1
|
Rivalta A, Hiregange DG, Bose T, Rajan KS, Yonath A, Zimmerman E, Waghalter M, Fridkin G, Martinez-Roman I, Rosenfield L, Fedorenko A, Bashan A, Yonath H. Ribosomes: from conserved origin to functional/medical mobility and heterogeneity. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230393. [PMID: 40045780 PMCID: PMC11883434 DOI: 10.1098/rstb.2023.0393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 11/08/2024] [Accepted: 01/06/2025] [Indexed: 03/09/2025] Open
Abstract
Ribosomes, the molecular machines that translate the genetic code from mRNA into proteins in all living cells, are highly structurally conserved across all domains of life and hence are believed to have evolved from a structurally unified pocket. Initially perceived as uniform cellular factories for protein synthesis, currently, ribosomes have emerged as more complex entities. Structural, medical and biochemical studies, including ours, have revealed significant variability in their compositions across tissues, species, functions and developmental stages, highlighting their multifunctional potential. Moreover, the diversity of ribosomes, their components and their associated biological factors challenge the traditional perception of uniform interactions under various conditions, including stress, and expose their mobility and heterogeneity. Evidence for their functional diversity can be seen even in modifications of ribosomal genes, where minor changes may play critical roles under stress or may lead to diseases called ribosomopathies, including Diamond-Blackfan anaemia, some types of cancer and Alzheimer's disease. Thus, through in-depth structural explorations, we improve the understanding of the mechanisms regulating protein biosynthesis in response to various environmental stressors. These findings should potentially reshape the perceptions of the various ribosomal roles.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Andre Rivalta
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Disha-Gajanan Hiregange
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tanaya Bose
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - K. Shanmugha Rajan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ada Yonath
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ella Zimmerman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Miriam Waghalter
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Fridkin
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Irene Martinez-Roman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Liat Rosenfield
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Aliza Fedorenko
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anat Bashan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hagith Yonath
- Human Genetics Institute and Internal Medicine A, Sheba Medical Center, Ramat-Gan and Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Kozlova A, Sarygina E, Ilgisonis E, Tarbeeva S, Ponomarenko E. The Translatome Map: RNC-Seq vs. Ribo-Seq for Profiling of HBE, A549, and MCF-7 Cell Lines. Int J Mol Sci 2024; 25:10970. [PMID: 39456753 PMCID: PMC11507076 DOI: 10.3390/ijms252010970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Gene expression is a tightly regulated process that involves multiple layers of control, including transcriptional, post-transcriptional, and translational regulation. To gain a comprehensive understanding of gene expression dynamics and its functional implications, it is crucial to compare translatomic, transcriptomic, and proteomic data. The two most common analysis methods, Ribo-seq and RNC-Seq, were used to analyze the translatome of the same sample, whose datasets were downloaded from the TranslatomeDB database. The resulting translatome maps obtained for three cell lines (HBE, A549, and MCF-7) using these two methods were comparatively analyzed. The two methods of translatome analysis were shown to provide comparable results and can be used interchangeably. The obtained mRNA translation patterns were annotated in the transcriptome and proteome context for the same sample, which may become the basis for the reconstruction of the molecular mechanisms of pathological process development in the future.
Collapse
|
3
|
He J, Ghosh P, Nitsche C. Biocompatible strategies for peptide macrocyclisation. Chem Sci 2024; 15:2300-2322. [PMID: 38362412 PMCID: PMC10866349 DOI: 10.1039/d3sc05738k] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Peptides are increasingly important drug candidates, offering numerous advantages over conventional small molecules. However, they face significant challenges related to stability, cellular uptake and overall bioavailability. While individual modifications may not address all these challenges, macrocyclisation stands out as a single modification capable of enhancing affinity, selectivity, proteolytic stability and membrane permeability. The recent successes of in situ peptide modifications during screening in combination with genetically encoded peptide libraries have increased the demand for peptide macrocyclisation reactions that can occur under biocompatible conditions. In this perspective, we aim to distinguish biocompatible conditions from those well-known examples that are fully bioorthogonal. We introduce key strategies for biocompatible peptide macrocyclisation and contextualise them within contemporary screening methods, providing an overview of available transformations.
Collapse
Affiliation(s)
- Junming He
- Research School of Chemistry, Australian National University Canberra ACT Australia
| | - Pritha Ghosh
- Research School of Chemistry, Australian National University Canberra ACT Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University Canberra ACT Australia
| |
Collapse
|
4
|
Lo HYG, Pearson CG, Taliaferro JM. Differential subcellular localization of ASPM RNA and protein. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001080. [PMID: 38344067 PMCID: PMC10853820 DOI: 10.17912/micropub.biology.001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 09/25/2024]
Abstract
RNAs encoding some centrosomal components are trafficked to the organelle during mitosis. Some RNAs, including ASPM , localize to the centrosome co-translationally. However, the relative position of these RNAs and their protein after trafficking to centrosomes remained unclear. We find that mislocalization of ASPM RNA from the centrosome does not affect the localization of ASPM protein. Further, ASPM RNA and ASPM protein reside in two physically close yet distinct subcellular spaces, with ASPM RNA on the astral side of the centrosome and ASPM protein on the spindle side. This suggests subtly distinct locations of ASPM RNA translation and ASPM protein function.
Collapse
Affiliation(s)
- Hei-Yong G Lo
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
5
|
Wen Y, Latham CM, Moore AN, Thomas NT, Lancaster BD, Reeves KA, Keeble AR, Fry CS, Johnson DL, Thompson KL, Noehren B, Fry JL. Vitamin D status associates with skeletal muscle loss after anterior cruciate ligament reconstruction. JCI Insight 2023; 8:e170518. [PMID: 37856482 PMCID: PMC10795826 DOI: 10.1172/jci.insight.170518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUNDAlthough 25-hydroxyvitamin D [25(OH)D] concentrations of 30 ng/mL or higher are known to reduce injury risk and boost strength, the influence on anterior cruciate ligament reconstruction (ACLR) outcomes remains unexamined. This study aimed to define the vitamin D signaling response to ACLR, assess the relationship between vitamin D status and muscle fiber cross-sectional area (CSA) and bone density outcomes, and discover vitamin D receptor (VDR) targets after ACLR.METHODSTwenty-one young, healthy, physically active participants with recent ACL tears were enrolled (17.8 ± 3.2 years, BMI 26.0 ± 3.5 kg/m2). Data were collected through blood samples, vastus lateralis biopsies, dual energy x-ray bone density measurements, and isokinetic dynamometer measures at baseline, 1 week, 4 months, and 6 months after ACLR. The biopsies facilitated CSA, Western blotting, RNA-seq, and VDR ChIP-seq analyses.RESULTSACLR surgery led to decreased circulating bioactive vitamin D and increased VDR and activating enzyme expression in skeletal muscle 1 week after ACLR. Participants with less than 30 ng/mL 25(OH)D levels (n = 13) displayed more significant quadriceps fiber CSA loss 1 week and 4 months after ACLR than those with 30 ng/mL or higher (n = 8; P < 0.01 for post hoc comparisons; P = 0.041 for time × vitamin D status interaction). RNA-seq and ChIP-seq data integration revealed genes associated with energy metabolism and skeletal muscle recovery, potentially mediating the impact of vitamin D status on ACLR recovery. No difference in bone mineral density losses between groups was observed.CONCLUSIONCorrecting vitamin D status prior to ACLR may aid in preserving skeletal muscle during recovery.FUNDINGNIH grants R01AR072061, R01AR071398-04S1, and K99AR081367.
Collapse
Affiliation(s)
- Yuan Wen
- Center for Muscle Biology, College of Health Sciences
- Department of Physiology, College of Medicine
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine
| | | | | | | | | | | | - Alexander R. Keeble
- Center for Muscle Biology, College of Health Sciences
- Department of Physiology, College of Medicine
| | | | | | - Katherine L. Thompson
- Dr. Bing Zhang Department of Statistics, University of Kentucky, Lexington, Kentucky, USA
| | - Brian Noehren
- Center for Muscle Biology, College of Health Sciences
- Department of Orthopaedic Surgery & Sports Medicine, and
| | - Jean L. Fry
- Center for Muscle Biology, College of Health Sciences
| |
Collapse
|
6
|
Xiong W, Ye Y, He D, He S, Xiang Y, Xiao J, Feng W, Wu M, Yang Z, Wang D. Deregulation of Ribosome Biogenesis in Nitrite-Oxidizing Bacteria Leads to Nitrite Accumulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16673-16684. [PMID: 37862695 DOI: 10.1021/acs.est.3c06002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Nitrite (NO2-) accumulation caused by nitrite-oxidizing bacteria (NOB) inhibition in nitrification is a double-edged sword, i.e., a disaster in aquatic environments but a hope for innovating nitrogen removal technology in wastewater treatment. However, little information is available regarding the molecular mechanism of NOB inhibition at the cellular level. Herein, we investigate the response of NOB inhibition on NO2- accumulation established by a side-stream free ammonia treatment unit in a nitrifying reactor using integrated metagenomics and metaproteomics. Results showed that compared with the baseline, the relative abundance and activity of NOB in the experimental stage decreased by 91.64 and 68.66%, respectively, directly resulting in a NO2- accumulation rate of 88%. Moreover, RNA polymerase, translation factors, and aa-tRNA ligase were significantly downregulated, indicating that protein synthesis in NOB was interfered during NO2- accumulation. Further investigations showed that ribosomal proteins and GTPases, responsible for bindings between either ribosomal proteins and rRNA or ribosome subunits, were remarkably downregulated. This suggests that ribosome biogenesis was severely disrupted, which might be the key reason for the inhibited protein synthesis. Our findings fill a knowledge gap regarding the underlying mechanisms of NO2- accumulation, which would be beneficial for regulating the accumulation of NO2- in aquatic environments and engineered systems.
Collapse
Affiliation(s)
- Weiping Xiong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yuhang Ye
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dandan He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Siying He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yinping Xiang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Jun Xiao
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Wenyi Feng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Mengru Wu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhaohui Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| |
Collapse
|
7
|
Huang T, Choi J, Prabhakar A, Puglisi JD, Petrov A. Partial spontaneous intersubunit rotations in pretranslocation ribosomes. Proc Natl Acad Sci U S A 2023; 120:e2114979120. [PMID: 37801472 PMCID: PMC10576065 DOI: 10.1073/pnas.2114979120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/29/2023] [Indexed: 10/08/2023] Open
Abstract
The two main steps of translation, peptidyl transfer, and translocation are accompanied by counterclockwise and clockwise rotations of the large and small ribosomal subunits with respect to each other. Upon peptidyl transfer, the small ribosomal subunit rotates counterclockwise relative to the large subunit, placing the ribosome into the rotated conformation. Simultaneously, tRNAs move into the hybrid conformation, and the L1 stalk moves inward toward the P-site tRNA. The conformational dynamics of pretranslocation ribosomes were extensively studied by ensemble and single-molecule methods. Different experimental modalities tracking ribosomal subunits, tRNAs, and the L1 stalk showed that pretranslocation ribosomes undergo spontaneous conformational transitions. Thus, peptidyl transfer unlocks the ribosome and decreases an energy barrier for the reverse ribosome rotation during translocation. However, the tracking of translation with ribosomes labeled at rRNA helices h44 and H101 showed a lack of spontaneous rotations in pretranslocation complexes. Therefore, reverse intersubunit rotations occur during EF-G catalyzed translocation. To reconcile these views, we used high-speed single-molecule microscopy to follow translation in real time. We showed spontaneous rotations in puromycin-released h44-H101 dye-labeled ribosomes. During elongation, the h44-H101 ribosomes undergo partial spontaneous rotations. Spontaneous rotations in h44-H101-labeled ribosomes are restricted prior to aminoacyl-tRNA binding. The pretranslocation h44-H101 ribosomes spontaneously exchanged between three different rotational states. This demonstrates that peptidyl transfer unlocks spontaneous rotations and pretranslocation ribosomes can adopt several thermally accessible conformations, thus supporting the Brownian model of translocation.
Collapse
Affiliation(s)
- Tianhan Huang
- Department of Biological Sciences, Auburn University, Auburn, AL36849
| | - Junhong Choi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Joseph D. Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Alexey Petrov
- Department of Biological Sciences, Auburn University, Auburn, AL36849
| |
Collapse
|
8
|
Inafuku DA, Kirkpatrick KL, Osuagwu O, An Q, Brewster DA, Nakib MZ. Channel capacity of the ribosome. Phys Rev E 2023; 108:044404. [PMID: 37978643 DOI: 10.1103/physreve.108.044404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/09/2023] [Indexed: 11/19/2023]
Abstract
Translation is one of the most fundamental processes in the biological cell. Because of the central role that translation plays across all domains of life, the enzyme that carries out this process, the ribosome, is required to process information with high accuracy. This accuracy often approaches values near unity experimentally. In this paper, we model the ribosome as an information channel and demonstrate mathematically that this biological machine has information-processing capabilities that have not been recognized previously. In particular, we calculate bounds on the ribosome's theoretical Shannon capacity and numerically approximate this capacity. Finally, by incorporating estimates on the ribosome's operation time, we show that the ribosome operates at speeds safely below its capacity, allowing the ribosome to process information with an arbitrary degree of error. Our results show that the ribosome achieves a high accuracy in line with purely information-theoretic means.
Collapse
Affiliation(s)
- Daniel A Inafuku
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Kay L Kirkpatrick
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Mathematics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Onyema Osuagwu
- Electrical and Computer Engineering Department, Morgan State University, Baltimore, Maryland 21251, USA
- Cybersecurity Assurance and Policy Center, Morgan State University, Baltimore, Maryland 21251, USA
| | - Qier An
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - David A Brewster
- Department of Mathematics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Mayisha Zeb Nakib
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
9
|
Wei LH, Sun Y, Guo JU. Genome-wide CRISPR screens identify noncanonical translation factor eIF2A as an enhancer of SARS-CoV-2 programmed -1 ribosomal frameshifting. Cell Rep 2023; 42:112987. [PMID: 37581984 DOI: 10.1016/j.celrep.2023.112987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/23/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
Many positive-strand RNA viruses, including all known coronaviruses, employ programmed -1 ribosomal frameshifting (-1 PRF) to regulate the translation of polycistronic viral RNAs. However, only a few host factors have been shown to regulate -1 PRF. Through a genome-wide CRISPR-Cas9 knockout screen, we have identified host factors that either suppress or enhance severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) -1 PRF. Among them, eukaryotic translation initiation factor 2A (eIF2A) specifically and directly enhances -1 PRF independent of changes in initiation. Consistent with the crucial role of efficient -1 PRF in transcriptase/replicase expression, loss of eIF2A reduces SARS-CoV-2 replication in cells. Furthermore, transcriptome-wide analysis shows that eIF2A preferentially binds CG-rich RNA motifs, including a region within 18S ribosomal RNA near the contacts between the SARS-CoV-2 frameshift-stimulatory element (FSE) and the ribosome. Thus, our results indicate a role for eIF2A in modulating the translation of specific RNAs independent of its role during initiation.
Collapse
Affiliation(s)
- Lian-Huan Wei
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yu Sun
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Junjie U Guo
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
10
|
Zhang D, Zhu L, Wang F, Li P, Wang Y, Gao Y. Molecular mechanisms of eukaryotic translation fidelity and their associations with diseases. Int J Biol Macromol 2023; 242:124680. [PMID: 37141965 DOI: 10.1016/j.ijbiomac.2023.124680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Converting genetic information into functional proteins is a complex, multi-step process, with each step being tightly regulated to ensure the accuracy of translation, which is critical to cellular health. In recent years, advances in modern biotechnology, especially the development of cryo-electron microscopy and single-molecule techniques, have enabled a clearer understanding of the mechanisms of protein translation fidelity. Although there are many studies on the regulation of protein translation in prokaryotes, and the basic elements of translation are highly conserved in prokaryotes and eukaryotes, there are still great differences in the specific regulatory mechanisms. This review describes how eukaryotic ribosomes and translation factors regulate protein translation and ensure translation accuracy. However, a certain frequency of translation errors does occur in translation, so we describe diseases that arise when the rate of translation errors reaches or exceeds a threshold of cellular tolerance.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
11
|
Pekarek L, Zimmer MM, Gribling-Burrer AS, Buck S, Smyth R, Caliskan N. Cis-mediated interactions of the SARS-CoV-2 frameshift RNA alter its conformations and affect function. Nucleic Acids Res 2022; 51:728-743. [PMID: 36537211 PMCID: PMC9881162 DOI: 10.1093/nar/gkac1184] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/11/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The RNA genome of SARS-CoV-2 contains a frameshift stimulatory element (FSE) that allows access to an alternative reading frame through -1 programmed ribosomal frameshifting (PRF). -1PRF in the 1a/1b gene is essential for efficient viral replication and transcription of the viral genome. -1PRF efficiency relies on the presence of conserved RNA elements within the FSE. One of these elements is a three-stemmed pseudoknot, although alternative folds of the frameshift site might have functional roles as well. Here, by complementing ensemble and single-molecule structural analysis of SARS-CoV-2 frameshift RNA variants with functional data, we reveal a conformational interplay of the 5' and 3' immediate regions with the FSE and show that the extended FSE exists in multiple conformations. Furthermore, limiting the base pairing of the FSE with neighboring nucleotides can favor or impair the formation of the alternative folds, including the pseudoknot. Our results demonstrate that co-existing RNA structures can function together to fine-tune SARS-CoV-2 gene expression, which will aid efforts to design specific inhibitors of viral frameshifting.
Collapse
Affiliation(s)
- Lukas Pekarek
- Helmholtz Institute for RNA-based Infection Research (HIRI-HZI), Würzburg, Germany
| | | | | | | | - Redmond Smyth
- Correspondence may also be addressed to Redmond Smyth.
| | - Neva Caliskan
- To whom correspondence should be addressed. Tel: +49 931 318 5298;
| |
Collapse
|
12
|
Dias-Fields L, Adamala KP. Engineering Ribosomes to Alleviate Abiotic Stress in Plants: A Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:2097. [PMID: 36015400 PMCID: PMC9415564 DOI: 10.3390/plants11162097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022]
Abstract
As the centerpiece of the biomass production process, ribosome activity is highly coordinated with environmental cues. Findings revealing ribosome subgroups responsive to adverse conditions suggest this tight coordination may be grounded in the induction of variant ribosome compositions and the differential translation outcomes they might produce. In this perspective, we go through the literature linking ribosome heterogeneity to plants' abiotic stress response. Once unraveled, this crosstalk may serve as the foundation of novel strategies to custom cultivars tolerant to challenging environments without the yield penalty.
Collapse
Affiliation(s)
| | - Katarzyna P. Adamala
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
13
|
Sosorev AY. Modeling of Electron Hole Transport within a Small Ribosomal Subunit. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract—
Synchronized operation of various parts of the ribosome during protein synthesis implies the presence of a coordinating pathway, however, this is still unknown. We have recently suggested that such a pathway can be based on charge transport along the transfer and ribosomal RNA molecules and localization of the charges in functionally important areas of the ribosome. In the current study, using density functional theory calculations, we show that charge carriers (electron holes) can efficiently migrate within the central element of the small ribosomal subunit—the h44 helix. Monte-Carlo modeling revealed that electron holes tend to localize in the functionally important areas of the h44 helix, near the decoding center and intersubunit bridges. On the basis of the results obtained, we suggest that charge transport and localization within the h44 helix could coordinate intersubunit ratcheting with other processes occurring during protein synthesis.
Collapse
|
14
|
Abstract
Biochemistry and molecular biology rely on the recognition of structural complementarity between molecules. Molecular interactions must be both quickly reversible, i.e., tenuous, and specific. How the cell reconciles these conflicting demands is the subject of this article. The problem and its theoretical solution are discussed within the wider theoretical context of the thermodynamics of stochastic processes (stochastic thermodynamics). The solution-an irreversible reaction cycle that decreases internal error at the expense of entropy export into the environment-is shown to be widely employed by biological processes that transmit genetic and regulatory information. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Hinrich Boeger
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California;
| |
Collapse
|
15
|
Wang L, Elliott AB, Moore SD, Beran GJO, Hartman JD, Harper JK. Modeling Small Structural and Environmental Differences in Solids with 15 N NMR Chemical Shift Tensors. Chemphyschem 2021; 22:1008-1017. [PMID: 33604988 DOI: 10.1002/cphc.202000985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/28/2021] [Indexed: 11/09/2022]
Abstract
The ability to theoretically predict accurate NMR chemical shifts in solids is increasingly important due to the role such shifts play in selecting among proposed model structures. Herein, two theoretical methods are evaluated for their ability to assign 15 N shifts from guanosine dihydrate to one of the two independent molecules present in the lattice. The NMR data consist of 15 N shift tensors from 10 resonances. Analysis using periodic boundary or fragment methods consider a benchmark dataset to estimate errors and predict uncertainties of 5.6 and 6.2 ppm, respectively. Despite this high accuracy, only one of the five sites were confidently assigned to a specific molecule of the asymmetric unit. This limitation is not due to negligible differences in experimental data, as most sites exhibit differences of >6.0 ppm between pairs of resonances representing a given position. Instead, the theoretical methods are insufficiently accurate to make assignments at most positions.
Collapse
Affiliation(s)
- Luther Wang
- Department of Chemistry and Biochemistry, Brigham Young University, 84602, Provo, UT, USA
| | - Alexander B Elliott
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, 32816, Orlando, FL, USA
| | - Sean D Moore
- Burnett School of Biomedical Sciences, University of Central Florida, 4110 Libra Drive, 32816, Orlando, FL, USA
| | - Gregory J O Beran
- Department of Chemistry, University of California, 92521, Riverside, CA, USA
| | - Joshua D Hartman
- Department of Chemistry, Mt. San Jacinto College, 92583, San Jacinto, CA, USA
| | - James K Harper
- Department of Chemistry and Biochemistry, Brigham Young University, 84602, Provo, UT, USA
| |
Collapse
|
16
|
Iron in Translation: From the Beginning to the End. Microorganisms 2021; 9:microorganisms9051058. [PMID: 34068342 PMCID: PMC8153317 DOI: 10.3390/microorganisms9051058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022] Open
Abstract
Iron is an essential element for all eukaryotes, since it acts as a cofactor for many enzymes involved in basic cellular functions, including translation. While the mammalian iron-regulatory protein/iron-responsive element (IRP/IRE) system arose as one of the first examples of translational regulation in higher eukaryotes, little is known about the contribution of iron itself to the different stages of eukaryotic translation. In the yeast Saccharomyces cerevisiae, iron deficiency provokes a global impairment of translation at the initiation step, which is mediated by the Gcn2-eIF2α pathway, while the post-transcriptional regulator Cth2 specifically represses the translation of a subgroup of iron-related transcripts. In addition, several steps of the translation process depend on iron-containing enzymes, including particular modifications of translation elongation factors and transfer RNAs (tRNAs), and translation termination by the ATP-binding cassette family member Rli1 (ABCE1 in humans) and the prolyl hydroxylase Tpa1. The influence of these modifications and their correlation with codon bias in the dynamic control of protein biosynthesis, mainly in response to stress, is emerging as an interesting focus of research. Taking S. cerevisiae as a model, we hereby discuss the relevance of iron in the control of global and specific translation steps.
Collapse
|
17
|
Sosorev A, Kharlanov O. Organic nanoelectronics inside us: charge transport and localization in RNA could orchestrate ribosome operation. Phys Chem Chem Phys 2021; 23:7037-7047. [PMID: 33448272 DOI: 10.1039/d0cp04970k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Translation - protein synthesis at the ribonucleic acid (RNA) based molecular machine, the ribosome, - proceeds in a similar manner in all life forms. However, despite several decades of research, the physics underlying this process remains enigmatic. Specifically, during translation, a ribosome undergoes large-scale conformational changes of its distant parts, and these motions are coordinated by an unknown mechanism. In this study, we suggest that such a mechanism could be related to charge (electron hole) transport along and between the RNA molecules, localization of these charges at certain sites and successive relaxation of the molecular geometry. Thus, we suppose that RNA-based molecular machines, e.g., the ribosome, could be electronically controlled, having "wires", "actuators", "a battery", and other "circuitry". Taking transfer RNA as an example, we justify the reasonability of our suggestion using ab initio and atomistic simulations. Specifically, very large hole transfer integrals between the nucleotides (up to above 100 meV) are observed so that the hole can migrate over nearly the whole tRNA molecule. Hole localization at several guanines located at functionally important sites (G27, G10, G34 and G63) is predicted, which is shown to induce geometry changes in these sites, their neighborhoods and even rather distant moieties. If our hypothesis is right, we anticipate that our findings will qualitatively advance the understanding of the key biological processes and could inspire novel approaches in medicine.
Collapse
Affiliation(s)
- Andrey Sosorev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, Moscow, GSP-7, 117997, Russia.
| | | |
Collapse
|
18
|
Wang C, van Tran N, Jactel V, Guérineau V, Graille M. Structural and functional insights into Archaeoglobus fulgidus m2G10 tRNA methyltransferase Trm11 and its Trm112 activator. Nucleic Acids Res 2020; 48:11068-11082. [PMID: 33035335 PMCID: PMC7641767 DOI: 10.1093/nar/gkaa830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 01/20/2023] Open
Abstract
tRNAs play a central role during the translation process and are heavily post-transcriptionally modified to ensure optimal and faithful mRNA decoding. These epitranscriptomics marks are added by largely conserved proteins and defects in the function of some of these enzymes are responsible for neurodevelopmental disorders and cancers. Here, we focus on the Trm11 enzyme, which forms N2-methylguanosine (m2G) at position 10 of several tRNAs in both archaea and eukaryotes. While eukaryotic Trm11 enzyme is only active as a complex with Trm112, an allosteric activator of methyltransferases modifying factors (RNAs and proteins) involved in mRNA translation, former studies have shown that some archaeal Trm11 proteins are active on their own. As these studies were performed on Trm11 enzymes originating from archaeal organisms lacking TRM112 gene, we have characterized Trm11 (AfTrm11) from the Archaeoglobus fulgidus archaeon, which genome encodes for a Trm112 protein (AfTrm112). We show that AfTrm11 interacts directly with AfTrm112 similarly to eukaryotic enzymes and that although AfTrm11 is active as a single protein, its enzymatic activity is strongly enhanced by AfTrm112. We finally describe the first crystal structures of the AfTrm11-Trm112 complex and of Trm11, alone or bound to the methyltransferase inhibitor sinefungin.
Collapse
Affiliation(s)
- Can Wang
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Nhan van Tran
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Vincent Jactel
- Laboratoire de Synthèse Organique (LSO), CNRS, Ecole polytechnique, ENSTA, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Vincent Guérineau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| |
Collapse
|
19
|
Link AJ, Niu X, Weaver CM, Jennings JL, Duncan DT, McAfee KJ, Sammons M, Gerbasi VR, Farley AR, Fleischer TC, Browne CM, Samir P, Galassie A, Boone B. Targeted Identification of Protein Interactions in Eukaryotic mRNA Translation. Proteomics 2020; 20:e1900177. [PMID: 32027465 DOI: 10.1002/pmic.201900177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/13/2019] [Indexed: 11/09/2022]
Abstract
To identify protein-protein interactions and phosphorylated amino acid sites in eukaryotic mRNA translation, replicate TAP-MudPIT and control experiments are performed targeting Saccharomyces cerevisiae genes previously implicated in eukaryotic mRNA translation by their genetic and/or functional roles in translation initiation, elongation, termination, or interactions with ribosomal complexes. Replicate tandem affinity purifications of each targeted yeast TAP-tagged mRNA translation protein coupled with multidimensional liquid chromatography and tandem mass spectrometry analysis are used to identify and quantify copurifying proteins. To improve sensitivity and minimize spurious, nonspecific interactions, a novel cross-validation approach is employed to identify the most statistically significant protein-protein interactions. Using experimental and computational strategies discussed herein, the previously described protein composition of the canonical eukaryotic mRNA translation initiation, elongation, and termination complexes is calculated. In addition, statistically significant unpublished protein interactions and phosphorylation sites for S. cerevisiae's mRNA translation proteins and complexes are identified.
Collapse
Affiliation(s)
- Andrew J Link
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.,Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Xinnan Niu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Connie M Weaver
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jennifer L Jennings
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Dexter T Duncan
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - K Jill McAfee
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Morgan Sammons
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Vince R Gerbasi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Adam R Farley
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Tracey C Fleischer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | | | - Parimal Samir
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Allison Galassie
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Braden Boone
- Department of Bioinformatics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| |
Collapse
|
20
|
Ganser LR, Kelly ML, Herschlag D, Al-Hashimi HM. The roles of structural dynamics in the cellular functions of RNAs. Nat Rev Mol Cell Biol 2020; 20:474-489. [PMID: 31182864 DOI: 10.1038/s41580-019-0136-0] [Citation(s) in RCA: 337] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNAs fold into 3D structures that range from simple helical elements to complex tertiary structures and quaternary ribonucleoprotein assemblies. The functions of many regulatory RNAs depend on how their 3D structure changes in response to a diverse array of cellular conditions. In this Review, we examine how the structural characterization of RNA as dynamic ensembles of conformations, which form with different probabilities and at different timescales, is improving our understanding of RNA function in cells. We discuss the mechanisms of gene regulation by microRNAs, riboswitches, ribozymes, post-transcriptional RNA modifications and RNA-binding proteins, and how the cellular environment and processes such as liquid-liquid phase separation may affect RNA folding and activity. The emerging RNA-ensemble-function paradigm is changing our perspective and understanding of RNA regulation, from in vitro to in vivo and from descriptive to predictive.
Collapse
Affiliation(s)
- Laura R Ganser
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Megan L Kelly
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford ChEM-H Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA, USA.,Department of Chemical Engineering, Stanford ChEM-H Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA, USA.,Department of Chemistry, Stanford ChEM-H Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA. .,Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|
21
|
Mohapatra S, Lin CT, Feng XA, Basu A, Ha T. Single-Molecule Analysis and Engineering of DNA Motors. Chem Rev 2019; 120:36-78. [DOI: 10.1021/acs.chemrev.9b00361] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | | | - Taekjip Ha
- Howard Hughes Medical Institute, Baltimore, Maryland 21205, United States
| |
Collapse
|
22
|
Alexaki A, Hettiarachchi GK, Athey JC, Katneni UK, Simhadri V, Hamasaki-Katagiri N, Nanavaty P, Lin B, Takeda K, Freedberg D, Monroe D, McGill JR, Peters R, Kames JM, Holcomb DD, Hunt RC, Sauna ZE, Gelinas A, Janjic N, DiCuccio M, Bar H, Komar AA, Kimchi-Sarfaty C. Effects of codon optimization on coagulation factor IX translation and structure: Implications for protein and gene therapies. Sci Rep 2019; 9:15449. [PMID: 31664102 PMCID: PMC6820528 DOI: 10.1038/s41598-019-51984-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/09/2019] [Indexed: 11/16/2022] Open
Abstract
Synonymous codons occur with different frequencies in different organisms, a phenomenon termed codon usage bias. Codon optimization, a common term for a variety of approaches used widely by the biopharmaceutical industry, involves synonymous substitutions to increase protein expression. It had long been presumed that synonymous variants, which, by definition, do not alter the primary amino acid sequence, have no effect on protein structure and function. However, a critical mass of reports suggests that synonymous codon variations may impact protein conformation. To investigate the impact of synonymous codons usage on protein expression and function, we designed an optimized coagulation factor IX (FIX) variant and used multiple methods to compare its properties to the wild-type FIX upon expression in HEK293T cells. We found that the two variants differ in their conformation, even when controlling for the difference in expression levels. Using ribosome profiling, we identified robust changes in the translational kinetics of the two variants and were able to identify a region in the gene that may have a role in altering the conformation of the protein. Our data have direct implications for codon optimization strategies, for production of recombinant proteins and gene therapies.
Collapse
Affiliation(s)
- Aikaterini Alexaki
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Gaya K Hettiarachchi
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - John C Athey
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Upendra K Katneni
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Vijaya Simhadri
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Nobuko Hamasaki-Katagiri
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Puja Nanavaty
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - Brian Lin
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Kazuyo Takeda
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Darón Freedberg
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Dougald Monroe
- University of North Carolina at Chapel hill, Chapel hill, NC, USA
| | - Joseph R McGill
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | | | - Jacob M Kames
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - David D Holcomb
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Ryan C Hunt
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Zuben E Sauna
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | | | | | - Michael DiCuccio
- National Center of Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Haim Bar
- Department of Statistics, University of Connecticut, Storrs, CT, USA
| | - Anton A Komar
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - Chava Kimchi-Sarfaty
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
23
|
Nürenberg-Goloub E, Tampé R. Ribosome recycling in mRNA translation, quality control, and homeostasis. Biol Chem 2019; 401:47-61. [DOI: 10.1515/hsz-2019-0279] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
Abstract
Protein biosynthesis is a conserved process, essential for life. Ongoing research for four decades has revealed the structural basis and mechanistic details of most protein biosynthesis steps. Numerous pathways and their regulation have recently been added to the translation system describing protein quality control and messenger ribonucleic acid (mRNA) surveillance, ribosome-associated protein folding and post-translational modification as well as human disorders associated with mRNA and ribosome homeostasis. Thus, translation constitutes a key regulatory process placing the ribosome as a central hub at the crossover of numerous cellular pathways. Here, we describe the role of ribosome recycling by ATP-binding cassette sub-family E member 1 (ABCE1) as a crucial regulatory step controlling the biogenesis of functional proteins and the degradation of aberrant nascent chains in quality control processes.
Collapse
Affiliation(s)
- Elina Nürenberg-Goloub
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt , Max-von-Laue-Str. 9 , D-60438 Frankfurt/Main , Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt , Max-von-Laue-Str. 9 , D-60438 Frankfurt/Main , Germany
| |
Collapse
|
24
|
Huang L, Aghajan M, Quesenberry T, Low A, Murray SF, Monia BP, Guo S. Targeting Translation Termination Machinery with Antisense Oligonucleotides for Diseases Caused by Nonsense Mutations. Nucleic Acid Ther 2019; 29:175-186. [PMID: 31070517 PMCID: PMC6686700 DOI: 10.1089/nat.2019.0779] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Efforts to develop treatments for diseases caused by nonsense mutations have focused on identification of small molecules that promote translational read-through of messenger RNAs (mRNAs) harboring nonsense stop codons to produce full-length proteins. However, to date, no small molecule read-through drug has received FDA approval, probably because of a lack of balance between efficacy and safety. Depletion of translation termination factors eukaryotic release factor (eRF) 1 and eRF3a in cells was shown to promote translational read-through of a luciferase reporter gene harboring a nonsense mutation. In this study, we identified antisense oligonucleotides (ASOs) targeting translation termination factors and determined if ASO-mediated depletion of these factors could be a potentially effective and safe therapeutic approach for diseases caused by nonsense mutations. We found that ASO-mediated reduction of either eRF1 or eRF3a to 30%–40% of normal levels in the mouse liver is well tolerated. Hemophilia mice that express a mutant allele of human coagulation factor IX (FIX) containing nonsense mutation R338X were treated with eRF1- or eRF3a-ASO. We found that although eRF1- or eRF3a-ASO alone only elicited a moderate read-through effect on hFIX-R338X mRNA, both worked in synergy with geneticin, a small molecule read-through drug, demonstrating significantly increased production of functional full-length hFIX protein to levels that would rescue disease phenotypes in these mice. Overall our results indicate that modulating the translation termination pathway in the liver by ASOs may provide a novel approach to improving the efficacy of small molecule read-through drugs to treat human genetic diseases caused by nonsense mutations.
Collapse
Affiliation(s)
- Lulu Huang
- Ionis Pharmaceuticals, Carlsbad, California
| | | | | | - Audrey Low
- Ionis Pharmaceuticals, Carlsbad, California
| | | | | | | |
Collapse
|
25
|
Prabhakar A, Puglisi EV, Puglisi JD. Single-Molecule Fluorescence Applied to Translation. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032714. [PMID: 29891562 DOI: 10.1101/cshperspect.a032714] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Single-molecule fluorescence methods have illuminated the dynamics of the translational machinery. Structural and bulk biochemical experiments have provided detailed atomic and global mechanistic views of translation, respectively. Single-molecule studies of translation have bridged these views by temporally connecting the conformational and compositional states defined from structural data within the mechanistic framework of translation produced from biochemical studies. Here, we discuss the context for applying different single-molecule fluorescence experiments, and present recent applications to studying prokaryotic and eukaryotic translation. We underscore the power of observing single translating ribosomes to delineate and sort complex mechanistic pathways during initiation and elongation, and discuss future applications of current and improved technologies.
Collapse
Affiliation(s)
- Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305.,Program in Biophysics, Stanford University, Stanford, California 94305
| | - Elisabetta Viani Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
26
|
Kapur M, Ackerman SL. mRNA Translation Gone Awry: Translation Fidelity and Neurological Disease. Trends Genet 2018; 34:218-231. [PMID: 29352613 DOI: 10.1016/j.tig.2017.12.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/04/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
Abstract
Errors during mRNA translation can lead to a reduction in the levels of functional proteins and an increase in deleterious molecules. Advances in next-generation sequencing have led to the discovery of rare genetic disorders, many caused by mutations in genes encoding the mRNA translation machinery, as well as to a better understanding of translational dynamics through ribosome profiling. We discuss here multiple neurological disorders that are linked to errors in tRNA aminoacylation and ribosome decoding. We draw on studies from genetic models, including yeast and mice, to enhance our understanding of the translational defects observed in these diseases. Finally, we emphasize the importance of tRNA, their associated enzymes, and the inextricable link between accuracy and efficiency in the maintenance of translational fidelity.
Collapse
Affiliation(s)
- Mridu Kapur
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
27
|
Lai WJC, Ermolenko DN. Ensemble and single-molecule FRET studies of protein synthesis. Methods 2017; 137:37-48. [PMID: 29247758 DOI: 10.1016/j.ymeth.2017.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/30/2017] [Accepted: 12/11/2017] [Indexed: 11/29/2022] Open
Abstract
Protein synthesis is a complex, multi-step process that involves large conformational changes of the ribosome and protein factors of translation. Over the last decade, Förster resonance energy transfer (FRET) has become instrumental for studying structural rearrangements of the translational apparatus. Here, we discuss the design of ensemble and single-molecule (sm) FRET assays of translation. We describe a number of experimental strategies that can be used to introduce fluorophores into the ribosome, tRNA, mRNA and protein factors of translation. Alternative approaches to tethering of translation components to the microscope slide in smFRET experiments are also reviewed. Finally, we discuss possible challenges in the interpretation of FRET data and ways to address these challenges.
Collapse
Affiliation(s)
- Wan-Jung C Lai
- Department of Biochemistry and Biophysics & Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States
| | - Dmitri N Ermolenko
- Department of Biochemistry and Biophysics & Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, United States.
| |
Collapse
|
28
|
Kapur M, Monaghan CE, Ackerman SL. Regulation of mRNA Translation in Neurons-A Matter of Life and Death. Neuron 2017; 96:616-637. [PMID: 29096076 DOI: 10.1016/j.neuron.2017.09.057] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 12/14/2022]
Abstract
Dynamic regulation of mRNA translation initiation and elongation is essential for the survival and function of neural cells. Global reductions in translation initiation resulting from mutations in the translational machinery or inappropriate activation of the integrated stress response may contribute to pathogenesis in a subset of neurodegenerative disorders. Aberrant proteins generated by non-canonical translation initiation may be a factor in the neuron death observed in the nucleotide repeat expansion diseases. Dysfunction of central components of the elongation machinery, such as the tRNAs and their associated enzymes, can cause translational infidelity and ribosome stalling, resulting in neurodegeneration. Taken together, dysregulation of mRNA translation is emerging as a unifying mechanism underlying the pathogenesis of many neurodegenerative disorders.
Collapse
Affiliation(s)
- Mridu Kapur
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Caitlin E Monaghan
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|