1
|
Wlodawer A, Dauter Z, Lubkowski J, Loch JI, Brzezinski D, Gilski M, Jaskolski M. Towards a dependable data set of structures for L-asparaginase research. Acta Crystallogr D Struct Biol 2024; 80:506-527. [PMID: 38935343 PMCID: PMC11220836 DOI: 10.1107/s2059798324005461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The Protein Data Bank (PDB) includes a carefully curated treasury of experimentally derived structural data on biological macromolecules and their various complexes. Such information is fundamental for a multitude of projects that involve large-scale data mining and/or detailed evaluation of individual structures of importance to chemistry, biology and, most of all, to medicine, where it provides the foundation for structure-based drug discovery. However, despite extensive validation mechanisms, it is almost inevitable that among the ∼215 000 entries there will occasionally be suboptimal or incorrect structure models. It is thus vital to apply careful verification procedures to those segments of the PDB that are of direct medicinal interest. Here, such an analysis was carried out for crystallographic models of L-asparaginases, enzymes that include approved drugs for the treatment of certain types of leukemia. The focus was on the adherence of the atomic coordinates to the rules of stereochemistry and their agreement with the experimental electron-density maps. Whereas the current clinical application of L-asparaginases is limited to two bacterial proteins and their chemical modifications, the field of investigations of such enzymes has expanded tremendously in recent years with the discovery of three entirely different structural classes and with numerous reports, not always quite reliable, of the anticancer properties of L-asparaginases of different origins.
Collapse
Affiliation(s)
- Alexander Wlodawer
- Center for Structural Biology, Center for Cancer ResearchNational Cancer InstituteMarylandUSA
| | - Zbigniew Dauter
- Center for Structural Biology, Center for Cancer ResearchNational Cancer InstituteMarylandUSA
| | - Jacek Lubkowski
- Center for Structural Biology, Center for Cancer ResearchNational Cancer InstituteMarylandUSA
| | - Joanna I. Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of ChemistryJagiellonian UniversityCracowPoland
| | - Dariusz Brzezinski
- Institute of Computing SciencePoznan University of TechnologyPoznanPoland
| | - Miroslaw Gilski
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Mariusz Jaskolski
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
2
|
Tan M, Xia J, Luo H, Meng G, Zhu Z. Applying the digital data and the bioinformatics tools in SARS-CoV-2 research. Comput Struct Biotechnol J 2023; 21:4697-4705. [PMID: 37841328 PMCID: PMC10568291 DOI: 10.1016/j.csbj.2023.09.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023] Open
Abstract
Bioinformatics has been playing a crucial role in the scientific progress to fight against the pandemic of the coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The advances in novel algorithms, mega data technology, artificial intelligence and deep learning assisted the development of novel bioinformatics tools to analyze daily increasing SARS-CoV-2 data in the past years. These tools were applied in genomic analyses, evolutionary tracking, epidemiological analyses, protein structure interpretation, studies in virus-host interaction and clinical performance. To promote the in-silico analysis in the future, we conducted a review which summarized the databases, web services and software applied in SARS-CoV-2 research. Those digital resources applied in SARS-CoV-2 research may also potentially contribute to the research in other coronavirus and non-coronavirus viruses.
Collapse
Affiliation(s)
- Meng Tan
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jiaxin Xia
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Haitao Luo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Geng Meng
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhenglin Zhu
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
3
|
Lenkiewicz J, Bijak V, Poonuganti S, Szczygiel M, Gucwa M, Murzyn K, Minor W. Structural biology and public health response to biomedical threats. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:034701. [PMID: 37350851 PMCID: PMC10284607 DOI: 10.1063/4.0000186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/27/2023] [Indexed: 06/24/2023]
Abstract
Over the course of the pandemic caused by SARS-CoV-2, structural biologists have worked hand in hand with groups developing vaccines and treatments. However, relying solely on in vitro and clinical studies may be insufficient to guide vaccination and treatment developments, and other healthcare policies during virus mutations or peaks in infections and fatalities. Therefore, it is crucial to track statistical data related to the number of infections, deaths, and vaccinations in specific regions and present it in an easy-to-understand way.
Collapse
Affiliation(s)
- Joanna Lenkiewicz
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908, USA
| | - Vanessa Bijak
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908, USA
| | - Shrisha Poonuganti
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908, USA
| | | | | | - Krzysztof Murzyn
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Krakow, Poland
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908, USA
| |
Collapse
|
4
|
Fornasier E, Macchia ML, Giachin G, Sosic A, Pavan M, Sturlese M, Salata C, Moro S, Gatto B, Bellanda M, Battistutta R. A new inactive conformation of SARS-CoV-2 main protease. Acta Crystallogr D Struct Biol 2022; 78:363-378. [PMID: 35234150 PMCID: PMC8900819 DOI: 10.1107/s2059798322000948] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/27/2022] [Indexed: 11/26/2022] Open
Abstract
The SARS-CoV-2 main protease (Mpro) has a pivotal role in mediating viral genome replication and transcription of the coronavirus, making it a promising target for drugs against the COVID-19 pandemic. Here, a crystal structure is presented in which Mpro adopts an inactive state that has never been observed before, called new-inactive. It is shown that the oxyanion loop, which is involved in substrate recognition and enzymatic activity, adopts a new catalytically incompetent conformation and that many of the key interactions of the active conformation of the enzyme around the active site are lost. Solvation/desolvation energetic contributions play an important role in the transition from the inactive to the active state, with Phe140 moving from an exposed to a buried environment and Asn142 moving from a buried environment to an exposed environment. In new-inactive Mpro a new cavity is present near the S2' subsite, and the N-terminal and C-terminal tails, as well as the dimeric interface, are perturbed, with partial destabilization of the dimeric assembly. This novel conformation is relevant both for comprehension of the mechanism of action of Mpro within the catalytic cycle and for the successful structure-based drug design of antiviral drugs.
Collapse
Affiliation(s)
- Emanuele Fornasier
- University of PaduaDepartment of Chemical SciencesVia F. Marzolo 1Padova35131Italy
| | - Maria Ludovica Macchia
- University of PaduaDepartment of Pharmaceutical and Pharmacological SciencesVia F. Marzolo 5Padova35131Italy
| | - Gabriele Giachin
- University of PaduaDepartment of Chemical SciencesVia F. Marzolo 1Padova35131Italy
| | - Alice Sosic
- University of PaduaDepartment of Pharmaceutical and Pharmacological SciencesVia F. Marzolo 5Padova35131Italy
| | - Matteo Pavan
- University of PaduaMolecular Modeling Section, Department of Pharmaceutical and Pharmacological SciencesVia F. Marzolo 5Padova35131Italy
| | - Mattia Sturlese
- University of PaduaMolecular Modeling Section, Department of Pharmaceutical and Pharmacological SciencesVia F. Marzolo 5Padova35131Italy
| | - Cristiano Salata
- University of PaduaDepartment of Molecular MedicineVia Gabelli 63Padova35121Italy
| | - Stefano Moro
- University of PaduaMolecular Modeling Section, Department of Pharmaceutical and Pharmacological SciencesVia F. Marzolo 5Padova35131Italy
| | - Barbara Gatto
- University of PaduaDepartment of Pharmaceutical and Pharmacological SciencesVia F. Marzolo 5Padova35131Italy
| | - Massimo Bellanda
- University of PaduaDepartment of Chemical SciencesVia F. Marzolo 1Padova35131Italy
- Institute of Biomolecular Chemistry of CNRPadua UnitVia F. Marzolo 1Padova35131Italy
| | - Roberto Battistutta
- University of PaduaDepartment of Chemical SciencesVia F. Marzolo 1Padova35131Italy
- Institute of Biomolecular Chemistry of CNRPadua UnitVia F. Marzolo 1Padova35131Italy
| |
Collapse
|
5
|
Minor W, Cymborowski M, Borek D, Cooper DR, Chruszcz M, Otwinowski Z. Optimal structure determination from sub-optimal diffraction data. Protein Sci 2022; 31:259-268. [PMID: 34783106 PMCID: PMC8740829 DOI: 10.1002/pro.4235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 01/03/2023]
Abstract
Herein we present the newest version of the HKL-3000 system that integrates data collection, data reduction, phasing, model building, refinement, and validation. The system significantly accelerates the process of structure determination and has proven its high value for the determination of very high-quality structures. The heuristic for choosing the best approach for every step of structure determination for various quality samples and diffraction data has been optimized. The latest modifications increase the likelihood of a successful structure determination with challenging data. The HKL-3000 is a successor of HKL and HKL-2000 programs. The use of the HKL family of programs has been reported for over 73,000 PDB deposits, that is, almost 50% of macromolecular structures determined with X-ray diffraction.
Collapse
Affiliation(s)
- Wladek Minor
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginia
| | - Marcin Cymborowski
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginia
| | - Dominika Borek
- Department of BiophysicsThe University of Texas Southwestern Medical CenterDallasTexas,Department of BiochemistryThe University of Texas Southwestern Medical CenterDallasTexas
| | - David R. Cooper
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginia
| | - Maksymilian Chruszcz
- Department of Chemistry and BiochemistryUniversity of South CarolinaColumbiaSouth Carolina
| | - Zbyszek Otwinowski
- Department of BiophysicsThe University of Texas Southwestern Medical CenterDallasTexas,Department of BiochemistryThe University of Texas Southwestern Medical CenterDallasTexas
| |
Collapse
|
6
|
Zhang H, Chen P, Ma H, Woińska M, Liu D, Cooper DR, Peng G, Peng Y, Deng L, Minor W, Zheng H. virusMED: an atlas of hotspots of viral proteins. IUCRJ 2021; 8:S2052252521009076. [PMID: 34614039 PMCID: PMC8479994 DOI: 10.1107/s2052252521009076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Metal binding sites, antigen epitopes and drug binding sites are the hotspots in viral proteins that control how viruses interact with their hosts. virusMED (virus Metal binding sites, Epitopes and Drug binding sites) is a rich internet application based on a database of atomic interactions around hotspots in 7041 experimentally determined viral protein structures. 25306 hotspots from 805 virus strains from 75 virus families were characterized, including influenza, HIV-1 and SARS-CoV-2 viruses. Just as Google Maps organizes and annotates points of interest, virusMED presents the positions of individual hotspots on each viral protein and creates an atlas upon which newly characterized functional sites can be placed as they are being discovered. virusMED contains an extensive set of annotation tags about the virus species and strains, viral hosts, viral proteins, metal ions, specific antibodies and FDA-approved drugs, which permits rapid screening of hotspots on viral proteins tailored to a particular research problem. The virusMED portal (https://virusmed.biocloud.top) can serve as a window to a valuable resource for many areas of virus research and play a critical role in the rational design of new preventative and therapeutic agents targeting viral infections.
Collapse
Affiliation(s)
- HuiHui Zhang
- Hunan University College of Biology, Bioinformatics Center, Hunan 410082, People’s Republic of China
| | - Pei Chen
- Hunan University College of Biology, Bioinformatics Center, Hunan 410082, People’s Republic of China
| | - Haojie Ma
- Hunan University College of Biology, Bioinformatics Center, Hunan 410082, People’s Republic of China
| | - Magdalena Woińska
- Biological and Chemical Research Centre, Chemistry Department, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
- University of Virginia, Charlottesville, VA 22908, USA
| | - Dejian Liu
- Hunan University College of Biology, Bioinformatics Center, Hunan 410082, People’s Republic of China
| | | | - Guo Peng
- Hunan University College of Biology, Bioinformatics Center, Hunan 410082, People’s Republic of China
| | - Yousong Peng
- Hunan University College of Biology, Bioinformatics Center, Hunan 410082, People’s Republic of China
| | - Lei Deng
- Hunan University College of Biology, Bioinformatics Center, Hunan 410082, People’s Republic of China
- Hunan Provincial Key Laboratory of Medical Virology, People’s Republic of China
| | - Wladek Minor
- University of Virginia, Charlottesville, VA 22908, USA
| | - Heping Zheng
- Hunan University College of Biology, Bioinformatics Center, Hunan 410082, People’s Republic of China
- Hunan Provincial Key Laboratory of Medical Virology, People’s Republic of China
| |
Collapse
|
7
|
Minor W, Jaskolski M, Martin SJ, Dauter Z. Dr. Alexander Wlodawer-celebrating five decades of service to the structural biology community. FEBS J 2021; 288:4160-4164. [PMID: 34286923 DOI: 10.1111/febs.16064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 11/28/2022]
Abstract
This 75th birthday tribute to our Editorial Board member Alexander Wlodawer recounts his decades-long service to the community of structural biology researchers. His former and current colleagues tell the story of his upbringing and education, followed by an account of his dedication to quality and rigor in crystallography and structural science. The FEBS Journal Editor-in-Chief Seamus Martin further highlights Alex's outstanding contributions to the journal's success over many years.
Collapse
Affiliation(s)
- Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University and Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Seamus J Martin
- Department of Genetics, The Smurfit Institute, Trinity College, Dublin, Ireland
| | - Zbigniew Dauter
- Center for Structural Biology, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
8
|
Structural genomics and the Protein Data Bank. J Biol Chem 2021; 296:100747. [PMID: 33957120 PMCID: PMC8166929 DOI: 10.1016/j.jbc.2021.100747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/16/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
The field of Structural Genomics arose over the last 3 decades to address a large and rapidly growing divergence between microbial genomic, functional, and structural data. Several international programs took advantage of the vast genomic sequence information and evaluated the feasibility of structure determination for expanded and newly discovered protein families. As a consequence, structural genomics has developed structure-determination pipelines and applied them to a wide range of novel, uncharacterized proteins, often from “microbial dark matter,” and later to proteins from human pathogens. Advances were especially needed in protein production and rapid de novo structure solution. The experimental three-dimensional models were promptly made public, facilitating structure determination of other members of the family and helping to understand their molecular and biochemical functions. Improvements in experimental methods and databases resulted in fast progress in molecular and structural biology. The Protein Data Bank structure repository played a central role in the coordination of structural genomics efforts and the structural biology community as a whole. It facilitated development of standards and validation tools essential for maintaining high quality of deposited structural data.
Collapse
|
9
|
Lynch ML, Snell EH, Bowman SEJ. Structural biology in the time of COVID-19: perspectives on methods and milestones. IUCRJ 2021; 8:335-341. [PMID: 33953920 PMCID: PMC8086156 DOI: 10.1107/s2052252521003948] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
The global COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has wreaked unprecedented havoc on global society, in terms of a huge loss of life and burden of morbidity, economic upheaval and social disruption. Yet the sheer magnitude and uniqueness of this event has also spawned a massive mobilization of effort in the scientific community to investigate the virus, to develop therapeutics and vaccines, and to understand the public health impacts. Structural biology has been at the center of these efforts, and so it is advantageous to take an opportunity to reflect on the status of structural science vis-à-vis its role in the fight against COVID-19, to register the unprecedented response and to contemplate the role of structural biology in addressing future outbreak threats. As the one-year anniversary of the World Health Organization declaration that COVID-19 is a pandemic has just passed, over 1000 structures of SARS-CoV-2 biomolecules have been deposited in the Worldwide Protein Data Bank (PDB). It is rare to obtain a snapshot of such intense effort in the structural biology arena and is of special interest as the 50th anniversary of the PDB is celebrated in 2021. It is additionally timely as it overlaps with a period that has been termed the 'resolution revolution' in cryoelectron microscopy (CryoEM). CryoEM has recently become capable of producing biomolecular structures at similar resolutions to those traditionally associated with macromolecular X-ray crystallo-graphy. Examining SARS-CoV-2 protein structures that have been deposited in the PDB since the virus was first identified allows a unique window into the power of structural biology and a snapshot of the advantages of the different techniques available, as well as insight into the complementarity of the structural methods.
Collapse
Affiliation(s)
- Miranda L. Lynch
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Edward H. Snell
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
- Department of Materials Design and Innovation, The State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Sarah E. J. Bowman
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences at The State University of New York at Buffalo, Buffalo, NY 14023, USA
| |
Collapse
|
10
|
Grabowski M, Macnar JM, Cymborowski M, Cooper DR, Shabalin IG, Gilski M, Brzezinski D, Kowiel M, Dauter Z, Rupp B, Wlodawer A, Jaskolski M, Minor W. Rapid response to emerging biomedical challenges and threats. IUCRJ 2021; 8:395-407. [PMID: 33953926 PMCID: PMC8086160 DOI: 10.1107/s2052252521003018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 05/13/2023]
Abstract
As part of the global mobilization to combat the present pandemic, almost 100 000 COVID-19-related papers have been published and nearly a thousand models of macromolecules encoded by SARS-CoV-2 have been deposited in the Protein Data Bank within less than a year. The avalanche of new structural data has given rise to multiple resources dedicated to assessing the correctness and quality of structural data and models. Here, an approach to evaluate the massive amounts of such data using the resource https://covid19.bioreproducibility.org is described, which offers a template that could be used in large-scale initiatives undertaken in response to future biomedical crises. Broader use of the described methodology could considerably curtail information noise and significantly improve the reproducibility of biomedical research.
Collapse
Affiliation(s)
- Marek Grabowski
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Joanna M. Macnar
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Warsaw, Poland
| | - Marcin Cymborowski
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - David R. Cooper
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Ivan G. Shabalin
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Miroslaw Gilski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Dariusz Brzezinski
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Marcin Kowiel
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Zbigniew Dauter
- Center for Structural Biology, National Cancer Institute, Frederick, Maryland, USA
| | - Bernhard Rupp
- k.-k Hofkristallamt, San Diego, California, USA
- Institute of Genetic Epidemiology, Medical University Innsbruck, Innsbruck, Austria
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, Maryland, USA
| | - Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
11
|
Cortese M, Laketa V. Advanced microscopy technologies enable rapid response to SARS-CoV-2 pandemic. Cell Microbiol 2021; 23:e13319. [PMID: 33595881 PMCID: PMC7995000 DOI: 10.1111/cmi.13319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 01/18/2023]
Abstract
The ongoing SARS‐CoV‐2 pandemic with over 80 million infections and more than a million deaths worldwide represents the worst global health crisis of the 21th century. Beyond the health crisis, the disruptions caused by the COVID‐19 pandemic have serious global socio‐economic consequences. It has also placed a significant pressure on the scientific community to understand the virus and its pathophysiology and rapidly provide anti‐viral treatments and procedures in order to help the society and stop the virus spread. Here, we outline how advanced microscopy technologies such as high‐throughput microscopy and electron microscopy played a major role in rapid response against SARS‐CoV‐2. General applicability of developed microscopy technologies makes them uniquely positioned to act as the first line of defence against any emerging infection in the future.
Collapse
Affiliation(s)
- Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Vibor Laketa
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Infection Research, Heidelberg, Germany
| |
Collapse
|
12
|
Jaskolski M, Dauter Z, Shabalin IG, Gilski M, Brzezinski D, Kowiel M, Rupp B, Wlodawer A. Crystallographic models of SARS-CoV-2 3CL pro: in-depth assessment of structure quality and validation. IUCRJ 2021; 8:238-256. [PMID: 33708401 PMCID: PMC7924243 DOI: 10.1107/s2052252521001159] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 05/26/2023]
Abstract
The appearance at the end of 2019 of the new SARS-CoV-2 coronavirus led to an unprecedented response by the structural biology community, resulting in the rapid determination of many hundreds of structures of proteins encoded by the virus. As part of an effort to analyze and, if necessary, remediate these structures as deposited in the Protein Data Bank (PDB), this work presents a detailed analysis of 81 crystal structures of the main protease 3CLpro, an important target for the design of drugs against COVID-19. The structures of the unliganded enzyme and its complexes with a number of inhibitors were determined by multiple research groups using different experimental approaches and conditions; the resulting structures span 13 different polymorphs representing seven space groups. The structures of the enzyme itself, all determined by molecular replacement, are highly similar, with the exception of one polymorph with a different inter-domain orientation. However, a number of complexes with bound inhibitors were found to pose significant problems. Some of these could be traced to faulty definitions of geometrical restraints for ligands and to the general problem of a lack of such information in the PDB depositions. Several problems with ligand definition in the PDB itself were also noted. In several cases extensive corrections to the models were necessary to adhere to the evidence of the electron-density maps. Taken together, this analysis of a large number of structures of a single, medically important protein, all determined within less than a year using modern experimental tools, should be useful in future studies of other systems of high interest to the biomedical community.
Collapse
Affiliation(s)
- Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Zbigniew Dauter
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Ivan G. Shabalin
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Miroslaw Gilski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Dariusz Brzezinski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Marcin Kowiel
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Bernhard Rupp
- k.-k Hofkristallamt, San Diego, CA 92084, USA
- Institute of Genetic Epidemiology, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
13
|
Grabowski M, Cooper DR, Brzezinski D, Macnar JM, Shabalin IG, Cymborowski M, Otwinowski Z, Minor W. Synchrotron Radiation as a Tool for Macromolecular X-Ray Crystallography: a XXI Century Perspective. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION B, BEAM INTERACTIONS WITH MATERIALS AND ATOMS 2021; 489:30-40. [PMID: 33603257 PMCID: PMC7886262 DOI: 10.1016/j.nimb.2020.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intense X-rays available at powerful synchrotron beamlines provide macromolecular crystallographers with an incomparable tool for investigating biological phenomena on an atomic scale. The resulting insights into the mechanism's underlying biological processes have played an essential role and shaped biomedical sciences during the last 30 years, considered the "golden age" of structural biology. In this review, we analyze selected aspects of the impact of synchrotron radiation on structural biology. Synchrotron beamlines have been used to determine over 70% of all macromolecular structures deposited into the Protein Data Bank (PDB). These structures were deposited by over 13,000 different research groups. Interestingly, despite the impressive advances in synchrotron technologies, the median resolution of macromolecular structures determined using synchrotrons has remained constant throughout the last 30 years, at about 2 Å. Similarly, the median times from the data collection to the deposition and release have not changed significantly. We describe challenges to reproducibility related to recording all relevant data and metadata during the synchrotron experiments, including diffraction images. Finally, we discuss some of the recent opinions suggesting a diminishing importance of X-ray crystallography due to impressive advances in Cryo-EM and theoretical modeling. We believe that synchrotrons of the future will increasingly evolve towards a life science center model, where X-ray crystallography, Cryo-EM, and other experimental and computational resources and knowledge are encompassed within a versatile research facility. The recent response of crystallographers to the COVID-19 pandemic suggests that X-ray crystallography conducted at synchrotron beamlines will continue to play an essential role in structural biology and drug discovery for years to come.
Collapse
Affiliation(s)
- Marek Grabowski
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA22903, USA
| | - David R. Cooper
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA22903, USA
| | - Dariusz Brzezinski
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA22903, USA
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Joanna M. Macnar
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Warsaw, Poland
| | - Ivan G. Shabalin
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA22903, USA
| | - Marcin Cymborowski
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA22903, USA
| | - Zbyszek Otwinowski
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA22903, USA
| |
Collapse
|
14
|
Brzezinski D, Kowiel M, Cooper DR, Cymborowski M, Grabowski M, Wlodawer A, Dauter Z, Shabalin IG, Gilski M, Rupp B, Jaskolski M, Minor W. Covid-19.bioreproducibility.org: A web resource for SARS-CoV-2-related structural models. Protein Sci 2021; 30:115-124. [PMID: 32981130 PMCID: PMC7537053 DOI: 10.1002/pro.3959] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic has triggered numerous scientific activities aimed at understanding the SARS-CoV-2 virus and ultimately developing treatments. Structural biologists have already determined hundreds of experimental X-ray, cryo-EM, and NMR structures of proteins and nucleic acids related to this coronavirus, and this number is still growing. To help biomedical researchers, who may not necessarily be experts in structural biology, navigate through the flood of structural models, we have created an online resource, covid19.bioreproducibility.org, that aggregates expert-verified information about SARS-CoV-2-related macromolecular models. In this article, we describe this web resource along with the suite of tools and methodologies used for assessing the structures presented therein.
Collapse
Affiliation(s)
- Dariusz Brzezinski
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
- Center for Biocrystallographic Research, Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
- Institute of Computing SciencePoznan University of TechnologyPoznanPoland
| | - Marcin Kowiel
- Center for Biocrystallographic Research, Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | - David R. Cooper
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Marcin Cymborowski
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Marek Grabowski
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, National Cancer InstituteFrederickMarylandUSA
| | - Zbigniew Dauter
- Macromolecular Crystallography Laboratory, National Cancer InstituteFrederickMarylandUSA
| | - Ivan G. Shabalin
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Miroslaw Gilski
- Center for Biocrystallographic Research, Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
- Department of Crystallography, Faculty of ChemistryAdam Mickiewicz UniversityPoznanPoland
| | - Bernhard Rupp
- k.‐k. HofkristallamtSan DiegoCaliforniaUSA
- Institute of Genetic EpidemiologyMedical University InnsbruckSchöpfstr. 41InnsbruckTyrol6020Austria
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
- Department of Crystallography, Faculty of ChemistryAdam Mickiewicz UniversityPoznanPoland
| | - Wladek Minor
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
15
|
Burley SK. Impact of structural biologists and the Protein Data Bank on small-molecule drug discovery and development. J Biol Chem 2021; 296:100559. [PMID: 33744282 PMCID: PMC8059052 DOI: 10.1016/j.jbc.2021.100559] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/02/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
The Protein Data Bank (PDB) is an international core data resource central to fundamental biology, biomedicine, bioenergy, and biotechnology/bioengineering. Now celebrating its 50th anniversary, the PDB houses >175,000 experimentally determined atomic structures of proteins, nucleic acids, and their complexes with one another and small molecules and drugs. The importance of three-dimensional (3D) biostructure information for research and education obtains from the intimate link between molecular form and function evident throughout biology. Among the most prolific consumers of PDB data are biomedical researchers, who rely on the open access resource as the authoritative source of well-validated, expertly curated biostructures. This review recounts how the PDB grew from just seven protein structures to contain more than 49,000 structures of human proteins that have proven critical for understanding their roles in human health and disease. It then describes how these structures are used in academe and industry to validate drug targets, assess target druggability, characterize how tool compounds and other small-molecules bind to drug targets, guide medicinal chemistry optimization of binding affinity and selectivity, and overcome challenges during preclinical drug development. Three case studies drawn from oncology exemplify how structural biologists and open access to PDB structures impacted recent regulatory approvals of antineoplastic drugs.
Collapse
Affiliation(s)
- Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA; Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, California, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|