lactones (AHL) of varying carbon chain length, C-6, C-8, and C-12 without 3rd C modification, to sense different strains of gram-negative bacteria i.e., Escherichia coli, Cronobacter sakazakii and Pseudomonas aeruginosa. In the concentration employed, selectivity to a limited extent is observed between the three Gram-negative bacteria tested. E. coli showed emission with all the AHL conjugates and P. aeruginosa did not interact with any of the three conjugates, whereas C. sakazakii showed specificity to C-8AHL. This is probably due to selectivity for cognate AHL molecules of appropriate concentrations.
Collapse
Affiliation(s)
- Anurag M Chahande
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Kamla Nehru Nagar, Ghaziabad, 201002, India
| | - Disha Lathigara
- Biochemical Science Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Asmita A Prabhune
- Biochemical Science Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.
| | - R Nandini Devi
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Kamla Nehru Nagar, Ghaziabad, 201002, India.
| |
Collapse
|
45
|
Pu Q, Guo K, Lin P, Wang Z, Qin S, Gao P, Combs C, Khan N, Xia Z, Wu M. Bitter receptor TAS2R138 facilitates lipid droplet degradation in neutrophils during Pseudomonas aeruginosa infection. Signal Transduct Target Ther 2021; 6:210. [PMID: 34083514 PMCID: PMC8175399 DOI: 10.1038/s41392-021-00602-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 02/05/2023] Open
Abstract
Bitter receptors function primarily in sensing taste, but may also have other functions, such as detecting pathogenic organisms due to their agile response to foreign objects. The mouse taste receptor type-2 member 138 (TAS2R138) is a member of the G-protein-coupled bitter receptor family, which is not only found in the tongue and nasal cavity, but also widely distributed in other organs, such as the respiratory tract, gut, and lungs. Despite its diverse functions, the role of TAS2R138 in host defense against bacterial infection is largely unknown. Here, we show that TAS2R138 facilitates the degradation of lipid droplets (LDs) in neutrophils during Pseudomonas aeruginosa infection through competitive binding with PPARG (peroxisome proliferator-activated receptor gamma) antagonist: N-(3-oxododecanoyl)-L-homoserine lactone (AHL-12), which coincidently is a virulence-bound signal produced by this bacterium (P. aeruginosa). The released PPARG then migrates from nuclei to the cytoplasm to accelerate the degradation of LDs by binding PLIN2 (perilipin-2). Subsequently, the TAS2R138-AHL-12 complex targets LDs to augment their degradation, and thereby facilitating the clearance of AHL-12 in neutrophils to maintain homeostasis in the local environment. These findings reveal a crucial role for TAS2R138 in neutrophil-mediated host immunity against P. aeruginosa infection.
Collapse
Affiliation(s)
- Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
- Wound Trauma Medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Zhihan Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Shugang Qin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Pan Gao
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Colin Combs
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Nadeem Khan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA.
| | - Zhenwei Xia
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA.
| |
Collapse
|
46
|
Abstract
Viruses play an essential role in shaping microbial community structures and serve as reservoirs for genetic diversity in many ecosystems. In hyperarid desert environments, where life itself becomes scarce and loses diversity, the interactions between viruses and host populations have remained elusive. Here, we resolved host-virus interactions in the soil metagenomes of the Atacama Desert hyperarid core, one of the harshest terrestrial environments on Earth. We show evidence of diverse viruses infecting a wide range of hosts found in sites up to 205 km apart. Viral genomes carried putative extremotolerance features (i.e., spore formation proteins) and auxiliary metabolic genes, indicating that viruses could mediate the spread of microbial resilience against environmental stress across the desert. We propose a mutualistic model of host-virus interactions in the hyperarid core where viruses seek protection in microbial cells as lysogens or pseudolysogens, while viral extremotolerance genes aid survival of their hosts. Our results suggest that the host-virus interactions in the Atacama Desert soils are dynamic and complex, shaping uniquely adapted microbiomes in this highly selective and hostile environment.IMPORTANCE Deserts are one of the largest and rapidly expanding terrestrial ecosystems characterized by low biodiversity and biomass. The hyperarid core of the Atacama Desert, previously thought to be devoid of life, is one of the harshest environments, supporting only scant biomass of highly adapted microbes. While there is growing evidence that viruses play essential roles in shaping the diversity and structure of nearly every ecosystem, very little is known about the role of viruses in desert soils, especially where viral contact with viable hosts is significantly reduced. Our results demonstrate that diverse viruses are widely dispersed across the desert, potentially spreading key stress resilience and metabolic genes to ensure host survival. The desertification accelerated by climate change expands both the ecosystem cover and the ecological significance of the desert virome. This study sheds light on the complex virus-host interplay that shapes the unique microbiome in desert soils.
Collapse
|
47
|
Kumar L, Brenner N, Brice J, Klein-Seetharaman J, Sarkar SK. Cephalosporins Interfere With Quorum Sensing and Improve the Ability of Caenorhabditis elegans to Survive Pseudomonas aeruginosa Infection. Front Microbiol 2021; 12:598498. [PMID: 33584609 PMCID: PMC7876323 DOI: 10.3389/fmicb.2021.598498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa utilizes the quorum sensing (QS) system to strategically coordinate virulence and biofilm formation. Targeting QS pathways may be a potential anti-infective approach to treat P. aeruginosa infections. In the present study, we define cephalosporins' anti-QS activity using Chromobacterium violaceum CV026 for screening and QS-regulated mutants of P. aeruginosa for validation. We quantified the effects of three cephalosporins, cefepime, ceftazidime, and ceftriaxone, on (1) pyocyanin production using spectrophotometric assay, (2) bacterial motility using agar plate assay, and (3) biofilm formation using scanning electron microscopy. We also studied isogenic QS mutant strains of PAO1 (ΔlasR,ΔrhlR,ΔpqsA, and ΔpqsR) to compare and distinguish QS-mediated effects on the motility phenotypes and bacterial growth with and without sub-MIC concentrations of antibiotics. Results showed that cephalosporins have anti-QS activity and reduce bacterial motility, pyocyanin production, and biofilm formation for CV026 and PAO1. Also, sub-MICs of cefepime increased aminoglycosides' antimicrobial activity against P. aeruginosa PAO1, suggesting the advantage of combined anti-QS and antibacterial treatment. To correlate experimentally observed anti-QS effects with the interactions between cephalosporins and QS receptors, we performed molecular docking with ligand binding sites of quorum sensing receptors using Autodock Vina. Molecular docking predicted cephalosporins' binding affinities to the ligand-binding pocket of QS receptors (CviR, LasR, and PqsR). To validate our results using an infection model, we quantified the survival rate of Caenorhabditis elegans following P. aeruginosa PAO1 challenge at concentrations less than the minimum inhibitory concentration (MIC) of antibiotics. C. elegans infected with PAO1 without antibiotics showed 0% survivability after 72 h. In contrast, PAO1-infected C. elegans showed 65 ± 5%, 58 ± 4%, and 49 ± 8% survivability after treatment with cefepime, ceftazidime, and ceftriaxone, respectively. We determined the survival rates of C. elegans infected by QS mutant strains ΔlasR (32 ± 11%), ΔrhlR (27 ± 8%), ΔpqsA (27 ± 10%), and ΔpqsR (37 ± 6%), which suggest essential role of QS system in virulence. In summary, cephalosporins at sub-MIC concentrations show anti-QS activity and enhance the antibacterial efficacy of aminoglycosides, a different class of antibiotics. Thus, cephalosporins at sub-MIC concentrations in combination with other antibiotics are potential candidates for developing therapies to combat infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Lokender Kumar
- Department of Physics, Colorado School of Mines, Golden, CO, United States
| | - Nathanael Brenner
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO, United States
| | - John Brice
- Department of Physics, Colorado School of Mines, Golden, CO, United States
| | - Judith Klein-Seetharaman
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO, United States.,Department of Chemistry, Colorado School of Mines, Golden, CO, United States
| | - Susanta K Sarkar
- Department of Physics, Colorado School of Mines, Golden, CO, United States
| |
Collapse
|
48
|
Medapati MR, Bhagirath AY, Singh N, Chelikani P. Pharmacology of T2R Mediated Host-Microbe Interactions. Handb Exp Pharmacol 2021; 275:177-202. [PMID: 33580389 DOI: 10.1007/164_2021_435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bitter taste receptors (T2Rs) belong to the G protein-coupled receptor superfamily. Humans express 25 T2Rs that are known to detect several bitter compounds including bacterial quorum sensing molecules (QSM). Primarily found to be key receptors for bitter sensation T2Rs are known to play an important role in mediating innate immune responses in oral and extraoral tissues. Several studies have led to identification of Gram-negative and Gram-positive bacterial QSMs as agonists for T2Rs in airway epithelial cells and immune cells. However, the pharmacological characterization for many of the QSM-T2R interactions remains poorly defined. In this chapter, we discuss the extraoral roles including localization of T2Rs in extracellular vesicles, molecular pharmacology of QSM-T2R interactions, role of T2Rs in mediating innate immune responses, and some of the challenges in understanding T2R pharmacology.
Collapse
Affiliation(s)
- Manoj Reddy Medapati
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Anjali Y Bhagirath
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Nisha Singh
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada.
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
49
|
Bhatia S, Lal A, Singh S, Franco F. Potential of polyphenols in curbing quorum sensing and biofilm formation in Gram-negative pathogens. Asian Pac J Trop Biomed 2021. [DOI: 10.4103/2221-1691.314044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
|
50
|
Singh A, Walker KT, Ledesma-Amaro R, Ellis T. Engineering Bacterial Cellulose by Synthetic Biology. Int J Mol Sci 2020; 21:E9185. [PMID: 33276459 PMCID: PMC7730232 DOI: 10.3390/ijms21239185] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023] Open
Abstract
Synthetic biology is an advanced form of genetic manipulation that applies the principles of modularity and engineering design to reprogram cells by changing their DNA. Over the last decade, synthetic biology has begun to be applied to bacteria that naturally produce biomaterials, in order to boost material production, change material properties and to add new functionalities to the resulting material. Recent work has used synthetic biology to engineer several Komagataeibacter strains; bacteria that naturally secrete large amounts of the versatile and promising material bacterial cellulose (BC). In this review, we summarize how genetic engineering, metabolic engineering and now synthetic biology have been used in Komagataeibacter strains to alter BC, improve its production and begin to add new functionalities into this easy-to-grow material. As well as describing the milestone advances, we also look forward to what will come next from engineering bacterial cellulose by synthetic biology.
Collapse
Affiliation(s)
- Amritpal Singh
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK; (A.S.); (K.T.W.); (R.L.-A.)
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Kenneth T. Walker
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK; (A.S.); (K.T.W.); (R.L.-A.)
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK; (A.S.); (K.T.W.); (R.L.-A.)
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK; (A.S.); (K.T.W.); (R.L.-A.)
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|