1
|
Collins KW, Copeland MM, Kundrotas PJ, Vakser IA. Dockground: The resource expands to protein-RNA interactome. J Mol Biol 2025:169014. [PMID: 39956358 DOI: 10.1016/j.jmb.2025.169014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
RNA is a master regulator of cellular processes and will bind to many different proteins throughout its life cycle. Dysregulation of RNA and RNA-binding proteins can lead to various diseases, including cancer. To better understand molecular mechanisms of the cellular processes, it is important to characterize protein-RNA interactions at the structural level. There is a lack of experimental structures available for protein-RNA complexes due to the RNA inherent flexibility, which complicates the experimental structure determination. The scarcity of structures can be made up for with computational modeling. Dockground is a resource for development and benchmarking of structure-based modeling of protein interactions. It contains datasets focusing on different aspects of protein recognition. The foundation of all the datasets is the database of experimentally determined protein complexes, which previously contained only protein-protein assemblies. To further expand the utility of the Dockground resource, we extended the database to protein-RNA interactions. The new functionalities are available on the Dockground website at https://dockground.compbio.ku.edu/. The database can be searched using a number of criteria, including removal of redundancies at various sequence and structure similarity thresholds. The database updates with new structures from the Protein Data Bank on a weekly basis.
Collapse
Affiliation(s)
- Keeley W Collins
- Computational Biology Program, The University of Kansas, Lawrence, Kansas 66045
| | - Matthew M Copeland
- Computational Biology Program, The University of Kansas, Lawrence, Kansas 66045
| | - Petras J Kundrotas
- Computational Biology Program, The University of Kansas, Lawrence, Kansas 66045.
| | - Ilya A Vakser
- Computational Biology Program, The University of Kansas, Lawrence, Kansas 66045; Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66045.
| |
Collapse
|
2
|
Peng Y, Wu J, Sun Y, Zhang Y, Wang Q, Shao S. Contrastive-learning of language embedding and biological features for cross modality encoding and effector prediction. Nat Commun 2025; 16:1299. [PMID: 39900608 PMCID: PMC11791096 DOI: 10.1038/s41467-025-56526-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/15/2025] [Indexed: 02/05/2025] Open
Abstract
Identifying and characterizing virulence proteins secreted by Gram-negative bacteria are fundamental for deciphering microbial pathogenicity as well as aiding the development of therapeutic strategies. Effector predictors utilizing pre-trained protein language models (PLMs) have shown sound performance by leveraging extensive evolutionary and sequential protein features. However, the accuracy and sensitivity of effector prediction remain challenging. Here, we introduce a model named Contrastive-learning of Language Embedding and Biological Features (CLEF) leveraging contrastive learning to integrate PLM representations with supplementary biological features. Biologically information is captured in learned contextualized embeddings to yield meaningful representations. With cross-modality biological features, CLEF outperforms state-of-the-art (SOTA) models in predicting type III, type IV, and type VI secreted effectors (T3SEs/T4SEs/T6SEs) in enteric pathogens. All experimentally verified effectors in Enterohemorrhagic Escherichia coli and 41 of 43 experimentally verified T3SEs of Salmonella Typhimurium are recognized. Moreover, 12 predicted T3SEs and 11 predicted T6SEs are validated by extensive experiments in Edwardsiella piscicida. Furthermore, integrating omics data via CLEF framework enhances protein representations to illustrate effector-effector interactions and determine in vivo colonization-essential genes. Collectively, CLEF provides a blueprint to bridge the gap between in silico PLM's capacity and experimental biological information to fulfill complicated tasks.
Collapse
Affiliation(s)
- Yue Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Junze Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yi Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519000, Zhuhai, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
- Laboratory of Aquatic Animal Diseases of MOA, Shanghai, China
| | - Shuai Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China.
- Laboratory of Aquatic Animal Diseases of MOA, Shanghai, China.
| |
Collapse
|
3
|
Gowthaman R, Park M, Yin R, Guest JD, Pierce BG. AlphaFold and Docking Approaches for Antibody-Antigen and Other Targets: Insights From CAPRI Rounds 47-55. Proteins 2025. [PMID: 39831331 DOI: 10.1002/prot.26801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Accurate modeling of the structures of protein-protein complexes and other biomolecular interactions represents a longstanding and important challenge for computational biology. The Critical Assessment of PRedicted Interactions (CAPRI) experiment has served for over two decades as a key means to assess and compare current approaches and methods through blind predictive scenarios, highlighting useful strategies, and new developments. Here we describe the performance of our laboratory's team in recent CAPRI rounds, which included submissions for 10 modeling targets. Our team utilized a range of docking and modeling approaches, including ZDOCK, Rosetta, and ZRANK, to model, refine, and score protein-protein and protein-DNA complexes. For recent targets we utilized adaptations of AlphaFold to generate models, leading to near-native models for an antibody-peptide target, and a highly accurate (but low ranked) model for an antibody-MHC complex. These results underscore the utility of AlphaFold-based protocols for predictive protein complex modeling, including for immune recognition, and highlight considerations regarding the use of AlphaFold confidence metrics in model selection.
Collapse
Affiliation(s)
- Ragul Gowthaman
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Minjae Park
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Rui Yin
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Johnathan D Guest
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
4
|
Shuvo MH, Bhattacharya D. EquiRank: Improved protein-protein interface quality estimation using protein language-model-informed equivariant graph neural networks. Comput Struct Biotechnol J 2024; 27:160-170. [PMID: 39850657 PMCID: PMC11755013 DOI: 10.1016/j.csbj.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/25/2025] Open
Abstract
Quality estimation of the predicted interaction interface of protein complex structural models is not only important for complex model evaluation and selection but also useful for protein-protein docking. Despite recent progress fueled by symmetry-aware deep learning architectures and pretrained protein language models (pLMs), existing methods for estimating protein complex quality have yet to fully exploit the collective potentials of these advances for accurate estimation of protein-protein interface. Here we present EquiRank, an improved protein-protein interface quality estimation method by leveraging the strength of a symmetry-aware E(3) equivariant deep graph neural network (EGNN) and integrating pLM embeddings from the pretrained ESM-2 model. Our method estimates the quality of the protein-protein interface through an effective graph-based representation of interacting residue pairs, incorporating a diverse set of features, including ESM-2 embeddings, and then by learning the representation using symmetry-aware EGNNs. Our experimental results demonstrate improved ranking performance on diverse datasets over existing latest protein complex quality estimation methods including the top-performing CASP15 protein complex quality estimation method VoroIF_GNN and the self-assessment module of AlphaFold-Multimer repurposed for protein complex scoring and across different performance evaluation metrics. Additionally, our ablation studies demonstrate the contributions of both pLMs and the equivariant nature of EGNN for improved protein-protein interface quality estimation performance. EquiRank is freely available at https://github.com/mhshuvo1/EquiRank.
Collapse
Affiliation(s)
- Md Hossain Shuvo
- Department of Computer Science, Prairie View A&M University, Prairie View, 77446, TX, USA
| | | |
Collapse
|
5
|
Alam R, Mahbub S, Bayzid MS. Pair-EGRET: enhancing the prediction of protein-protein interaction sites through graph attention networks and protein language models. Bioinformatics 2024; 40:btae588. [PMID: 39360982 PMCID: PMC11495673 DOI: 10.1093/bioinformatics/btae588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/03/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024] Open
Abstract
MOTIVATION Proteins are responsible for most biological functions, many of which require the interaction of more than one protein molecule. However, accurately predicting protein-protein interaction (PPI) sites (the interfacial residues of a protein that interact with other protein molecules) remains a challenge. The growing demand and cost associated with the reliable identification of PPI sites using conventional experimental methods call for computational tools for automated prediction and understanding of PPIs. RESULTS We present Pair-EGRET, an edge-aggregated graph attention network that leverages the features extracted from pretrained transformer-like models to accurately predict PPI sites. Pair-EGRET works on a k-nearest neighbor graph, representing the 3D structure of a protein, and utilizes the cross-attention mechanism for accurate identification of interfacial residues of a pair of proteins. Through an extensive evaluation study using a diverse array of experimental data, evaluation metrics, and case studies on representative protein sequences, we demonstrate that Pair-EGRET can achieve remarkable performance in predicting PPI sites. Moreover, Pair-EGRET can provide interpretable insights from the learned cross-attention matrix. AVAILABILITY AND IMPLEMENTATION Pair-EGRET is freely available in open source form at the GitHub Repository https://github.com/1705004/Pair-EGRET.
Collapse
Affiliation(s)
- Ramisa Alam
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Sazan Mahbub
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Md Shamsuzzoha Bayzid
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| |
Collapse
|
6
|
Abali Z, Aydin Z, Khokhar M, Ates YC, Gursoy A, Keskin O. PPInterface: A Comprehensive Dataset of 3D Protein-Protein Interface Structures. J Mol Biol 2024; 436:168686. [PMID: 38936693 DOI: 10.1016/j.jmb.2024.168686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/25/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
The PPInterface dataset contains 815,082 interface structures, providing the most comprehensive structural information on protein-protein interfaces. This resource is extracted from over 215,000 three-dimensional protein structures stored in the Protein Data Bank (PDB). The dataset contains a wide range of protein complexes, providing a wealth of information for researchers investigating the structural properties of protein-protein interactions. The accompanying web server has a user-friendly interface that allows for efficient search and download functions. Researchers can access detailed information on protein interface structures, visualize them, and explore a variety of features, increasing the dataset's utility and accessibility. The dataset and web server can be found at https://3dpath.ku.edu.tr/PPInt/.
Collapse
Affiliation(s)
- Zeynep Abali
- Computational Science and Engineering Graduate Program, Koc University, Istanbul 34450, Turkey
| | - Zeynep Aydin
- Computational Science and Engineering Graduate Program, Koc University, Istanbul 34450, Turkey
| | - Moaaz Khokhar
- Computer Engineering, Koc University, Istanbul 34450, Turkey
| | - Yigit Can Ates
- Computer Engineering, Koc University, Istanbul 34450, Turkey
| | - Attila Gursoy
- Computer Engineering, Koc University, Istanbul 34450, Turkey
| | - Ozlem Keskin
- Chemical and Biological Engineering, Koc University, Istanbul 34450, Turkey.
| |
Collapse
|
7
|
Wei H, Wang W, Peng Z, Yang J. Q-BioLiP: A Comprehensive Resource for Quaternary Structure-based Protein-ligand Interactions. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae001. [PMID: 38862427 PMCID: PMC11423850 DOI: 10.1093/gpbjnl/qzae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/12/2023] [Accepted: 12/03/2023] [Indexed: 06/13/2024]
Abstract
Since its establishment in 2013, BioLiP has become one of the widely used resources for protein-ligand interactions. Nevertheless, several known issues occurred with it over the past decade. For example, the protein-ligand interactions are represented in the form of single chain-based tertiary structures, which may be inappropriate as many interactions involve multiple protein chains (known as quaternary structures). We sought to address these issues, resulting in Q-BioLiP, a comprehensive resource for quaternary structure-based protein-ligand interactions. The major features of Q-BioLiP include: (1) representing protein structures in the form of quaternary structures rather than single chain-based tertiary structures; (2) pairing DNA/RNA chains properly rather than separation; (3) providing both experimental and predicted binding affinities; (4) retaining both biologically relevant and irrelevant interactions to alleviate the wrong justification of ligands' biological relevance; and (5) developing a new quaternary structure-based algorithm for the modelling of protein-ligand complex structure. With these new features, Q-BioLiP is expected to be a valuable resource for studying biomolecule interactions, including protein-small molecule interaction, protein-metal ion interaction, protein-peptide interaction, protein-protein interaction, protein-DNA/RNA interaction, and RNA-small molecule interaction. Q-BioLiP is freely available at https://yanglab.qd.sdu.edu.cn/Q-BioLiP/.
Collapse
Affiliation(s)
- Hong Wei
- School of Mathematical Sciences, Nankai University, Tianjin 300071, China
| | - Wenkai Wang
- School of Mathematical Sciences, Nankai University, Tianjin 300071, China
| | - Zhenling Peng
- MOE Frontiers Science Center for Nonlinear Expectations, Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao 266237, China
| | - Jianyi Yang
- MOE Frontiers Science Center for Nonlinear Expectations, Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
8
|
Yin S, Mi X, Shukla D. Leveraging machine learning models for peptide-protein interaction prediction. RSC Chem Biol 2024; 5:401-417. [PMID: 38725911 PMCID: PMC11078210 DOI: 10.1039/d3cb00208j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/07/2024] [Indexed: 05/12/2024] Open
Abstract
Peptides play a pivotal role in a wide range of biological activities through participating in up to 40% protein-protein interactions in cellular processes. They also demonstrate remarkable specificity and efficacy, making them promising candidates for drug development. However, predicting peptide-protein complexes by traditional computational approaches, such as docking and molecular dynamics simulations, still remains a challenge due to high computational cost, flexible nature of peptides, and limited structural information of peptide-protein complexes. In recent years, the surge of available biological data has given rise to the development of an increasing number of machine learning models for predicting peptide-protein interactions. These models offer efficient solutions to address the challenges associated with traditional computational approaches. Furthermore, they offer enhanced accuracy, robustness, and interpretability in their predictive outcomes. This review presents a comprehensive overview of machine learning and deep learning models that have emerged in recent years for the prediction of peptide-protein interactions.
Collapse
Affiliation(s)
- Song Yin
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign Urbana 61801 Illinois USA
| | - Xuenan Mi
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign Urbana IL 61801 USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign Urbana 61801 Illinois USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign Urbana IL 61801 USA
- Department of Bioengineering, University of Illinois Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
9
|
Grassmann G, Miotto M, Desantis F, Di Rienzo L, Tartaglia GG, Pastore A, Ruocco G, Monti M, Milanetti E. Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments. Chem Rev 2024; 124:3932-3977. [PMID: 38535831 PMCID: PMC11009965 DOI: 10.1021/acs.chemrev.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Investigating protein-protein interactions is crucial for understanding cellular biological processes because proteins often function within molecular complexes rather than in isolation. While experimental and computational methods have provided valuable insights into these interactions, they often overlook a critical factor: the crowded cellular environment. This environment significantly impacts protein behavior, including structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss theoretical and computational approaches that allow the modeling of biological systems to guide and complement experiments and can thus significantly advance the investigation, and possibly the predictions, of protein-protein interactions in the crowded environment of cell cytoplasm. We explore topics such as statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein-protein interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.
Collapse
Affiliation(s)
- Greta Grassmann
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Fausta Desantis
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- The
Open University Affiliated Research Centre at Istituto Italiano di
Tecnologia, Genoa 16163, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Gian Gaetano Tartaglia
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- Center
for Human Technologies, Genoa 16152, Italy
| | - Annalisa Pastore
- Experiment
Division, European Synchrotron Radiation
Facility, Grenoble 38043, France
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| | - Michele Monti
- RNA
System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| |
Collapse
|
10
|
Yin S, Mi X, Shukla D. Leveraging Machine Learning Models for Peptide-Protein Interaction Prediction. ARXIV 2024:arXiv:2310.18249v2. [PMID: 37961736 PMCID: PMC10635286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Peptides play a pivotal role in a wide range of biological activities through participating in up to 40% protein-protein interactions in cellular processes. They also demonstrate remarkable specificity and efficacy, making them promising candidates for drug development. However, predicting peptide-protein complexes by traditional computational approaches, such as Docking and Molecular Dynamics simulations, still remains a challenge due to high computational cost, flexible nature of peptides, and limited structural information of peptide-protein complexes. In recent years, the surge of available biological data has given rise to the development of an increasing number of machine learning models for predicting peptide-protein interactions. These models offer efficient solutions to address the challenges associated with traditional computational approaches. Furthermore, they offer enhanced accuracy, robustness, and interpretability in their predictive outcomes. This review presents a comprehensive overview of machine learning and deep learning models that have emerged in recent years for the prediction of peptide-protein interactions.
Collapse
Affiliation(s)
- Song Yin
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- These authors contributed to the work equally
| | - Xuenan Mi
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- These authors contributed to the work equally
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
11
|
Zhang S, Han J, Liu J. Protein-protein and protein-nucleic acid binding site prediction via interpretable hierarchical geometric deep learning. Gigascience 2024; 13:giae080. [PMID: 39484977 PMCID: PMC11528319 DOI: 10.1093/gigascience/giae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/29/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024] Open
Abstract
Identification of protein-protein and protein-nucleic acid binding sites provides insights into biological processes related to protein functions and technical guidance for disease diagnosis and drug design. However, accurate predictions by computational approaches remain highly challenging due to the limited knowledge of residue binding patterns. The binding pattern of a residue should be characterized by the spatial distribution of its neighboring residues combined with their physicochemical information interaction, which yet cannot be achieved by previous methods. Here, we design GraphRBF, a hierarchical geometric deep learning model to learn residue binding patterns from big data. To achieve it, GraphRBF describes physicochemical information interactions by designing an enhanced graph neural network and characterizes residue spatial distributions by introducing a prioritized radial basis function neural network. After training and testing, GraphRBF shows great improvements over existing state-of-the-art methods and strong interpretability of its learned representations. Applying GraphRBF to the SARS-CoV-2 omicron spike protein, it successfully identifies known epitopes of the protein. Moreover, it predicts multiple potential binding regions for new nanobodies or even new drugs with strong evidence. A user-friendly online server for GraphRBF is freely available at http://liulab.top/GraphRBF/server.
Collapse
Affiliation(s)
- Shizhuo Zhang
- School of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, China
| | - Jiyun Han
- School of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, China
| | - Juntao Liu
- School of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, China
| |
Collapse
|
12
|
Meng Q, Guo F, Wang E, Tang J. ComDock: A novel approach for protein-protein docking with an efficient fusing strategy. Comput Biol Med 2023; 167:107660. [PMID: 37944303 DOI: 10.1016/j.compbiomed.2023.107660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Protein-protein interaction plays an important role in studying the mechanism of protein functions from the structural perspective. Molecular docking is a powerful approach to detect protein-protein complexes using computational tools, due to the high cost and time-consuming of the traditional experimental methods. Among existing technologies, the template-based method utilizes the structural information of known homologous 3D complexes as available and reliable templates to achieve high accuracy and low computational complexity. However, the performance of the template-based method depends on the quality and quantity of templates. When insufficient or even no templates, the ab initio docking method is necessary and largely enriches the docking conformations. Therefore, it's a feasible strategy to fuse the effectivity of the template-based model and the universality of ab initio model to improve the docking performance. In this study, we construct a new, diverse, comprehensive template library derived from PDB, containing 77,685 complexes. We propose a template-based method (named TemDock), which retrieves the evolutionary relationship between the target sequence and samples in the template library and transfers similar structural information. Then, the target structure is built by superposing on the homologous template complex with TM-align. Moreover, we develop a consensus-based method (named ComDock) to integrate our TemDock and an existing ab initio method (ZDOCK). On 105 targets with templates from Benchmark 5.0, the TemDock and ComDock achieve a success rate of 68.57 % and 71.43 % in the top 10 conformations, respectively. Compared with the HDOCK, ComDock obtains better I-RMSD of hit configurations on 9 targets and more hit models in the top 100 conformations. As an efficient method for protein-protein docking, the ComDock is expected to study protein-protein recognition and reveal the various biological passways that are critical for developing drug discovery. The final results are stored at https://github.com/guofei-tju/mqz_ComDock_docking.
Collapse
Affiliation(s)
- Qiaozhen Meng
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha, China.
| | - Ercheng Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Laboratory, Hangzhou, Zhejiang, China.
| | - Jijun Tang
- Shenzhen Institute of Advanced Technology of Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
13
|
Brixi G, Ye T, Hong L, Wang T, Monticello C, Lopez-Barbosa N, Vincoff S, Yudistyra V, Zhao L, Haarer E, Chen T, Pertsemlidis S, Palepu K, Bhat S, Christopher J, Li X, Liu T, Zhang S, Petersen L, DeLisa MP, Chatterjee P. SaLT&PepPr is an interface-predicting language model for designing peptide-guided protein degraders. Commun Biol 2023; 6:1081. [PMID: 37875551 PMCID: PMC10598214 DOI: 10.1038/s42003-023-05464-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
Protein-protein interactions (PPIs) are critical for biological processes and predicting the sites of these interactions is useful for both computational and experimental applications. We present a Structure-agnostic Language Transformer and Peptide Prioritization (SaLT&PepPr) pipeline to predict interaction interfaces from a protein sequence alone for the subsequent generation of peptidic binding motifs. Our model fine-tunes the ESM-2 protein language model (pLM) with a per-position prediction task to identify PPI sites using data from the PDB, and prioritizes motifs which are most likely to be involved within inter-chain binding. By only using amino acid sequence as input, our model is competitive with structural homology-based methods, but exhibits reduced performance compared with deep learning models that input both structural and sequence features. Inspired by our previous results using co-crystals to engineer target-binding "guide" peptides, we curate PPI databases to identify partners for subsequent peptide derivation. Fusing guide peptides to an E3 ubiquitin ligase domain, we demonstrate degradation of endogenous β-catenin, 4E-BP2, and TRIM8, and highlight the nanomolar binding affinity, low off-targeting propensity, and function-altering capability of our best-performing degraders in cancer cells. In total, our study suggests that prioritizing binders from natural interactions via pLMs can enable programmable protein targeting and modulation.
Collapse
Affiliation(s)
- Garyk Brixi
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tianzheng Ye
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Lauren Hong
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tian Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Connor Monticello
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Natalia Lopez-Barbosa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Sophia Vincoff
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Vivian Yudistyra
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Lin Zhao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Elena Haarer
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tianlai Chen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Kalyan Palepu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Suhaas Bhat
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Xinning Li
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tong Liu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sue Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Lillian Petersen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Pranam Chatterjee
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Department of Computer Science, Duke University, Durham, NC, USA.
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA.
| |
Collapse
|
14
|
Wu H, Han J, Zhang S, Xin G, Mou C, Liu J. Spatom: a graph neural network for structure-based protein-protein interaction site prediction. Brief Bioinform 2023; 24:bbad345. [PMID: 37779247 DOI: 10.1093/bib/bbad345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/22/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023] Open
Abstract
Accurate identification of protein-protein interaction (PPI) sites remains a computational challenge. We propose Spatom, a novel framework for PPI site prediction. This framework first defines a weighted digraph for a protein structure to precisely characterize the spatial contacts of residues, then performs a weighted digraph convolution to aggregate both spatial local and global information and finally adds an improved graph attention layer to drive the predicted sites to form more continuous region(s). Spatom was tested on a diverse set of challenging protein-protein complexes and demonstrated the best performance among all the compared methods. Furthermore, when tested on multiple popular proteins in a case study, Spatom clearly identifies the interaction interfaces and captures the majority of hotspots. Spatom is expected to contribute to the understanding of protein interactions and drug designs targeting protein binding.
Collapse
Affiliation(s)
- Haonan Wu
- School of Mathematics and Statistics, Shandong University, Weihai 264209, China
- School of Mathematics, Shandong University, Jinan 250100, China
| | - Jiyun Han
- School of Mathematics and Statistics, Shandong University, Weihai 264209, China
| | - Shizhuo Zhang
- School of Mathematics and Statistics, Shandong University, Weihai 264209, China
| | - Gaojia Xin
- School of Mathematics and Statistics, Shandong University, Weihai 264209, China
| | - Chaozhou Mou
- School of Mathematics and Statistics, Shandong University, Weihai 264209, China
| | - Juntao Liu
- School of Mathematics and Statistics, Shandong University, Weihai 264209, China
| |
Collapse
|
15
|
Schweke H, Xu Q, Tauriello G, Pantolini L, Schwede T, Cazals F, Lhéritier A, Fernandez-Recio J, Rodríguez-Lumbreras LÁ, Schueler-Furman O, Varga JK, Jiménez-García B, Réau MF, Bonvin A, Savojardo C, Martelli PL, Casadio R, Tubiana J, Wolfson H, Oliva R, Barradas-Bautista D, Ricciardelli T, Cavallo L, Venclovas Č, Olechnovič K, Guerois R, Andreani J, Martin J, Wang X, Kihara D, Marchand A, Correia B, Zou X, Dey S, Dunbrack R, Levy E, Wodak S. Discriminating physiological from non-physiological interfaces in structures of protein complexes: A community-wide study. Proteomics 2023; 23:e2200323. [PMID: 37365936 PMCID: PMC10937251 DOI: 10.1002/pmic.202200323] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 06/28/2023]
Abstract
Reliably scoring and ranking candidate models of protein complexes and assigning their oligomeric state from the structure of the crystal lattice represent outstanding challenges. A community-wide effort was launched to tackle these challenges. The latest resources on protein complexes and interfaces were exploited to derive a benchmark dataset consisting of 1677 homodimer protein crystal structures, including a balanced mix of physiological and non-physiological complexes. The non-physiological complexes in the benchmark were selected to bury a similar or larger interface area than their physiological counterparts, making it more difficult for scoring functions to differentiate between them. Next, 252 functions for scoring protein-protein interfaces previously developed by 13 groups were collected and evaluated for their ability to discriminate between physiological and non-physiological complexes. A simple consensus score generated using the best performing score of each of the 13 groups, and a cross-validated Random Forest (RF) classifier were created. Both approaches showed excellent performance, with an area under the Receiver Operating Characteristic (ROC) curve of 0.93 and 0.94, respectively, outperforming individual scores developed by different groups. Additionally, AlphaFold2 engines recalled the physiological dimers with significantly higher accuracy than the non-physiological set, lending support to the reliability of our benchmark dataset annotations. Optimizing the combined power of interface scoring functions and evaluating it on challenging benchmark datasets appears to be a promising strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Julia K. Varga
- Hebrew University of Jerusalem Institute for Medical Research Israel-Canada
| | | | | | | | | | | | | | - Jérôme Tubiana
- Tel Aviv University Blavatnik School of Computer Science
| | - Haim Wolfson
- Tel Aviv University Blavatnik School of Computer Science
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xiaoqin Zou
- Dalton Cardiovascular Research Center, Institute for Data Science and Informatics, University of Missouri
| | | | | | | | | |
Collapse
|
16
|
Mohseni Behbahani Y, Saighi P, Corsi F, Laine E, Carbone A. LEVELNET to visualize, explore, and compare protein-protein interaction networks. Proteomics 2023; 23:e2200159. [PMID: 37403279 DOI: 10.1002/pmic.202200159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 07/06/2023]
Abstract
Physical interactions between proteins are central to all biological processes. Yet, the current knowledge of who interacts with whom in the cell and in what manner relies on partial, noisy, and highly heterogeneous data. Thus, there is a need for methods comprehensively describing and organizing such data. LEVELNET is a versatile and interactive tool for visualizing, exploring, and comparing protein-protein interaction (PPI) networks inferred from different types of evidence. LEVELNET helps to break down the complexity of PPI networks by representing them as multi-layered graphs and by facilitating the direct comparison of their subnetworks toward biological interpretation. It focuses primarily on the protein chains whose 3D structures are available in the Protein Data Bank. We showcase some potential applications, such as investigating the structural evidence supporting PPIs associated to specific biological processes, assessing the co-localization of interaction partners, comparing the PPI networks obtained through computational experiments versus homology transfer, and creating PPI benchmarks with desired properties.
Collapse
Affiliation(s)
- Yasser Mohseni Behbahani
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris, France
| | - Paul Saighi
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris, France
| | - Flavia Corsi
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris, France
| | - Elodie Laine
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris, France
| | - Alessandra Carbone
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris, France
| |
Collapse
|
17
|
Yang L, Guo S, Liao C, Hou C, Jiang S, Li J, Ma X, Shi L, Ye L, He X. Spatial Layouts of Low-Entropy Hydration Shells Guide Protein Binding. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300022. [PMID: 37483413 PMCID: PMC10362119 DOI: 10.1002/gch2.202300022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/29/2023] [Indexed: 07/25/2023]
Abstract
Protein-protein binding enables orderly biological self-organization and is therefore considered a miracle of nature. Protein‒protein binding is driven by electrostatic forces, hydrogen bonding, van der Waals force, and hydrophobic interactions. Among these physical forces, only hydrophobic interactions can be considered long-range intermolecular attractions between proteins due to the electrostatic shielding of surrounding water molecules. Low-entropy hydration shells around proteins drive hydrophobic attraction among them that essentially coordinate protein‒protein binding. Here, an innovative method is developed for identifying low-entropy regions of hydration shells of proteins by screening off pseudohydrophilic groups on protein surfaces and revealing that large low-entropy regions of the hydration shells typically cover the binding sites of individual proteins. According to an analysis of determined protein complex structures, shape matching between a large low-entropy hydration shell region of a protein and that of its partner at the binding sites is revealed as a universal law. Protein‒protein binding is thus found to be mainly guided by hydrophobic collapse between the shape-matched low-entropy hydration shells that is verified by bioinformatics analyses of hundreds of structures of protein complexes, which cover four test systems. A simple algorithm is proposed to accurately predict protein binding sites.
Collapse
Affiliation(s)
- Lin Yang
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
- School of AerospaceMechanical and Mechatronic EngineeringThe University of SydneyNSW2006Australia
| | - Shuai Guo
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Chenchen Liao
- School of Electronics and Information EngineeringHarbin Institute of TechnologyHarbin150080P. R. China
| | - Chengyu Hou
- School of Electronics and Information EngineeringHarbin Institute of TechnologyHarbin150080P. R. China
| | - Shenda Jiang
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Jiacheng Li
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Xiaoliang Ma
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Liping Shi
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Lin Ye
- School of System Design and Intelligent ManufacturingSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
- Shenzhen STRONG Advanced Materials Research Institute Co., LtdShenzhen518035P. R. China
| |
Collapse
|
18
|
Chen X, Morehead A, Liu J, Cheng J. A gated graph transformer for protein complex structure quality assessment and its performance in CASP15. Bioinformatics 2023; 39:i308-i317. [PMID: 37387159 PMCID: PMC10311325 DOI: 10.1093/bioinformatics/btad203] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
MOTIVATION Proteins interact to form complexes to carry out essential biological functions. Computational methods such as AlphaFold-multimer have been developed to predict the quaternary structures of protein complexes. An important yet largely unsolved challenge in protein complex structure prediction is to accurately estimate the quality of predicted protein complex structures without any knowledge of the corresponding native structures. Such estimations can then be used to select high-quality predicted complex structures to facilitate biomedical research such as protein function analysis and drug discovery. RESULTS In this work, we introduce a new gated neighborhood-modulating graph transformer to predict the quality of 3D protein complex structures. It incorporates node and edge gates within a graph transformer framework to control information flow during graph message passing. We trained, evaluated and tested the method (called DProQA) on newly-curated protein complex datasets before the 15th Critical Assessment of Techniques for Protein Structure Prediction (CASP15) and then blindly tested it in the 2022 CASP15 experiment. The method was ranked 3rd among the single-model quality assessment methods in CASP15 in terms of the ranking loss of TM-score on 36 complex targets. The rigorous internal and external experiments demonstrate that DProQA is effective in ranking protein complex structures. AVAILABILITY AND IMPLEMENTATION The source code, data, and pre-trained models are available at https://github.com/jianlin-cheng/DProQA.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65201, United States
| | - Alex Morehead
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65201, United States
| | - Jian Liu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65201, United States
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65201, United States
| |
Collapse
|
19
|
McFee M, Kim PM. GDockScore: a graph-based protein-protein docking scoring function. BIOINFORMATICS ADVANCES 2023; 3:vbad072. [PMID: 37359726 PMCID: PMC10290236 DOI: 10.1093/bioadv/vbad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
Summary Protein complexes play vital roles in a variety of biological processes, such as mediating biochemical reactions, the immune response and cell signalling, with 3D structure specifying function. Computational docking methods provide a means to determine the interface between two complexed polypeptide chains without using time-consuming experimental techniques. The docking process requires the optimal solution to be selected with a scoring function. Here, we propose a novel graph-based deep learning model that utilizes mathematical graph representations of proteins to learn a scoring function (GDockScore). GDockScore was pre-trained on docking outputs generated with the Protein Data Bank biounits and the RosettaDock protocol, and then fine-tuned on HADDOCK decoys generated on the ZDOCK Protein Docking Benchmark. GDockScore performs similarly to the Rosetta scoring function on docking decoys generated using the RosettaDock protocol. Furthermore, state-of-the-art is achieved on the CAPRI score set, a challenging dataset for developing docking scoring functions. Availability and implementation The model implementation is available at https://gitlab.com/mcfeemat/gdockscore. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Matthew McFee
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, The University of Toronto, Toronto, ON M5S 3E1, Canada
| | | |
Collapse
|
20
|
Shuvo MH, Karim M, Roche R, Bhattacharya D. PIQLE: protein-protein interface quality estimation by deep graph learning of multimeric interaction geometries. BIOINFORMATICS ADVANCES 2023; 3:vbad070. [PMID: 37351310 PMCID: PMC10281963 DOI: 10.1093/bioadv/vbad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023]
Abstract
Motivation Accurate modeling of protein-protein interaction interface is essential for high-quality protein complex structure prediction. Existing approaches for estimating the quality of a predicted protein complex structural model utilize only the physicochemical properties or energetic contributions of the interacting atoms, ignoring evolutionarily information or inter-atomic multimeric geometries, including interaction distance and orientations. Results Here, we present PIQLE, a deep graph learning method for protein-protein interface quality estimation. PIQLE leverages multimeric interaction geometries and evolutionarily information along with sequence- and structure-derived features to estimate the quality of individual interactions between the interfacial residues using a multi-head graph attention network and then probabilistically combines the estimated quality for scoring the overall interface. Experimental results show that PIQLE consistently outperforms existing state-of-the-art methods including DProQA, TRScore, GNN-DOVE and DOVE on multiple independent test datasets across a wide range of evaluation metrics. Our ablation study and comparison with the self-assessment module of AlphaFold-Multimer repurposed for protein complex scoring reveal that the performance gains are connected to the effectiveness of the multi-head graph attention network in leveraging multimeric interaction geometries and evolutionary information along with other sequence- and structure-derived features adopted in PIQLE. Availability and implementation An open-source software implementation of PIQLE is freely available at https://github.com/Bhattacharya-Lab/PIQLE. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Md Hossain Shuvo
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mohimenul Karim
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rahmatullah Roche
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | | |
Collapse
|
21
|
Wodak SJ, Vajda S, Lensink MF, Kozakov D, Bates PA. Critical Assessment of Methods for Predicting the 3D Structure of Proteins and Protein Complexes. Annu Rev Biophys 2023; 52:183-206. [PMID: 36626764 PMCID: PMC10885158 DOI: 10.1146/annurev-biophys-102622-084607] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Advances in a scientific discipline are often measured by small, incremental steps. In this review, we report on two intertwined disciplines in the protein structure prediction field, modeling of single chains and modeling of complexes, that have over decades emulated this pattern, as monitored by the community-wide blind prediction experiments CASP and CAPRI. However, over the past few years, dramatic advances were observed for the accurate prediction of single protein chains, driven by a surge of deep learning methodologies entering the prediction field. We review the mainscientific developments that enabled these recent breakthroughs and feature the important role of blind prediction experiments in building up and nurturing the structure prediction field. We discuss how the new wave of artificial intelligence-based methods is impacting the fields of computational and experimental structural biology and highlight areas in which deep learning methods are likely to lead to future developments, provided that major challenges are overcome.
Collapse
Affiliation(s)
- Shoshana J Wodak
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium;
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA;
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Marc F Lensink
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France;
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA;
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Paul A Bates
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, United Kingdom;
| |
Collapse
|
22
|
Rui H, Ashton KS, Min J, Wang C, Potts PR. Protein-protein interfaces in molecular glue-induced ternary complexes: classification, characterization, and prediction. RSC Chem Biol 2023; 4:192-215. [PMID: 36908699 PMCID: PMC9994104 DOI: 10.1039/d2cb00207h] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023] Open
Abstract
Molecular glues are a class of small molecules that stabilize the interactions between proteins. Naturally occurring molecular glues are present in many areas of biology where they serve as central regulators of signaling pathways. Importantly, several clinical compounds act as molecular glue degraders that stabilize interactions between E3 ubiquitin ligases and target proteins, leading to their degradation. Molecular glues hold promise as a new generation of therapeutic agents, including those molecular glue degraders that can redirect the protein degradation machinery in a precise way. However, rational discovery of molecular glues is difficult in part due to the lack of understanding of the protein-protein interactions they stabilize. In this review, we summarize the structures of known molecular glue-induced ternary complexes and the interface properties. Detailed analysis shows different mechanisms of ternary structure formation. Additionally, we also review computational approaches for predicting protein-protein interfaces and highlight the promises and challenges. This information will ultimately help inform future approaches for rational molecular glue discovery.
Collapse
Affiliation(s)
- Huan Rui
- Center for Research Acceleration by Digital Innovation, Amgen Research Thousand Oaks CA 91320 USA
| | - Kate S Ashton
- Medicinal Chemistry, Amgen Research Thousand Oaks CA 91320 USA
| | - Jaeki Min
- Induced Proximity Platform, Amgen Research Thousand Oaks CA 91320 USA
| | - Connie Wang
- Digital, Technology & Innovation, Amgen Thousand Oaks CA 91320 USA
| | | |
Collapse
|
23
|
Shuvo MH, Karim M, Roche R, Bhattacharya D. PIQLE: protein-protein interface quality estimation by deep graph learning of multimeric interaction geometries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528528. [PMID: 36824789 PMCID: PMC9949034 DOI: 10.1101/2023.02.14.528528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Accurate modeling of protein-protein interaction interface is essential for high-quality protein complex structure prediction. Existing approaches for estimating the quality of a predicted protein complex structural model utilize only the physicochemical properties or energetic contributions of the interacting atoms, ignoring evolutionarily information or inter-atomic multimeric geometries, including interaction distance and orientations. Here we present PIQLE, a deep graph learning method for protein-protein interface quality estimation. PIQLE leverages multimeric interaction geometries and evolutionarily information along with sequence- and structure-derived features to estimate the quality of the individual interactions between the interfacial residues using a multihead graph attention network and then probabilistically combines the estimated quality of the interfacial residues for scoring the overall interface. Experimental results show that PIQLE consistently outperforms existing state-of-the-art methods on multiple independent test datasets across a wide range of evaluation metrics. Our ablation study reveals that the performance gains are connected to the effectiveness of the multihead graph attention network in leveraging multimeric interaction geometries and evolutionary information along with other sequence- and structure-derived features adopted in PIQLE. An open-source software implementation of PIQLE, licensed under the GNU General Public License v3, is freely available at https://github.com/Bhattacharya-Lab/PIQLE .
Collapse
Affiliation(s)
- Md Hossain Shuvo
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Mohimenul Karim
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Rahmatullah Roche
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Debswapna Bhattacharya
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States of America
| |
Collapse
|
24
|
Durairaj J, de Ridder D, van Dijk AD. Beyond sequence: Structure-based machine learning. Comput Struct Biotechnol J 2022; 21:630-643. [PMID: 36659927 PMCID: PMC9826903 DOI: 10.1016/j.csbj.2022.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Recent breakthroughs in protein structure prediction demarcate the start of a new era in structural bioinformatics. Combined with various advances in experimental structure determination and the uninterrupted pace at which new structures are published, this promises an age in which protein structure information is as prevalent and ubiquitous as sequence. Machine learning in protein bioinformatics has been dominated by sequence-based methods, but this is now changing to make use of the deluge of rich structural information as input. Machine learning methods making use of structures are scattered across literature and cover a number of different applications and scopes; while some try to address questions and tasks within a single protein family, others aim to capture characteristics across all available proteins. In this review, we look at the variety of structure-based machine learning approaches, how structures can be used as input, and typical applications of these approaches in protein biology. We also discuss current challenges and opportunities in this all-important and increasingly popular field.
Collapse
Affiliation(s)
- Janani Durairaj
- Biozentrum, University of Basel, Basel, Switzerland
- Bioinformatics Group, Department of Plant Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Department of Plant Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Aalt D.J. van Dijk
- Bioinformatics Group, Department of Plant Sciences, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
25
|
Collins KW, Copeland MM, Kotthoff I, Singh A, Kundrotas PJ, Vakser IA. Dockground resource for protein recognition studies. Protein Sci 2022; 31:e4481. [PMID: 36281025 PMCID: PMC9667896 DOI: 10.1002/pro.4481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 12/13/2022]
Abstract
Structural information of protein-protein interactions is essential for characterization of life processes at the molecular level. While a small fraction of known protein interactions has experimentally determined structures, computational modeling of protein complexes (protein docking) has to fill the gap. The Dockground resource (http://dockground.compbio.ku.edu) provides a collection of datasets for the development and testing of protein docking techniques. Currently, Dockground contains datasets for the bound and the unbound (experimentally determined and simulated) protein structures, model-model complexes, docking decoys of experimentally determined and modeled proteins, and templates for comparative docking. The Dockground bound proteins dataset is a core set, from which other Dockground datasets are generated. It is devised as a relational PostgreSQL database containing information on experimentally determined protein-protein complexes. This report on the Dockground resource describes current status of the datasets, new automated update procedures and further development of the core datasets. We also present a new Dockground interactive web interface, which allows search by various parameters, such as release date, multimeric state, complex type, structure resolution, and so on, visualization of the search results with a number of customizable parameters, as well as downloadable datasets with predefined levels of sequence and structure redundancy.
Collapse
Affiliation(s)
| | | | - Ian Kotthoff
- Computational Biology ProgramThe University of KansasKansasUSA
| | - Amar Singh
- Computational Biology ProgramThe University of KansasKansasUSA
| | | | - Ilya A. Vakser
- Computational Biology ProgramThe University of KansasKansasUSA
- Department of Molecular BiosciencesThe University of KansasKansasUSA
| |
Collapse
|
26
|
Jenkins NW, Kundrotas PJ, Vakser IA. Size of the protein-protein energy funnel in crowded environment. Front Mol Biosci 2022; 9:1031225. [PMID: 36425657 PMCID: PMC9679368 DOI: 10.3389/fmolb.2022.1031225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
Association of proteins to a significant extent is determined by their geometric complementarity. Large-scale recognition factors, which directly relate to the funnel-like intermolecular energy landscape, provide important insights into the basic rules of protein recognition. Previously, we showed that simple energy functions and coarse-grained models reveal major characteristics of the energy landscape. As new computational approaches increasingly address structural modeling of a whole cell at the molecular level, it becomes important to account for the crowded environment inside the cell. The crowded environment drastically changes protein recognition properties, and thus significantly alters the underlying energy landscape. In this study, we addressed the effect of crowding on the protein binding funnel, focusing on the size of the funnel. As crowders occupy the funnel volume, they make it less accessible to the ligands. Thus, the funnel size, which can be defined by ligand occupancy, is generally reduced with the increase of the crowders concentration. This study quantifies this reduction for different concentration of crowders and correlates this dependence with the structural details of the interacting proteins. The results provide a better understanding of the rules of protein association in the crowded environment.
Collapse
Affiliation(s)
- Nathan W. Jenkins
- Computational Biology Program, The University of Kansas, Lawrence, KS, United States
| | - Petras J. Kundrotas
- Computational Biology Program, The University of Kansas, Lawrence, KS, United States
- *Correspondence: Petras J. Kundrotas, ; Ilya A. Vakser,
| | - Ilya A. Vakser
- Computational Biology Program, The University of Kansas, Lawrence, KS, United States
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, United States
- *Correspondence: Petras J. Kundrotas, ; Ilya A. Vakser,
| |
Collapse
|
27
|
Akdel M, Pires DEV, Pardo EP, Jänes J, Zalevsky AO, Mészáros B, Bryant P, Good LL, Laskowski RA, Pozzati G, Shenoy A, Zhu W, Kundrotas P, Serra VR, Rodrigues CHM, Dunham AS, Burke D, Borkakoti N, Velankar S, Frost A, Basquin J, Lindorff-Larsen K, Bateman A, Kajava AV, Valencia A, Ovchinnikov S, Durairaj J, Ascher DB, Thornton JM, Davey NE, Stein A, Elofsson A, Croll TI, Beltrao P. A structural biology community assessment of AlphaFold2 applications. Nat Struct Mol Biol 2022; 29:1056-1067. [PMID: 36344848 PMCID: PMC9663297 DOI: 10.1038/s41594-022-00849-w] [Citation(s) in RCA: 298] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 09/20/2022] [Indexed: 11/09/2022]
Abstract
Most proteins fold into 3D structures that determine how they function and orchestrate the biological processes of the cell. Recent developments in computational methods for protein structure predictions have reached the accuracy of experimentally determined models. Although this has been independently verified, the implementation of these methods across structural-biology applications remains to be tested. Here, we evaluate the use of AlphaFold2 (AF2) predictions in the study of characteristic structural elements; the impact of missense variants; function and ligand binding site predictions; modeling of interactions; and modeling of experimental structural data. For 11 proteomes, an average of 25% additional residues can be confidently modeled when compared with homology modeling, identifying structural features rarely seen in the Protein Data Bank. AF2-based predictions of protein disorder and complexes surpass dedicated tools, and AF2 models can be used across diverse applications equally well compared with experimentally determined structures, when the confidence metrics are critically considered. In summary, we find that these advances are likely to have a transformative impact in structural biology and broader life-science research.
Collapse
Affiliation(s)
- Mehmet Akdel
- Bioinformatics Group, Department of Plant Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Douglas E V Pires
- School of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia
| | - Eduard Porta Pardo
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Jürgen Jänes
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Arthur O Zalevsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | | | - Patrick Bryant
- Dep of Biochemistry and Biophysics and Science for Life Laboratory, Solna, Sweden
| | - Lydia L Good
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Roman A Laskowski
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Gabriele Pozzati
- Dep of Biochemistry and Biophysics and Science for Life Laboratory, Solna, Sweden
| | - Aditi Shenoy
- Dep of Biochemistry and Biophysics and Science for Life Laboratory, Solna, Sweden
| | - Wensi Zhu
- Dep of Biochemistry and Biophysics and Science for Life Laboratory, Solna, Sweden
| | - Petras Kundrotas
- Dep of Biochemistry and Biophysics and Science for Life Laboratory, Solna, Sweden
| | | | - Carlos H M Rodrigues
- School of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia
| | - Alistair S Dunham
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - David Burke
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Neera Borkakoti
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Sameer Velankar
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Adam Frost
- Department of Biochemistry and Biophysics University of California, San Francisco, CA, USA
| | - Jérôme Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Andrey V Kajava
- Université de Montpellier, Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM) CNRS, Montpellier, France
| | | | - Sergey Ovchinnikov
- Faculty of Arts and Sciences, Division of Science, Harvard University, Cambridge, MA, USA.
| | | | - David B Ascher
- School of Chemistry and Molecular Biology, University of Queensland, Brisbane, Queensland, Australia.
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.
| | | | - Amelie Stein
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Arne Elofsson
- Dep of Biochemistry and Biophysics and Science for Life Laboratory, Solna, Sweden.
| | - Tristan I Croll
- Cambridge Institute for Medical Research, Department of Haematology, The University of Cambridge, Cambridge, UK.
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
28
|
Rodríguez-Lumbreras LA, Jiménez-García B, Giménez-Santamarina S, Fernández-Recio J. pyDockDNA: A new web server for energy-based protein-DNA docking and scoring. Front Mol Biosci 2022; 9:988996. [PMID: 36275623 PMCID: PMC9582769 DOI: 10.3389/fmolb.2022.988996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Proteins and nucleic acids are essential biological macromolecules for cell life. Indeed, interactions between proteins and DNA regulate many biological processes such as protein synthesis, signal transduction, DNA storage, or DNA replication and repair. Despite their importance, less than 4% of total structures deposited in the Protein Data Bank (PDB) correspond to protein-DNA complexes, and very few computational methods are available to model their structure. We present here the pyDockDNA web server, which can successfully model a protein-DNA complex with a reasonable predictive success rate (as benchmarked on a standard dataset of protein-DNA complex structures, where DNA is in B-DNA conformation). The server implements the pyDockDNA program, as a module of pyDock suite, thus including third-party programs, modules, and previously developed tools, as well as new modules and parameters to handle the DNA properly. The user is asked to enter Protein Data Bank files for protein and DNA input structures (or suitable models) and select the chains to be docked. The server calculations are mainly divided into three steps: sampling by FTDOCK, scoring with new energy-based parameters and the possibility of applying external restraints. The user can select different options for these steps. The final output screen shows a 3D representation of the top 10 models and a table sorting the model according to the scoring function selected previously. All these output files can be downloaded, including the top 100 models predicted by pyDockDNA. The server can be freely accessed for academic use (https://model3dbio.csic.es/pydockdna).
Collapse
Affiliation(s)
| | - Brian Jiménez-García
- Barcelona Supercomputing Center, Barcelona, Spain
- Zymvol Biomodeling SL, Barcelona, Spain
| | | | - Juan Fernández-Recio
- Barcelona Supercomputing Center, Barcelona, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV), Logroño, Spain
- *Correspondence: Juan Fernández-Recio,
| |
Collapse
|
29
|
Mohseni Behbahani Y, Crouzet S, Laine E, Carbone A. Deep Local Analysis evaluates protein docking conformations with locally oriented cubes. Bioinformatics 2022; 38:4505-4512. [PMID: 35962985 PMCID: PMC9525006 DOI: 10.1093/bioinformatics/btac551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION With the recent advances in protein 3D structure prediction, protein interactions are becoming more central than ever before. Here, we address the problem of determining how proteins interact with one another. More specifically, we investigate the possibility of discriminating near-native protein complex conformations from incorrect ones by exploiting local environments around interfacial residues. RESULTS Deep Local Analysis (DLA)-Ranker is a deep learning framework applying 3D convolutions to a set of locally oriented cubes representing the protein interface. It explicitly considers the local geometry of the interfacial residues along with their neighboring atoms and the regions of the interface with different solvent accessibility. We assessed its performance on three docking benchmarks made of half a million acceptable and incorrect conformations. We show that DLA-Ranker successfully identifies near-native conformations from ensembles generated by molecular docking. It surpasses or competes with other deep learning-based scoring functions. We also showcase its usefulness to discover alternative interfaces. AVAILABILITY AND IMPLEMENTATION http://gitlab.lcqb.upmc.fr/dla-ranker/DLA-Ranker.git. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yasser Mohseni Behbahani
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris 75005, France
| | - Simon Crouzet
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris 75005, France
| | | | | |
Collapse
|
30
|
Pozzati G, Kundrotas P, Elofsson A. Scoring of protein–protein docking models utilizing predicted interface residues. Proteins 2022; 90:1493-1505. [PMID: 35246997 PMCID: PMC9314140 DOI: 10.1002/prot.26330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/08/2022]
Abstract
Scoring docking solutions is a difficult task, and many methods have been developed for this purpose. In docking, only a handful of the hundreds of thousands of models generated by docking algorithms are acceptable, causing difficulties when developing scoring functions. Today's best scoring functions can significantly increase the number of top‐ranked models but still fail for most targets. Here, we examine the possibility of utilizing predicted interface residues to score docking models generated during the scan stage of a docking algorithm. Many methods have been developed to infer the regions of a protein surface that interact with another protein, but most have not been benchmarked using docking algorithms. This study systematically tests different interface prediction methods for scoring >300.000 low‐resolution rigid‐body template free docking decoys. Overall we find that contact‐based interface prediction by BIPSPI is the best method to score docking solutions, with >12% of first ranked docking models being acceptable. Additional experiments indicated precision as a high‐importance metric when estimating interface prediction quality, focusing on docking constraints production. Finally, we discussed several limitations for adopting interface predictions as constraints in a docking protocol.
Collapse
Affiliation(s)
- Gabriele Pozzati
- Department of Biochemistry and Biophysics and Science for Life Laboratory Stockholm University Solna Sweden
| | - Petras Kundrotas
- Department of Biochemistry and Biophysics and Science for Life Laboratory Stockholm University Solna Sweden
- Center for Bioinformatics and Department of Molecular Biosciences University of Kansas Lawrence Kansas USA
| | - Arne Elofsson
- Department of Biochemistry and Biophysics and Science for Life Laboratory Stockholm University Solna Sweden
| |
Collapse
|
31
|
Kotthoff I, Kundrotas PJ, Vakser IA. Dockground
scoring benchmarks for protein docking. Proteins 2022; 90:1259-1266. [DOI: 10.1002/prot.26306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/06/2021] [Accepted: 01/21/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Ian Kotthoff
- Computational Biology Program The University of Kansas Lawrence Kansas USA
| | | | - Ilya A. Vakser
- Computational Biology Program The University of Kansas Lawrence Kansas USA
- Department of Molecular Biosciences The University of Kansas Lawrence Kansas USA
| |
Collapse
|
32
|
ScanNet: an interpretable geometric deep learning model for structure-based protein binding site prediction. Nat Methods 2022; 19:730-739. [DOI: 10.1038/s41592-022-01490-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 04/12/2022] [Indexed: 11/08/2022]
|
33
|
Improved prediction of protein-protein interactions using AlphaFold2. Nat Commun 2022; 13:1265. [PMID: 35273146 PMCID: PMC8913741 DOI: 10.1038/s41467-022-28865-w] [Citation(s) in RCA: 483] [Impact Index Per Article: 161.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/11/2022] [Indexed: 01/02/2023] Open
Abstract
Predicting the structure of interacting protein chains is a fundamental step towards understanding protein function. Unfortunately, no computational method can produce accurate structures of protein complexes. AlphaFold2, has shown unprecedented levels of accuracy in modelling single chain protein structures. Here, we apply AlphaFold2 for the prediction of heterodimeric protein complexes. We find that the AlphaFold2 protocol together with optimised multiple sequence alignments, generate models with acceptable quality (DockQ ≥ 0.23) for 63% of the dimers. From the predicted interfaces we create a simple function to predict the DockQ score which distinguishes acceptable from incorrect models as well as interacting from non-interacting proteins with state-of-art accuracy. We find that, using the predicted DockQ scores, we can identify 51% of all interacting pairs at 1% FPR. Predicting the structure of protein complexes is extremely difficult. Here, authors apply AlphaFold2 with optimized multiple sequence alignments to model complexes of interacting proteins, enabling prediction of both if and how proteins interact with state-of-art accuracy.
Collapse
|
34
|
Mahbub S, Bayzid MS. EGRET: edge aggregated graph attention networks and transfer learning improve protein-protein interaction site prediction. Brief Bioinform 2022; 23:6518045. [PMID: 35106547 DOI: 10.1093/bib/bbab578] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/25/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
MOTIVATION Protein-protein interactions (PPIs) are central to most biological processes. However, reliable identification of PPI sites using conventional experimental methods is slow and expensive. Therefore, great efforts are being put into computational methods to identify PPI sites. RESULTS We present Edge Aggregated GRaph Attention NETwork (EGRET), a highly accurate deep learning-based method for PPI site prediction, where we have used an edge aggregated graph attention network to effectively leverage the structural information. We, for the first time, have used transfer learning in PPI site prediction. Our proposed edge aggregated network, together with transfer learning, has achieved notable improvement over the best alternate methods. Furthermore, we systematically investigated EGRET's network behavior to provide insights about the causes of its decisions. AVAILABILITY EGRET is freely available as an open source project at https://github.com/Sazan-Mahbub/EGRET. CONTACT shams_bayzid@cse.buet.ac.bd.
Collapse
Affiliation(s)
- Sazan Mahbub
- Department of Computer Science University of Maryland, College Park, Maryland 20742, USA
| | - Md Shamsuzzoha Bayzid
- Department of Computer Science and Engineering Bangladesh University of Engineering and Technology, Dhaka-1205, Bangladesh
| |
Collapse
|
35
|
Myung Y, Pires DEV, Ascher DB. CSM-AB: graph-based antibody-antigen binding affinity prediction and docking scoring function. Bioinformatics 2022; 38:1141-1143. [PMID: 34734992 DOI: 10.1093/bioinformatics/btab762] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Understanding antibody-antigen interactions is key to improving their binding affinities and specificities. While experimental approaches are fundamental for developing new therapeutics, computational methods can provide quick assessment of binding landscapes, guiding experimental design. Despite this, little effort has been devoted to accurately predicting the binding affinity between antibodies and antigens and to develop tailored docking scoring functions for this type of interaction. Here, we developed CSM-AB, a machine learning method capable of predicting antibody-antigen binding affinity by modelling interaction interfaces as graph-based signatures. RESULTS CSM-AB outperformed alternative methods achieving a Pearson's correlation of up to 0.64 on blind tests. We also show CSM-AB can accurately rank near-native poses, working effectively as a docking scoring function. We believe CSM-AB will be an invaluable tool to assist in the development of new immunotherapies. AVAILABILITY AND IMPLEMENTATION CSM-AB is freely available as a user-friendly web interface and API at http://biosig.unimelb.edu.au/csm_ab/datasets. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yoochan Myung
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Douglas E V Pires
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia.,School of Computing and Information Systems, University of Melbourne, Melbourne, VIC, Australia.,School of Chemistry and Molecular Biosciences, University Of Queensland, St Lucia, QLD, Australia
| | - David B Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia.,School of Chemistry and Molecular Biosciences, University Of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
36
|
Abstract
The biological significance of proteins attracted the scientific community in exploring their characteristics. The studies shed light on the interaction patterns and functions of proteins in a living body. Due to their practical difficulties, reliable experimental techniques pave the way for introducing computational methods in the interaction prediction. Automated methods reduced the difficulties but could not yet replace experimental studies as the field is still evolving. Interaction prediction problem being critical needs highly accurate results, but none of the existing methods could offer reliable performance that can parallel with experimental results yet. This article aims to assess the existing computational docking algorithms, their challenges, and future scope. Blind docking techniques are quite helpful when no information other than the individual structures are available. As more and more complex structures are being added to different databases, information-driven approaches can be a good alternative. Artificial intelligence, ruling over the major fields, is expected to take over this domain very shortly.
Collapse
|
37
|
PDB-wide identification of physiological hetero-oligomeric assemblies based on conserved quaternary structure geometry. Structure 2021; 29:1303-1311.e3. [PMID: 34520740 PMCID: PMC8575123 DOI: 10.1016/j.str.2021.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/22/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022]
Abstract
An accurate understanding of biomolecular mechanisms and diseases requires information on protein quaternary structure (QS). A critical challenge in inferring QS information from crystallography data is distinguishing biological interfaces from fortuitous crystal-packing contacts. Here, we employ QS conservation across homologs to infer the biological relevance of hetero-oligomers. We compare the structures and compositions of hetero-oligomers, which allow us to annotate 7,810 complexes as physiologically relevant, 1,060 as likely errors, and 1,432 with comparative information on subunit stoichiometry and composition. Excluding immunoglobulins, these annotations encompass over 51% of hetero-oligomers in the PDB. We curate a dataset of 577 hetero-oligomeric complexes to benchmark these annotations, which reveals an accuracy >94%. When homology information is not available, we compare QS across repositories (PDB, PISA, and EPPIC) to derive confidence estimates. This work provides high-quality annotations along with a large benchmark dataset of hetero-assemblies.
Collapse
|
38
|
Laine E, Eismann S, Elofsson A, Grudinin S. Protein sequence-to-structure learning: Is this the end(-to-end revolution)? Proteins 2021; 89:1770-1786. [PMID: 34519095 DOI: 10.1002/prot.26235] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 01/08/2023]
Abstract
The potential of deep learning has been recognized in the protein structure prediction community for some time, and became indisputable after CASP13. In CASP14, deep learning has boosted the field to unanticipated levels reaching near-experimental accuracy. This success comes from advances transferred from other machine learning areas, as well as methods specifically designed to deal with protein sequences and structures, and their abstractions. Novel emerging approaches include (i) geometric learning, that is, learning on representations such as graphs, three-dimensional (3D) Voronoi tessellations, and point clouds; (ii) pretrained protein language models leveraging attention; (iii) equivariant architectures preserving the symmetry of 3D space; (iv) use of large meta-genome databases; (v) combinations of protein representations; and (vi) finally truly end-to-end architectures, that is, differentiable models starting from a sequence and returning a 3D structure. Here, we provide an overview and our opinion of the novel deep learning approaches developed in the last 2 years and widely used in CASP14.
Collapse
Affiliation(s)
- Elodie Laine
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, France
| | - Stephan Eismann
- Department of Computer Science and Applied Physics, Stanford University, Stanford, California, USA
| | - Arne Elofsson
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Sergei Grudinin
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, Grenoble, France
| |
Collapse
|
39
|
Gao F, Glaser J, Glotzer SC. The role of complementary shape in protein dimerization. SOFT MATTER 2021; 17:7376-7383. [PMID: 34304260 DOI: 10.1039/d1sm00468a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Shape guides colloidal nanoparticles to form complex assemblies, but its role in defining interfaces in biomolecular complexes is less clear. In this work, we isolate the role of shape in protein complexes by studying the reversible binding processes of 46 protein dimer pairs, and investigate when entropic effects from shape complementarity alone are sufficient to predict the native protein binding interface. We employ depletants using a generic, implicit depletion model to amplify the magnitude of the entropic forces arising from lock-and-key binding and isolate the effect of shape complementarity in protein dimerization. For 13% of the complexes studied here, protein shape is sufficient to predict native complexes as equilibrium assemblies. We elucidate the results by analyzing the importance of competing binding configurations and how it affects the assembly. A machine learning classifier, with a precision of 89.14% and a recall of 77.11%, is able to identify the cases where shape alone predicts the native protein interface.
Collapse
Affiliation(s)
- Fengyi Gao
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
40
|
Quignot C, Postic G, Bret H, Rey J, Granger P, Murail S, Chacón P, Andreani J, Tufféry P, Guerois R. InterEvDock3: a combined template-based and free docking server with increased performance through explicit modeling of complex homologs and integration of covariation-based contact maps. Nucleic Acids Res 2021; 49:W277-W284. [PMID: 33978743 PMCID: PMC8265070 DOI: 10.1093/nar/gkab358] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
The InterEvDock3 protein docking server exploits the constraints of evolution by multiple means to generate structural models of protein assemblies. The server takes as input either several sequences or 3D structures of proteins known to interact. It returns a set of 10 consensus candidate complexes, together with interface predictions to guide further experimental validation interactively. Three key novelties were implemented in InterEvDock3 to help obtain more reliable models: users can (i) generate template-based structural models of assemblies using close and remote homologs of known 3D structure, detected through an automated search protocol, (ii) select the assembly models most consistent with contact maps from external methods that implement covariation-based contact prediction with or without deep learning and (iii) exploit a novel coevolution-based scoring scheme at atomic level, which leads to significantly higher free docking success rates. The performance of the server was validated on two large free docking benchmark databases, containing respectively 230 unbound targets (Weng dataset) and 812 models of unbound targets (PPI4DOCK dataset). Its effectiveness has also been proven on a number of challenging examples. The InterEvDock3 web interface is available at http://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock3/.
Collapse
Affiliation(s)
- Chloé Quignot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Guillaume Postic
- Université de Paris, CNRS UMR 8251, INSERM U1133, RPBS, Paris 75205, France
| | - Hélène Bret
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Julien Rey
- Université de Paris, CNRS UMR 8251, INSERM U1133, RPBS, Paris 75205, France
| | - Pierre Granger
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Samuel Murail
- Université de Paris, CNRS UMR 8251, INSERM U1133, RPBS, Paris 75205, France
| | - Pablo Chacón
- Department of Biological Physical Chemistry, Rocasolano Institute of Physical Chemistry C.S.I.C, Madrid, Spain
| | - Jessica Andreani
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Pierre Tufféry
- Université de Paris, CNRS UMR 8251, INSERM U1133, RPBS, Paris 75205, France
| | - Raphaël Guerois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
41
|
Badal VD, Kundrotas PJ, Vakser IA. Text mining for modeling of protein complexes enhanced by machine learning. Bioinformatics 2021; 37:497-505. [PMID: 32960948 PMCID: PMC8088328 DOI: 10.1093/bioinformatics/btaa823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Procedures for structural modeling of protein-protein complexes (protein docking) produce a number of models which need to be further analyzed and scored. Scoring can be based on independently determined constraints on the structure of the complex, such as knowledge of amino acids essential for the protein interaction. Previously, we showed that text mining of residues in freely available PubMed abstracts of papers on studies of protein-protein interactions may generate such constraints. However, absence of post-processing of the spotted residues reduced usability of the constraints, as a significant number of the residues were not relevant for the binding of the specific proteins. RESULTS We explored filtering of the irrelevant residues by two machine learning approaches, Deep Recursive Neural Network (DRNN) and Support Vector Machine (SVM) models with different training/testing schemes. The results showed that the DRNN model is superior to the SVM model when training is performed on the PMC-OA full-text articles and applied to classification (interface or non-interface) of the residues spotted in the PubMed abstracts. When both training and testing is performed on full-text articles or on abstracts, the performance of these models is similar. Thus, in such cases, there is no need to utilize computationally demanding DRNN approach, which is computationally expensive especially at the training stage. The reason is that SVM success is often determined by the similarity in data/text patterns in the training and the testing sets, whereas the sentence structures in the abstracts are, in general, different from those in the full text articles. AVAILABILITYAND IMPLEMENTATION The code and the datasets generated in this study are available at https://gitlab.ku.edu/vakser-lab-public/text-mining/-/tree/2020-09-04. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Ilya A Vakser
- Computational Biology Program.,Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
42
|
Elofsson A. Toward Characterising the Cellular 3D-Proteome. FRONTIERS IN BIOINFORMATICS 2021; 1:598878. [PMID: 36353353 PMCID: PMC9638702 DOI: 10.3389/fbinf.2021.598878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/27/2021] [Indexed: 11/30/2022] Open
|
43
|
Guest JD, Vreven T, Zhou J, Moal I, Jeliazkov JR, Gray JJ, Weng Z, Pierce BG. An expanded benchmark for antibody-antigen docking and affinity prediction reveals insights into antibody recognition determinants. Structure 2021; 29:606-621.e5. [PMID: 33539768 DOI: 10.1016/j.str.2021.01.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 11/15/2020] [Accepted: 01/11/2021] [Indexed: 01/04/2023]
Abstract
Accurate predictive modeling of antibody-antigen complex structures and structure-based antibody design remain major challenges in computational biology, with implications for biotherapeutics, immunity, and vaccines. Through a systematic search for high-resolution structures of antibody-antigen complexes and unbound antibody and antigen structures, in conjunction with identification of experimentally determined binding affinities, we have assembled a non-redundant set of test cases for antibody-antigen docking and affinity prediction. This benchmark more than doubles the number of antibody-antigen complexes and corresponding affinities available in our previous benchmarks, providing an unprecedented view of the determinants of antibody recognition and insights into molecular flexibility. Initial assessments of docking and affinity prediction tools highlight the challenges posed by this diverse set of cases, which includes camelid nanobodies, therapeutic monoclonal antibodies, and broadly neutralizing antibodies targeting viral glycoproteins. This dataset will enable development of advanced predictive modeling and design methods for this therapeutically relevant class of protein-protein interactions.
Collapse
Affiliation(s)
- Johnathan D Guest
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Thom Vreven
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jing Zhou
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Iain Moal
- Computational Sciences, GlaxoSmithKline Research and Development, Stevenage SG1 2NY, UK
| | - Jeliazko R Jeliazkov
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
44
|
Slater O, Miller B, Kontoyianni M. Decoding Protein-protein Interactions: An Overview. Curr Top Med Chem 2021; 20:855-882. [PMID: 32101126 DOI: 10.2174/1568026620666200226105312] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022]
Abstract
Drug discovery has focused on the paradigm "one drug, one target" for a long time. However, small molecules can act at multiple macromolecular targets, which serves as the basis for drug repurposing. In an effort to expand the target space, and given advances in X-ray crystallography, protein-protein interactions have become an emerging focus area of drug discovery enterprises. Proteins interact with other biomolecules and it is this intricate network of interactions that determines the behavior of the system and its biological processes. In this review, we briefly discuss networks in disease, followed by computational methods for protein-protein complex prediction. Computational methodologies and techniques employed towards objectives such as protein-protein docking, protein-protein interactions, and interface predictions are described extensively. Docking aims at producing a complex between proteins, while interface predictions identify a subset of residues on one protein that could interact with a partner, and protein-protein interaction sites address whether two proteins interact. In addition, approaches to predict hot spots and binding sites are presented along with a representative example of our internal project on the chemokine CXC receptor 3 B-isoform and predictive modeling with IP10 and PF4.
Collapse
Affiliation(s)
- Olivia Slater
- Department of Pharmaceutical Sciences, Southern Illinois University, Edwardsville, IL 62026, United States
| | - Bethany Miller
- Department of Pharmaceutical Sciences, Southern Illinois University, Edwardsville, IL 62026, United States
| | - Maria Kontoyianni
- Department of Pharmaceutical Sciences, Southern Illinois University, Edwardsville, IL 62026, United States
| |
Collapse
|
45
|
Harmalkar A, Gray JJ. Advances to tackle backbone flexibility in protein docking. Curr Opin Struct Biol 2020; 67:178-186. [PMID: 33360497 DOI: 10.1016/j.sbi.2020.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022]
Abstract
Computational docking methods can provide structural models of protein-protein complexes, but protein backbone flexibility upon association often thwarts accurate predictions. In recent blind challenges, medium or high accuracy models were submitted in less than 20% of the 'difficult' targets (with significant backbone change or uncertainty). Here, we describe recent developments in protein-protein docking and highlight advances that tackle backbone flexibility. In molecular dynamics and Monte Carlo approaches, enhanced sampling techniques have reduced time-scale limitations. Internal coordinate formulations can now capture realistic motions of monomers and complexes using harmonic dynamics. And machine learning approaches adaptively guide docking trajectories or generate novel binding site predictions from deep neural networks trained on protein interfaces. These tools poise the field to break through the longstanding challenge of correctly predicting complex structures with significant conformational change.
Collapse
Affiliation(s)
- Ameya Harmalkar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Program in Molecular Biophysics, Institute for Nanobiotechnology, and Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
46
|
Dhawanjewar AS, Roy AA, Madhusudhan MS. A knowledge-based scoring function to assess quaternary associations of proteins. Bioinformatics 2020; 36:3739-3748. [PMID: 32246820 DOI: 10.1093/bioinformatics/btaa207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/01/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
MOTIVATION The elucidation of all inter-protein interactions would significantly enhance our knowledge of cellular processes at a molecular level. Given the enormity of the problem, the expenses and limitations of experimental methods, it is imperative that this problem is tackled computationally. In silico predictions of protein interactions entail sampling different conformations of the purported complex and then scoring these to assess for interaction viability. In this study, we have devised a new scheme for scoring protein-protein interactions. RESULTS Our method, PIZSA (Protein Interaction Z-Score Assessment), is a binary classification scheme for identification of native protein quaternary assemblies (binders/nonbinders) based on statistical potentials. The scoring scheme incorporates residue-residue contact preference on the interface with per residue-pair atomic contributions and accounts for clashes. PIZSA can accurately discriminate between native and non-native structural conformations from protein docking experiments and outperform other contact-based potential scoring functions. The method has been extensively benchmarked and is among the top 6 methods, outperforming 31 other statistical, physics based and machine learning scoring schemes. The PIZSA potentials can also distinguish crystallization artifacts from biological interactions. AVAILABILITY AND IMPLEMENTATION PIZSA is implemented as a web server at http://cospi.iiserpune.ac.in/pizsa and can be downloaded as a standalone package from http://cospi.iiserpune.ac.in/pizsa/Download/Download.html. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Abhilesh S Dhawanjewar
- Indian Institute of Science Education and Research, Pashan, Pune 411008, India.,School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Ankit A Roy
- Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| | | |
Collapse
|
47
|
Integrative modeling of membrane-associated protein assemblies. Nat Commun 2020; 11:6210. [PMID: 33277503 PMCID: PMC7718903 DOI: 10.1038/s41467-020-20076-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/13/2020] [Indexed: 01/03/2023] Open
Abstract
Membrane proteins are among the most challenging systems to study with experimental structural biology techniques. The increased number of deposited structures of membrane proteins has opened the route to modeling their complexes by methods such as docking. Here, we present an integrative computational protocol for the modeling of membrane-associated protein assemblies. The information encoded by the membrane is represented by artificial beads, which allow targeting of the docking toward the binding-competent regions. It combines efficient, artificial intelligence-based rigid-body docking by LightDock with a flexible final refinement with HADDOCK to remove potential clashes at the interface. We demonstrate the performance of this protocol on eighteen membrane-associated complexes, whose interface lies between the membrane and either the cytosolic or periplasmic regions. In addition, we provide a comparison to another state-of-the-art docking software, ZDOCK. This protocol should shed light on the still dark fraction of the interactome consisting of membrane proteins.
Collapse
|
48
|
Milanetti E, Miotto M, Di Rienzo L, Monti M, Gosti G, Ruocco G. 2D Zernike polynomial expansion: Finding the protein-protein binding regions. Comput Struct Biotechnol J 2020; 19:29-36. [PMID: 33363707 PMCID: PMC7750141 DOI: 10.1016/j.csbj.2020.11.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 01/26/2023] Open
Abstract
We present a method for efficiently and effectively assessing whether and where two proteins can interact with each other to form a complex. This is still largely an open problem, even for those relatively few cases where the 3D structure of both proteins is known. In fact, even if much of the information about the interaction is encoded in the chemical and geometric features of the structures, the set of possible contact patches and of their relative orientations are too large to be computationally affordable in a reasonable time, thus preventing the compilation of reliable interactome. Our method is able to rapidly and quantitatively measure the geometrical shape complementarity between interacting proteins, comparing their molecular iso-electron density surfaces expanding the surface patches in term of 2D Zernike polynomials. We first test the method against the real binding region of a large dataset of known protein complexes, reaching a success rate of 0.72. We then apply the method for the blind recognition of binding sites, identifying the real region of interaction in about 60% of the analyzed cases. Finally, we investigate how the efficiency in finding the right binding region depends on the surface roughness as a function of the expansion order.
Collapse
Affiliation(s)
- Edoardo Milanetti
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy.,Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Mattia Miotto
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy.,Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Lorenzo Di Rienzo
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Michele Monti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,RNA System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Giorgio Gosti
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Giancarlo Ruocco
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy.,Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| |
Collapse
|
49
|
Yan Y, Tao H, He J, Huang SY. The HDOCK server for integrated protein–protein docking. Nat Protoc 2020; 15:1829-1852. [DOI: 10.1038/s41596-020-0312-x] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 02/03/2020] [Indexed: 12/27/2022]
|
50
|
Singh A, Dauzhenka T, Kundrotas PJ, Sternberg MJE, Vakser IA. Application of docking methodologies to modeled proteins. Proteins 2020; 88:1180-1188. [PMID: 32170770 DOI: 10.1002/prot.25889] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/15/2020] [Accepted: 03/07/2020] [Indexed: 12/12/2022]
Abstract
Protein docking is essential for structural characterization of protein interactions. Besides providing the structure of protein complexes, modeling of proteins and their complexes is important for understanding the fundamental principles and specific aspects of protein interactions. The accuracy of protein modeling, in general, is still less than that of the experimental approaches. Thus, it is important to investigate the applicability of docking techniques to modeled proteins. We present new comprehensive benchmark sets of protein models for the development and validation of protein docking, as well as a systematic assessment of free and template-based docking techniques on these sets. As opposed to previous studies, the benchmark sets reflect the real case modeling/docking scenario where the accuracy of the models is assessed by the modeling procedure, without reference to the native structure (which would be unknown in practical applications). We also expanded the analysis to include docking of protein pairs where proteins have different structural accuracy. The results show that, in general, the template-based docking is less sensitive to the structural inaccuracies of the models than the free docking. The near-native docking poses generated by the template-based approach, typically, also have higher ranks than those produces by the free docking (although the free docking is indispensable in modeling the multiplicity of protein interactions in a crowded cellular environment). The results show that docking techniques are applicable to protein models in a broad range of modeling accuracy. The study provides clear guidelines for practical applications of docking to protein models.
Collapse
Affiliation(s)
- Amar Singh
- Computational Biology Program, The University of Kansas, Lawrence, Kansas, USA
| | - Taras Dauzhenka
- Computational Biology Program, The University of Kansas, Lawrence, Kansas, USA
| | - Petras J Kundrotas
- Computational Biology Program, The University of Kansas, Lawrence, Kansas, USA
| | - Michael J E Sternberg
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, South Kensington, London, UK
| | - Ilya A Vakser
- Computational Biology Program, The University of Kansas, Lawrence, Kansas, USA.,Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|