1
|
Tsilafakis K, Mavroidis M. Are the Head and Tail Domains of Intermediate Filaments Really Unstructured Regions? Genes (Basel) 2024; 15:633. [PMID: 38790262 PMCID: PMC11121635 DOI: 10.3390/genes15050633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Intermediate filaments (IFs) are integral components of the cytoskeleton which provide cells with tissue-specific mechanical properties and are involved in a plethora of cellular processes. Unfortunately, due to their intricate architecture, the 3D structure of the complete molecule of IFs has remained unresolved. Even though most of the rod domain structure has been revealed by means of crystallographic analyses, the flanked head and tail domains are still mostly unknown. Only recently have studies shed light on head or tail domains of IFs, revealing certainsecondary structures and conformational changes during IF assembly. Thus, a deeper understanding of their structure could provide insights into their function.
Collapse
Affiliation(s)
- Konstantinos Tsilafakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
2
|
Pajares MA, Pérez-Sala D. Type III intermediate filaments in redox interplay: key role of the conserved cysteine residue. Biochem Soc Trans 2024; 52:849-860. [PMID: 38451193 PMCID: PMC11088922 DOI: 10.1042/bst20231059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Intermediate filaments (IFs) are cytoskeletal elements involved in mechanotransduction and in the integration of cellular responses. They are versatile structures and their assembly and organization are finely tuned by posttranslational modifications. Among them, type III IFs, mainly vimentin, have been identified as targets of multiple oxidative and electrophilic modifications. A characteristic of most type III IF proteins is the presence in their sequence of a single, conserved cysteine residue (C328 in vimentin), that is a hot spot for these modifications and appears to play a key role in the ability of the filament network to respond to oxidative stress. Current structural models and experimental evidence indicate that this cysteine residue may occupy a strategic position in the filaments in such a way that perturbations at this site, due to chemical modification or mutation, impact filament assembly or organization in a structure-dependent manner. Cysteine-dependent regulation of vimentin can be modulated by interaction with divalent cations, such as zinc, and by pH. Importantly, vimentin remodeling induced by C328 modification may affect its interaction with cellular organelles, as well as the cross-talk between cytoskeletal networks, as seems to be the case for the reorganization of actin filaments in response to oxidants and electrophiles. In summary, the evidence herein reviewed delineates a complex interplay in which type III IFs emerge both as targets and modulators of redox signaling.
Collapse
Affiliation(s)
- María A. Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
3
|
Vlachakis D, Tsilafakis K, Kostavasili I, Kossida S, Mavroidis M. Unraveling Desmin's Head Domain Structure and Function. Cells 2024; 13:603. [PMID: 38607042 PMCID: PMC11012097 DOI: 10.3390/cells13070603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Understanding the structure and function of intermediate filaments (IFs) is necessary in order to explain why more than 70 related IF genes have evolved in vertebrates while maintaining such dramatically tissue-specific expression. Desmin is a member of the large multigene family of IF proteins and is specifically expressed in myocytes. In an effort to elucidate its muscle-specific behavior, we have used a yeast two-hybrid system in order to identify desmin's head binding partners. We described a mitochondrial and a lysosomal protein, NADH ubiquinone oxidoreductase core subunit S2 (NDUFS2), and saposin D, respectively, as direct desmin binding partners. In silico analysis indicated that both interactions at the atomic level occur in a very similar way, by the formation of a three-helix bundle with hydrophobic interactions in the interdomain space and hydrogen bonds at R16 and S32 of the desmin head domain. The interactions, confirmed also by GST pull-down assays, indicating the necessity of the desmin head domain and, furthermore, point out its role in function of mitochondria and lysosomes, organelles which are disrupted in myopathies due to desmin head domain mutations.
Collapse
Affiliation(s)
- Dimitrios Vlachakis
- Biotechnology Department, Agricultural University of Athens, 11855 Athens, Greece;
| | - Konstantinos Tsilafakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527 Athens, Greece; (K.T.); (I.K.)
- Biochemistry & Biotechnology Department, University of Thessaly, 41500 Larisa, Greece
| | - Ioanna Kostavasili
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527 Athens, Greece; (K.T.); (I.K.)
| | - Sophia Kossida
- IMGT, The International ImMunoGeneTics Information System, National Center for Scientific Research (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), 34090 Montpellier, France;
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527 Athens, Greece; (K.T.); (I.K.)
| |
Collapse
|
4
|
Hafner R, Wolfgramm N, Klein P, Urbassek HM. Adsorption of Diclofenac and PFBS on a Hair Keratin Dimer. J Phys Chem B 2024; 128:45-55. [PMID: 38154791 PMCID: PMC10788924 DOI: 10.1021/acs.jpcb.3c04997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
Environmental pollution by man-made toxic and persistent organic compounds, found throughout the world in surface and groundwater, has various negative effects on aquatic life systems and even humans. Therefore, it is important to develop and improve water treatment technologies capable of removing such substances from wastewater and purifying drinking water. The two substances investigated are the widely used painkiller diclofenac and a member of the class of "forever chemicals", perfluorobutanesulfonate. Both are known to have serious negative effects on living organisms, especially under long-term exposure, and are detectable in human hair, suggesting adsorption to a part of the hair fiber complex. In this study, a human hair keratin dimer is investigated for its ability to absorb diclofenac and perfluorobutanesulfonate. Initial predictions for binding sites are obtained via molecular docking and subjected to molecular dynamics simulations for more than 1 μs. The binding affinities obtained by the linear interaction energy method are high enough to motivate further research on human hair keratins as a sustainable, low-cost, and easily allocatable filtration material.
Collapse
Affiliation(s)
- René Hafner
- Physics
Department and Research Center OPTIMAS, University Kaiserslautern-Landau, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
- Fraunhofer
ITWM, Fraunhofer-Platz
1, 67663 Kaiserslautern, Germany
| | - Nils Wolfgramm
- Fraunhofer
ITWM, Fraunhofer-Platz
1, 67663 Kaiserslautern, Germany
| | - Peter Klein
- Fraunhofer
ITWM, Fraunhofer-Platz
1, 67663 Kaiserslautern, Germany
| | - Herbert M. Urbassek
- Physics
Department and Research Center OPTIMAS, University Kaiserslautern-Landau, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| |
Collapse
|
5
|
González-Jiménez P, Duarte S, Martínez AE, Navarro-Carrasco E, Lalioti V, Pajares MA, Pérez-Sala D. Vimentin single cysteine residue acts as a tunable sensor for network organization and as a key for actin remodeling in response to oxidants and electrophiles. Redox Biol 2023; 64:102756. [PMID: 37285743 DOI: 10.1016/j.redox.2023.102756] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
Cysteine residues can undergo multiple posttranslational modifications with diverse functional consequences, potentially behaving as tunable sensors. The intermediate filament protein vimentin has important implications in pathophysiology, including cancer progression, infection, and fibrosis, and maintains a close interplay with other cytoskeletal structures, such as actin filaments and microtubules. We previously showed that the single vimentin cysteine, C328, is a key target for oxidants and electrophiles. Here, we demonstrate that structurally diverse cysteine-reactive agents, including electrophilic mediators, oxidants and drug-related compounds, disrupt the vimentin network eliciting morphologically distinct reorganizations. As most of these agents display broad reactivity, we pinpointed the importance of C328 by confirming that local perturbations introduced through mutagenesis provoke structure-dependent vimentin rearrangements. Thus, GFP-vimentin wild type (wt) forms squiggles and short filaments in vimentin-deficient cells, the C328F, C328W, and C328H mutants generate diverse filamentous assemblies, and the C328A and C328D constructs fail to elongate yielding dots. Remarkably, vimentin C328H structures resemble the wt, but are strongly resistant to electrophile-elicited disruption. Therefore, the C328H mutant allows elucidating whether cysteine-dependent vimentin reorganization influences other cellular responses to reactive agents. Electrophiles such as 1,4-dinitro-1H-imidazole and 4-hydroxynonenal induce robust actin stress fibers in cells expressing vimentin wt. Strikingly, under these conditions, vimentin C328H expression blunts electrophile-elicited stress fiber formation, apparently acting upstream of RhoA. Analysis of additional vimentin C328 mutants shows that electrophile-sensitive and assembly-defective vimentin variants permit induction of stress fibers by reactive species, whereas electrophile-resistant filamentous vimentin structures prevent it. Together, our results suggest that vimentin acts as a break for actin stress fibers formation, which would be released by C328-aided disruption, thus allowing full actin remodeling in response to oxidants and electrophiles. These observations postulate C328 as a "sensor" transducing structurally diverse modifications into fine-tuned vimentin network rearrangements, and a gatekeeper for certain electrophiles in the interplay with actin.
Collapse
Affiliation(s)
- Patricia González-Jiménez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Sofia Duarte
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Alma E Martínez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Elena Navarro-Carrasco
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Vasiliki Lalioti
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain.
| |
Collapse
|
6
|
Lois-Bermejo I, González-Jiménez P, Duarte S, Pajares MA, Pérez-Sala D. Vimentin Tail Segments Are Differentially Exposed at Distinct Cellular Locations and in Response to Stress. Front Cell Dev Biol 2022; 10:908263. [PMID: 35769261 PMCID: PMC9235546 DOI: 10.3389/fcell.2022.908263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/17/2022] [Indexed: 01/13/2023] Open
Abstract
The intermediate filament protein vimentin plays a key role in cell signaling and stress sensing, as well as an integrator of cytoskeletal dynamics. The vimentin monomer consists of a central rod-like domain and intrinsically disordered head and tail domains. Although the organization of vimentin oligomers in filaments is beginning to be understood, the precise disposition of the tail region remains to be elucidated. Here we observed that electrophilic stress-induced condensation shielded vimentin from recognition by antibodies against specific segments of the tail domain. A detailed characterization revealed that vimentin tail segments are differentially exposed at distinct subcellular locations, both in basal and stress conditions. The 411–423 segment appeared accessible in all cell areas, correlating with vimentin abundance. In contrast, the 419–438 segment was more scantily recognized in perinuclear vimentin and lipoxidative stress-induced bundles, and better detected in peripheral filaments, where it appeared to protrude further from the filament core. These differences persisted in mitotic cells. Interestingly, both tail segments showed closer accessibility in calyculin A-treated cells and phosphomimetic mutants of the C-terminal region. Our results lead us to hypothesize the presence of at least two distinct arrangements of vimentin tail in cells: an “extended” conformation (accessible 419–438 segment), preferentially detected in peripheral areas with looser filaments, and a “packed” conformation (shielded 419–438 segment), preferentially detected at the cell center in robust filaments and lipoxidative stress-induced bundles. These different arrangements could be putatively interconverted by posttranslational modifications, contributing to the versatility of vimentin functions and/or interactions.
Collapse
|
7
|
Vermeire PJ, Stalmans G, Lilina AV, Fiala J, Novak P, Herrmann H, Strelkov SV. Molecular Interactions Driving Intermediate Filament Assembly. Cells 2021; 10:cells10092457. [PMID: 34572105 PMCID: PMC8466517 DOI: 10.3390/cells10092457] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023] Open
Abstract
Given the role of intermediate filaments (IFs) in normal cell physiology and scores of IF-linked diseases, the importance of understanding their molecular structure is beyond doubt. Research into the IF structure was initiated more than 30 years ago, and some important advances have been made. Using crystallography and other methods, the central coiled-coil domain of the elementary dimer and also the structural basis of the soluble tetramer formation have been studied to atomic precision. However, the molecular interactions driving later stages of the filament assembly are still not fully understood. For cytoplasmic IFs, much of the currently available insight is due to chemical cross-linking experiments that date back to the 1990s. This technique has since been radically improved, and several groups have utilized it recently to obtain data on lamin filament assembly. Here, we will summarize these findings and reflect on the remaining open questions and challenges of IF structure. We argue that, in addition to X-ray crystallography, chemical cross-linking and cryoelectron microscopy are the techniques that should enable major new advances in the field in the near future.
Collapse
Affiliation(s)
- Pieter-Jan Vermeire
- Laboratory for Biocrystallography, KU Leuven, 3000 Leuven, Belgium; (P.-J.V.); (G.S.); (A.V.L.)
| | - Giel Stalmans
- Laboratory for Biocrystallography, KU Leuven, 3000 Leuven, Belgium; (P.-J.V.); (G.S.); (A.V.L.)
| | - Anastasia V. Lilina
- Laboratory for Biocrystallography, KU Leuven, 3000 Leuven, Belgium; (P.-J.V.); (G.S.); (A.V.L.)
| | - Jan Fiala
- Department of Biochemistry, Charles University, 12800 Prague, Czech Republic; (J.F.); (P.N.)
- Institute of Microbiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Petr Novak
- Department of Biochemistry, Charles University, 12800 Prague, Czech Republic; (J.F.); (P.N.)
- Institute of Microbiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Harald Herrmann
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Sergei V. Strelkov
- Laboratory for Biocrystallography, KU Leuven, 3000 Leuven, Belgium; (P.-J.V.); (G.S.); (A.V.L.)
- Correspondence: ; Tel.: +32-1633-0845
| |
Collapse
|
8
|
Molecular Insight into the Regulation of Vimentin by Cysteine Modifications and Zinc Binding. Antioxidants (Basel) 2021; 10:antiox10071039. [PMID: 34203497 PMCID: PMC8300659 DOI: 10.3390/antiox10071039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 01/11/2023] Open
Abstract
The intermediate filament protein vimentin is involved in essential cellular processes, including cell division and stress responses, as well as in the pathophysiology of cancer, pathogen infection, and autoimmunity. The vimentin network undergoes marked reorganizations in response to oxidative stress, in which modifications of vimentin single cysteine residue, Cys328, play an important role, and is modulated by zinc availability. However, the molecular basis for this regulation is not fully understood. Here, we show that Cys328 displays a low pKa, supporting its reactivity, and is readily alkylated and oxidized in vitro. Moreover, combined oxidation and crosslinking assays and molecular dynamics simulations support that zinc ions interact with Cys328 in its thiolate form, whereas Glu329 and Asp331 stabilize zinc coordination. Vimentin oxidation can induce disulfide crosslinking, implying the close proximity of Cys328 from neighboring dimers in certain vimentin conformations, supported by our computational models. Notably, micromolar zinc concentrations prevent Cys328 alkylation, lipoxidation, and disulfide formation. Moreover, zinc selectively protects vimentin from crosslinking using short-spacer cysteine-reactive but not amine-reactive agents. These effects are not mimicked by magnesium, consistent with a lower number of magnesium ions hosted at the cysteine region, according to molecular dynamics simulations. Importantly, the region surrounding Cys328 is involved in interaction with several drugs targeting vimentin and is conserved in type III intermediate filaments, which include glial fibrillary acidic protein and desmin. Altogether, our results identify this region as a hot spot for zinc binding, which modulates Cys328 reactivity. Moreover, they provide a molecular standpoint for vimentin regulation through the interplay between cysteine modifications and zinc availability.
Collapse
|
9
|
Addressing the Molecular Mechanism of Longitudinal Lamin Assembly Using Chimeric Fusions. Cells 2020; 9:cells9071633. [PMID: 32645958 PMCID: PMC7407374 DOI: 10.3390/cells9071633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/28/2022] Open
Abstract
The molecular architecture and assembly mechanism of intermediate filaments have been enigmatic for decades. Among those, lamin filaments are of particular interest due to their universal role in cell nucleus and numerous disease-related mutations. Filament assembly is driven by specific interactions of the elementary dimers, which consist of the central coiled-coil rod domain flanked by non-helical head and tail domains. We aimed to investigate the longitudinal 'head-to-tail' interaction of lamin dimers (the so-called ACN interaction), which is crucial for filament assembly. To this end, we prepared a series of recombinant fragments of human lamin A centred around the N- and C-termini of the rod. The fragments were stabilized by fusions to heterologous capping motifs which provide for a correct formation of parallel, in-register coiled-coil dimers. As a result, we established crystal structures of two N-terminal fragments one of which highlights the propensity of the coiled-coil to open up, and one C-terminal rod fragment. Additional studies highlighted the capacity of such N- and C-terminal fragments to form specific complexes in solution, which were further characterized using chemical cross-linking. These data yielded a molecular model of the ACN complex which features a 6.5 nm overlap of the rod ends.
Collapse
|
10
|
Sahu ID, Lorigan GA. Electron Paramagnetic Resonance as a Tool for Studying Membrane Proteins. Biomolecules 2020; 10:E763. [PMID: 32414134 PMCID: PMC7278021 DOI: 10.3390/biom10050763] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane proteins possess a variety of functions essential to the survival of organisms. However, due to their inherent hydrophobic nature, it is extremely difficult to probe the structure and dynamic properties of membrane proteins using traditional biophysical techniques, particularly in their native environments. Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling (SDSL) is a very powerful and rapidly growing biophysical technique to study pertinent structural and dynamic properties of membrane proteins with no size restrictions. In this review, we will briefly discuss the most commonly used EPR techniques and their recent applications for answering structure and conformational dynamics related questions of important membrane protein systems.
Collapse
Affiliation(s)
- Indra D. Sahu
- Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
11
|
Gae DD, Budamagunta MS, Hess JF, McCarrick RM, Lorigan GA, FitzGerald PG, Voss JC. Completion of the Vimentin Rod Domain Structure Using Experimental Restraints: A New Tool for Exploring Intermediate Filament Assembly and Mutations. Structure 2019; 27:1547-1560.e4. [PMID: 31402219 PMCID: PMC6774864 DOI: 10.1016/j.str.2019.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/23/2019] [Accepted: 07/22/2019] [Indexed: 11/28/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy of full-length vimentin and X-ray crystallography of vimentin peptides has provided concordant structural data for nearly the entire central rod domain of the protein. In this report, we use a combination of EPR spectroscopy and molecular modeling to determine the structure and dynamics of the missing region and unite the separate elements into a single structure. Validation of the linker 1-2 (L1-2) modeling approach is demonstrated by the close correlation between EPR and X-ray data in the previously solved regions. Importantly, molecular dynamic (MD) simulation of the constructed model agrees with spin label motion as determined by EPR. Furthermore, MD simulation shows L1-2 heterogeneity, with a concerted switching of states among the dimer chains. These data provide the first ever experimentally driven model of a complete intermediate filament rod domain, providing research tools for further modeling and assembly studies.
Collapse
Affiliation(s)
- David D Gae
- Department of Surgery, School of Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| | - Madhu S Budamagunta
- Department of Biochemistry & Molecular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - John F Hess
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Paul G FitzGerald
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, CA 95616, USA.
| | - John C Voss
- Department of Biochemistry & Molecular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
12
|
Duarte S, Viedma-Poyatos Á, Navarro-Carrasco E, Martínez AE, Pajares MA, Pérez-Sala D. Vimentin filaments interact with the actin cortex in mitosis allowing normal cell division. Nat Commun 2019; 10:4200. [PMID: 31519880 PMCID: PMC6744490 DOI: 10.1038/s41467-019-12029-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 08/09/2019] [Indexed: 01/27/2023] Open
Abstract
The vimentin network displays remarkable plasticity to support basic cellular functions and reorganizes during cell division. Here, we show that in several cell types vimentin filaments redistribute to the cell cortex during mitosis, forming a robust framework interwoven with cortical actin and affecting its organization. Importantly, the intrinsically disordered tail domain of vimentin is essential for this redistribution, which allows normal mitotic progression. A tailless vimentin mutant forms curly bundles, which remain entangled with dividing chromosomes leading to mitotic catastrophes or asymmetric partitions. Serial deletions of vimentin tail domain gradually impair cortical association and mitosis progression. Disruption of f-actin, but not of microtubules, causes vimentin bundling near the chromosomes. Pathophysiological stimuli, including HIV-protease and lipoxidation, induce similar alterations. Interestingly, full filament formation is dispensable for cortical association, which also occurs in vimentin particles. These results unveil implications of vimentin dynamics in cell division through its interplay with the actin cortex. The intermediate filament vimentin reorganizes during mitosis, but its molecular regulation and impact on the cell during cell division is unclear. Here, the authors show that vimentin filaments redistribute to the cell cortex during mitosis intertwining with and affecting actin organization.
Collapse
Affiliation(s)
- Sofia Duarte
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Álvaro Viedma-Poyatos
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Elena Navarro-Carrasco
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Alma E Martínez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
13
|
Budamagunta MS, Guo F, Sun N, Shibata B, FitzGerald PG, Voss JC, Hess JF. Production of recombinant human tektin 1, 2, and 4 and in vitro assembly of human tektin 1. Cytoskeleton (Hoboken) 2017; 75:3-11. [PMID: 29108134 DOI: 10.1002/cm.21418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/24/2017] [Accepted: 11/01/2017] [Indexed: 11/10/2022]
Abstract
Proteins predicted to be composed of large stretches of coiled-coil structure have often proven difficult to crystallize for structural determination. We have successfully applied EPR spectroscopic techniques to the study of the structure and assembly of full-length human vimentin assembled into native 11 nm filaments, in physiologic solution, circumventing the limitations of crystallizing shorter peptide sequences. Tektins are a small family of highly alpha helical filamentous proteins found in the doublet microtubules of cilia and related structures. Tektins exhibit several similarities to intermediate filaments (IFs): moderate molecular weight, highly alpha helical, hypothesized to be coiled-coil, and homo- and heteromeric assembly into long smooth filaments. In this report, we show the application of IF research methodologies to the study of tektin structure and assembly. To begin in vitro studies, expression constructs for human tektins 1, 2, and 4 were synthesized. Recombinant tektins were produced in E. coli and purified by chromatography. Preparations of tektin 1 successfully formed filaments. The recombinant human tektin 1 was used to produce antibodies which recognized an antigen in mouse testes, most likely present in sperm flagella. Finally, we report the creation of seven mutants to analyze predictions of coiled-coil structure in the rod 1A domain of tektin 1. Although this region is predicted to be coiled-coil, our EPR analysis does not reflect the parallel, in register, coiled-coil structure as demonstrated in vimentin and kinesin. These results document that tektin can be successfully expressed and assembled in vitro, and that SDSL EPR techniques can be used for structural analysis.
Collapse
Affiliation(s)
- M S Budamagunta
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California, 95616
| | - F Guo
- Department of Molecular and Cellular Biology, University of California, Davis, California, 95616
| | - N Sun
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, California, 95616
| | - B Shibata
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, California, 95616
| | - P G FitzGerald
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, California, 95616
| | - J C Voss
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California, 95616
| | - J F Hess
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, California, 95616
| |
Collapse
|
14
|
Abstract
Intermediate filaments (IFs), together with microtubules and actin microfilaments, are the three main cytoskeletal components in metazoan cells. IFs are formed by a distinct protein family, which is made up of 70 members in humans. Most IF proteins are tissue- or organelle-specific, which includes lamins, the IF proteins of the nucleus. The building block of IFs is an elongated dimer, which consists of a central α-helical 'rod' domain flanked by flexible N- and C-terminal domains. The conserved rod domain is the 'signature feature' of the IF family. Bioinformatics analysis reveals that the rod domain of all IF proteins contains three α-helical segments of largely conserved length, interconnected by linkers. Moreover, there is a conserved pattern of hydrophobic repeats within each segment, which includes heptads and hendecads. This defines the presence of both left-handed and almost parallel coiled-coil regions along the rod length. Using X-ray crystallography on multiple overlapping fragments of IF proteins, the atomic structure of the nearly complete rod domain has been determined. Here, we discuss some specific challenges of this procedure, such as crystallization and diffraction data phasing by molecular replacement. Further insights into the structure of the coiled coil and the terminal domains have been obtained using electron paramagnetic resonance measurements on the full-length protein, with spin labels attached at specific positions. This atomic resolution information, as well as further interesting findings, such as the variation of the coiled-coil stability along the rod length, provide clues towards interpreting the data on IF assembly, collected by a range of methods. However, a full description of this process at the molecular level is not yet at hand.
Collapse
Affiliation(s)
- Dmytro Guzenko
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Anastasia A Chernyatina
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sergei V Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
15
|
Liu L, Hess J, Sahu ID, FitzGerald PG, McCarrick RM, Lorigan GA. Probing the Local Secondary Structure of Human Vimentin with Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy. J Phys Chem B 2016; 120:12321-12326. [PMID: 27934222 DOI: 10.1021/acs.jpcb.6b10054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previously, an electron spin echo envelope modulation (ESEEM) spectroscopic approach was established to probe the local secondary structure of membrane proteins and peptides utilizing site-directed spin-labeling (SDSL). In this method, the side chain of one amino acid residue is selectively 2H-labeled and a nitroxide spin label is strategically placed 1, 2, 3, or 4 amino acids away from the 2H-labeled amino acid (denoted as i ± 1 to i ± 4, i represents the 2H-labeled amino acid). ESEEM can detect the dipolar coupling between the nitroxide spin label and 2H atoms on the amino acid side chain. Due to the periodicity of different secondary structures, different ESEEM patterns can be revealed to probe the structure. For an α-helical structural component, a 2H ESEEM signal can be detected for i ± 3 and i ± 4 samples, but not for i ± 1 or i ± 2 samples. Several 2H-labeled hydrophobic amino acids have been demonstrated in model system that can be utilized to identify local secondary structures via this ESEEM approach in an extremely efficient fashion. In this study, the ESEEM approach was used to investigate the rod 2B region of the full-length intermediate filament protein human vimentin. Consistent with previous EPR and X-ray crystallography results, our ESEEM results indicated helical structural components within this region. Thus, this ESEEM approach is able to identify α-helical structural components despite the coiled-coil nature of the vimentin structure. The data show that the human vimentin rod 2B adapted a typical α-helical structure around residue Leu309. This result is consistent with the X-ray data from fragmented protein segments and continuous wave EPR data on the full-length vimentin. Finally, the ESEEM data suggested that a local secondary structure slightly different from a typical α-helix was adopted around residue 340.
Collapse
Affiliation(s)
- Lishan Liu
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - John Hess
- Dept of Cell Biology and Human Anatomy, School of Medicine, University of California , Davis, California 95616, United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Paul G FitzGerald
- Dept of Cell Biology and Human Anatomy, School of Medicine, University of California , Davis, California 95616, United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| |
Collapse
|
16
|
Chernyatina AA, Hess JF, Guzenko D, Voss JC, Strelkov SV. How to Study Intermediate Filaments in Atomic Detail. Methods Enzymol 2015; 568:3-33. [PMID: 26795465 DOI: 10.1016/bs.mie.2015.09.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Studies of the intermediate filament (IF) structure are a prerequisite of understanding their function. In addition, the structural information is indispensable if one wishes to gain a mechanistic view on the disease-related mutations in the IFs. Over the years, considerable progress has been made on the atomic structure of the elementary building block of all IFs, the coiled-coil dimer. Here, we discuss the approaches, methods and practices that have contributed to this advance. With abundant genetic information on hand, bioinformatics approaches give important insights into the dimer structure, including the head and tail regions poorly assessable experimentally. At the same time, the most important contribution has been provided by X-ray crystallography. Following the "divide-and-conquer" approach, many fragments from several IF proteins could be crystallized and resolved to atomic resolution. We will systematically cover the main procedures of these crystallographic studies, suggest ways to maximize their efficiency, and also discuss the possible pitfalls and limitations. In addition, electron paramagnetic resonance with site-directed spin labeling was another method providing a major impact toward the understanding of the IF structure. Upon placing the spin labels into specific positions within the full-length protein, one can evaluate the proximity of the labels and their mobility. This makes it possible to make conclusions about the dimer structure in the coiled-coil region and beyond, as well as to explore the dimer-dimer contacts.
Collapse
Affiliation(s)
| | - John F Hess
- Department of Cell Biology and Human Anatomy, University of California, Davis, California, USA
| | - Dmytro Guzenko
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - John C Voss
- Department of Cell Biology and Human Anatomy, University of California, Davis, California, USA
| | - Sergei V Strelkov
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
17
|
Kornreich M, Malka-Gibor E, Laser-Azogui A, Doron O, Herrmann H, Beck R. Composite bottlebrush mechanics: α-internexin fine-tunes neurofilament network properties. SOFT MATTER 2015; 11:5839-5849. [PMID: 26100609 DOI: 10.1039/c5sm00662g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Neuronal cytoplasmic intermediate filaments are principal structural and mechanical elements of the axon. Their expression during embryonic development follows a differential pattern, while their unregulated expression is correlated to neurodegenerative diseases. The largest neurofilament proteins of medium (NF-M) and high molecular weight (NF-H) were shown to modulate the axonal architecture and inter-filament spacing. However, the individual roles of the remaining α-internexin (α-Inx) and neurofilament of low molecular weight (NF-L) proteins in composite filaments remained elusive. In contrast to previous predictions, we show that when co-assembled with NF-M, the shortest and the least charged α-Inx protein increases inter-filament spacing. These findings suggest a novel structural explanation for the expression pattern of neurofilament proteins during embryonic development. We explain our results by an analysis of ionic cross-links between the disordered polyampholytic C-terminal tails and suggest that a collapsed conformation of the α-Inx tail domain interferes with tail cross-linking near the filament backbone.
Collapse
Affiliation(s)
- M Kornreich
- The Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, 69978 Tel Aviv, Israel.
| | | | | | | | | | | |
Collapse
|
18
|
Order and disorder in intermediate filament proteins. FEBS Lett 2015; 589:2464-76. [PMID: 26231765 DOI: 10.1016/j.febslet.2015.07.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 11/20/2022]
Abstract
Intermediate filaments (IFs), important components of the cytoskeleton, provide a versatile, tunable network of self-assembled proteins. IF proteins contain three distinct domains: an α-helical structured rod domain, flanked by intrinsically disordered head and tail domains. Recent studies demonstrated the functional importance of the disordered domains, which differ in length and amino-acid sequence among the 70 different human IF genes. Here, we investigate the biophysical properties of the disordered domains, and review recent findings on the interactions between them. Our analysis highlights key components governing IF functional roles in the cytoskeleton, where the intrinsically disordered domains dictate protein-protein interactions, supramolecular assembly, and macro-scale order.
Collapse
|
19
|
Complete Structure of an Epithelial Keratin Dimer: Implications for Intermediate Filament Assembly. PLoS One 2015; 10:e0132706. [PMID: 26181054 PMCID: PMC4504709 DOI: 10.1371/journal.pone.0132706] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/17/2015] [Indexed: 01/05/2023] Open
Abstract
Keratins are cytoskeletal proteins that hierarchically arrange into filaments, starting with the dimer sub-unit. They are integral to the structural support of cells, in skin, hair and nails. In skin, keratin is thought to play a critical role in conferring the barrier properties and elasticity of skin. In general, the keratin dimer is broadly described by a tri-domain structure: a head, a central rod and a tail. As yet, no atomistic-scale picture of the entire dimer structure exists; this information is pivotal for establishing molecular-level connections between structure and function in intermediate filament proteins. The roles of the head and tail domains in facilitating keratin filament assembly and function remain as open questions. To address these, we report results of molecular dynamics simulations of the entire epithelial human K1/K10 keratin dimer. Our findings comprise: (1) the first three-dimensional structural models of the complete dimer unit, comprising of the head, rod and tail domains; (2) new insights into the chirality of the rod-domain twist gained from analysis of the full domain structure; (3) evidence for tri-subdomain partitioning in the head and tail domains; and, (4) identification of the residue characteristics that mediate non-covalent contact between the chains in the dimer. Our findings are immediately applicable to other epithelial keratins, such as K8/K18 and K5/K14, and to intermediate filament proteins in general.
Collapse
|
20
|
Chernyatina AA, Guzenko D, Strelkov SV. Intermediate filament structure: the bottom-up approach. Curr Opin Cell Biol 2015; 32:65-72. [DOI: 10.1016/j.ceb.2014.12.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/05/2014] [Accepted: 12/19/2014] [Indexed: 11/24/2022]
|
21
|
Dam CE, Houen G, Hansen PR, Trier NH. Identification and fine mapping of a linear B cell epitope of human vimentin. Scandinavian Journal of Clinical and Laboratory Investigation 2014; 74:506-14. [PMID: 24792370 DOI: 10.3109/00365513.2014.908474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Knowledge about antibody-antigen interactions is important for the understanding of the immune system mechanisms and for supporting development of drugs and biomarkers. A tool for identification of these antigenic epitopes of specific antibodies is epitope mapping. In this study, a modified enzyme-linked immunosorbent assay was applied for epitope mapping of a mouse monoclonal vimentin antibody using overlapping resin-bound peptides covering the entire vimentin protein. The minimal epitope required for binding was identified as the LDSLPLVD sequence using N- and C-terminally truncated peptides. The peptide sequence LDSLPLVDTH was identified as the complete epitope, corresponding to amino acids 428-437 in the C-terminal end of the human vimentin protein. Alanine scanning and functionality scanning applying substituted peptides were used to identify amino acids essential for antibody reactivity. In particular, the two aspartate residues were found to be essential for antibody reactivity since these amino acids could not be substituted without a reduction in antibody reactivity. The majority of the remaining amino acids could be substituted without reducing antibody reactivity notably. These results confirm that charged amino acids are essential for antibody reactivity and that the vimentin antibody is dependent on side-chain interactions in combination with backbone interactions.
Collapse
Affiliation(s)
- Catharina E Dam
- Department of Systems Biology, Technical University of Denmark , Kongens Lyngby , Denmark
| | | | | | | |
Collapse
|
22
|
Sahu ID, McCarrick RM, Lorigan GA. Use of electron paramagnetic resonance to solve biochemical problems. Biochemistry 2013; 52:5967-84. [PMID: 23961941 PMCID: PMC3839053 DOI: 10.1021/bi400834a] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy is a very powerful biophysical tool that can provide valuable structural and dynamic information about a wide variety of biological systems. The intent of this review is to provide a general overview for biochemists and biological researchers of the most commonly used EPR methods and how these techniques can be used to answer important biological questions. The topics discussed could easily fill one or more textbooks; thus, we present a brief background on several important biological EPR techniques and an overview of several interesting studies that have successfully used EPR to solve pertinent biological problems. The review consists of the following sections: an introduction to EPR techniques, spin-labeling methods, and studies of naturally occurring organic radicals and EPR active transition metal systems that are presented as a series of case studies in which EPR spectroscopy has been used to greatly further our understanding of several important biological systems.
Collapse
Affiliation(s)
- Indra D. Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH
| | | | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH
| |
Collapse
|
23
|
Wang J, Budamagunta MS, Voss JC, Kurth MJ, Lam KS, Lu L, Kenny TP, Bowlus C, Kikuchi K, Coppel RL, Ansari AA, Gershwin ME, Leung PSC. Antimitochondrial antibody recognition and structural integrity of the inner lipoyl domain of the E2 subunit of pyruvate dehydrogenase complex. THE JOURNAL OF IMMUNOLOGY 2013; 191:2126-33. [PMID: 23894195 DOI: 10.4049/jimmunol.1301092] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antimitochondrial autoantibodies (AMAs), the serological hallmark of primary biliary cirrhosis, are directed against the lipoyl domain of the E2 subunit of pyruvate dehydrogenase (PDC-E2). However, comprehensive analysis of the amino acid residues of PDC-E2 lipoyl β-sheet with AMA specificity is lacking. In this study, we postulated that specific residues within the lipoyl domain are critical to AMA recognition by maintaining conformational integrity. We systematically replaced each of 19 residue peptides of the inner lipoyl domain with alanine and analyzed these mutants for reactivities against 60 primary biliary cirrhosis and 103 control sera. Based on these data, we then constructed mutants with two, three, or four replacements and, in addition, probed the structure of the substituted domains using thiol-specific spin labeling and electron paramagnetic resonance (EPR) of a (5)Ile→Ala and (12)Ile→Ala double mutant. Single alanine replacement at (5)Ile, (12)Ile, and (15)Glu significantly reduced AMA recognition. In addition, mutants with two, three, or four replacements at (5)Ile, (12)Ile, and (15)Glu reduced AMA reactivity even further. Indeed, EPR reveals a highly flexible structure within the (5)Ile and (12)Ile double-alanine mutant. Autoreactivity is largely focused on specific residues in the PDC-E2 lipoyl domain critical in maintaining the lipoyl loop conformation necessary for AMA recognition. Collectively, the AMA binding studies and EPR analysis demonstrate the necessity of the lipoyl β-sheet structural conformation in anti-PDC-E2 recognition.
Collapse
Affiliation(s)
- Jinjun Wang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Characterization of the biochemical and biophysical properties of the Saccharomyces cerevisiae phosphate transporter Pho89. Biochem Biophys Res Commun 2013; 436:551-6. [DOI: 10.1016/j.bbrc.2013.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 06/06/2013] [Indexed: 11/21/2022]
|
25
|
Guharoy M, Szabo B, Martos SC, Kosol S, Tompa P. Intrinsic Structural Disorder in Cytoskeletal Proteins. Cytoskeleton (Hoboken) 2013; 70:550-71. [DOI: 10.1002/cm.21118] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/26/2013] [Accepted: 05/29/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Mainak Guharoy
- VIB Department of Structural Biology; Vrije Universiteit Brussel; Brussels Belgium
| | - Beata Szabo
- Institute of Enzymology; Research Centre for Natural Sciences, Hungarian Academy of Sciences; Budapest Hungary
| | | | - Simone Kosol
- VIB Department of Structural Biology; Vrije Universiteit Brussel; Brussels Belgium
| | - Peter Tompa
- VIB Department of Structural Biology; Vrije Universiteit Brussel; Brussels Belgium
- Institute of Enzymology; Research Centre for Natural Sciences, Hungarian Academy of Sciences; Budapest Hungary
| |
Collapse
|