1
|
Shankar S, Enemark EJ. Structure of the Saccharolobus solfataricus GINS tetramer. Acta Crystallogr F Struct Biol Commun 2025; 81:207-215. [PMID: 40235367 PMCID: PMC12035558 DOI: 10.1107/s2053230x25003085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 04/03/2025] [Indexed: 04/17/2025] Open
Abstract
DNA replication is tightly regulated to ensure genomic stability and prevent several diseases, including cancers. Eukaryotes and archaea partly achieve this regulation by strictly controlling the activation of hexameric minichromosome maintenance (MCM) helicase rings that unwind DNA during its replication. In eukaryotes, MCM activation critically relies on the sequential recruitment of the essential factors Cdc45 and a tetrameric GINS complex at the onset of the S-phase to generate a larger CMG complex. We present the crystal structure of the tetrameric GINS complex from the archaeal organism Saccharolobus solfataricus (Sso) to reveal a core structure that is highly similar to the previously determined GINS core structures of other eukaryotes and archaea. Using molecular modeling, we illustrate that a subdomain of SsoGINS would need to move to accommodate known interactions of the archaeal GINS complex and to generate a SsoCMG complex analogous to that of eukaryotes.
Collapse
Affiliation(s)
- Srihari Shankar
- Department of Biochemistry and Molecular BiologyUniversity of Arkansas for Medical Sciences4301 West Markham Street, Slot 516Little RockAR72205USA
| | - Eric J. Enemark
- Department of Biochemistry and Molecular BiologyUniversity of Arkansas for Medical Sciences4301 West Markham Street, Slot 516Little RockAR72205USA
- Winthrop P. Rockefeller Cancer InstituteUniversity of Arkansas for Medical SciencesLittle RockAR72205USA
| |
Collapse
|
2
|
Cannistraci E, Srinivasu BY, Chavez Orozco J, Gozzi K, Wales TE, Schumacher MA. Allosteric activation mechanism of DriD, a WYL-domain containing transcription regulator. Commun Biol 2025; 8:679. [PMID: 40301632 PMCID: PMC12041258 DOI: 10.1038/s42003-025-08111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 04/22/2025] [Indexed: 05/01/2025] Open
Abstract
WYL-domain containing transcription factors regulate fundamental processes in bacterial physiology, yet how these proteins sense cellular cues to elicit an allosteric response is not well understood. Here we describe the allosteric activation mechanism of DriD, a Caulobacter crescentus homodimeric WYL-domain containing transcription regulator that activates a non-canonical DNA damage pathway. DriD senses ssDNA, produced upon DNA damage via interaction with its WYL domain. This stimulates DriD target DNA binding. However, its DNA-binding domains (DNABDs) are 50 Å from the WYL-domains and linked by a three-helix bundle domain (3HB). Using a combination of crystallography, biochemistry, and HDX-MS we unveil an allosteric mechanism whereby an inhibitory interaction, formed between the DriD DNABD and 3HB in the apo form, is freed upon ssDNA binding, allowing target DNA binding. These findings may serve as a model for understanding activation by the large family of homodimeric WYL activators, including those in pathogenic bacteria.
Collapse
Affiliation(s)
- Emily Cannistraci
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Bindu Y Srinivasu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Jose Chavez Orozco
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Kevin Gozzi
- 100 Edwin H Land Blvd, Harvard University Cambridge, Cambridge, MA, 02142, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA.
| | - Maria A Schumacher
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
3
|
Topolska M, Beltran A, Lehner B. Deep indel mutagenesis reveals the impact of amino acid insertions and deletions on protein stability and function. Nat Commun 2025; 16:2617. [PMID: 40097423 PMCID: PMC11914627 DOI: 10.1038/s41467-025-57510-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Amino acid insertions and deletions (indels) are an abundant class of genetic variants. However, compared to substitutions, the effects of indels on protein stability are not well understood. To better understand indels here we analyse new and existing large-scale deep indel mutagenesis (DIM) of structurally diverse proteins. The effects of indels on protein stability vary extensively among and within proteins and are not well predicted by existing computational methods. To address this shortcoming we present INDELi, a series of models that combine experimental or predicted substitution effects and secondary structure information to provide good prediction of the effects of indels on both protein stability and pathogenicity. Moreover, quantifying the effects of indels on protein-protein interactions suggests that insertions can be an important class of gain-of-function variants. Our results provide an overview of the impact of indels on proteins and a method to predict their effects genome-wide.
Collapse
Affiliation(s)
- Magdalena Topolska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- University Pompeu Fabra (UPF), Barcelona, Spain
| | - Antoni Beltran
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- University Pompeu Fabra (UPF), Barcelona, Spain.
- Institució Catalana de Recerca i estudis Avançats (ICREA), Barcelona, Spain.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
4
|
Saravanan V, Raouraoua N, Brysbaert G, Giordano S, Lensink MF, Cleri F, Blossey R. The 'very moment' when UDG recognizes a flipped-out uracil base in dsDNA. Sci Rep 2025; 15:7993. [PMID: 40055399 PMCID: PMC11889109 DOI: 10.1038/s41598-025-91705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/21/2025] [Indexed: 05/13/2025] Open
Abstract
Uracil-DNA glycosylase (UDG) is the first enzyme in the base-excision repair (BER) pathway, acting on uracil bases in DNA. How UDG finds its targets has not been conclusively resolved yet. Based on available structural and other experimental evidence, two possible pathways are under discussion. In one, the action of UDG on the DNA bases is believed to follow a 'pinch-push-pull' model, in which UDG generates the base-flip in an active manner. A second scenario is based on the exploitation of bases flipping out thermally from the DNA. Recent molecular dynamics (MD) studies of DNA in trinucleosome arrays have shown that base-flipping can be readily induced by the action of mechanical forces on DNA alone. This alternative mechanism could possibly enhance the probability for the second scenario of UDG-uracil interaction via the formation of a recognition complex of UDG with flipped-out base. In this work, we describe DNA structures with flipped-out uracil bases generated by MD simulations which we then subject to docking simulations with the UDG enzyme. Our results for the UDG-uracil recognition complex support the view that base-flipping induced by DNA mechanics can be a relevant mechanism of uracil base recognition by the UDG glycosylase in chromatin.
Collapse
Affiliation(s)
- Vinnarasi Saravanan
- University of Lille, CNRS, UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), F-59000, Lille, France
| | - Nessim Raouraoua
- University of Lille, CNRS, UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), F-59000, Lille, France
| | - Guillaume Brysbaert
- University of Lille, CNRS, UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), F-59000, Lille, France
| | - Stefano Giordano
- CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Electronique, de Microélectronique et de Nanotechnologie, University of Lille, 59000, Lille, France
| | - Marc F Lensink
- University of Lille, CNRS, UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), F-59000, Lille, France
| | - Fabrizio Cleri
- Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN CNRS UMR8520) and Département de Physique, University of Lille, 59652, Villeneuve d'Ascq, France
| | - Ralf Blossey
- University of Lille, CNRS, UMR8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), F-59000, Lille, France.
| |
Collapse
|
5
|
Larsen-Ledet S, Lindemose S, Panfilova A, Gersing S, Suhr CH, Genzor AV, Lanters H, Nielsen SV, Lindorff-Larsen K, Winther JR, Stein A, Hartmann-Petersen R. Systematic characterization of indel variants using a yeast-based protein folding sensor. Structure 2025; 33:262-273.e6. [PMID: 39706198 DOI: 10.1016/j.str.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Gene variants resulting in insertions or deletions of amino acid residues (indels) have important consequences for evolution and are often linked to disease, yet, compared to missense variants, the effects of indels are poorly understood and predicted. We developed a sensitive protein folding sensor based on the complementation of uracil auxotrophy in yeast by circular permutated orotate phosphoribosyltransferase (CPOP). The sensor reports on the folding of disease-linked missense variants and de-novo-designed proteins. Applying the folding sensor to a saturated library of single-residue indels in human dihydrofolate reductase (DHFR) revealed that most regions that tolerate indels are confined to internal loops, the termini, and a central α helix. Several indels are temperature sensitive, and folding is rescued upon binding to methotrexate. Rosetta and AlphaFold2 predictions correlate with the observed effects, suggesting that most indels destabilize the native fold and that these computational tools are useful for the classification of indels observed in population sequencing.
Collapse
Affiliation(s)
- Sven Larsen-Ledet
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Søren Lindemose
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Aleksandra Panfilova
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Sarah Gersing
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Caroline H Suhr
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Aitana Victoria Genzor
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Heleen Lanters
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Sofie V Nielsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Jakob R Winther
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Amelie Stein
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark.
| | | |
Collapse
|
6
|
Träger TK, Kyrilis FL, Hamdi F, Tüting C, Alfes M, Hofmann T, Schmidt C, Kastritis PL. Disorder-to-order active site capping regulates the rate-limiting step of the inositol pathway. Proc Natl Acad Sci U S A 2024; 121:e2400912121. [PMID: 39145930 PMCID: PMC11348189 DOI: 10.1073/pnas.2400912121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Myo-inositol-1-phosphate synthase (MIPS) catalyzes the NAD+-dependent isomerization of glucose-6-phosphate (G6P) into inositol-1-phosphate (IMP), controlling the rate-limiting step of the inositol pathway. Previous structural studies focused on the detailed molecular mechanism, neglecting large-scale conformational changes that drive the function of this 240 kDa homotetrameric complex. In this study, we identified the active, endogenous MIPS in cell extracts from the thermophilic fungus Thermochaetoides thermophila. By resolving the native structure at 2.48 Å (FSC = 0.143), we revealed a fully populated active site. Utilizing 3D variability analysis, we uncovered conformational states of MIPS, enabling us to directly visualize an order-to-disorder transition at its catalytic center. An acyclic intermediate of G6P occupied the active site in two out of the three conformational states, indicating a catalytic mechanism where electrostatic stabilization of high-energy intermediates plays a crucial role. Examination of all isomerases with known structures revealed similar fluctuations in secondary structure within their active sites. Based on these findings, we established a conformational selection model that governs substrate binding and eventually inositol availability. In particular, the ground state of MIPS demonstrates structural configurations regardless of substrate binding, a pattern observed across various isomerases. These findings contribute to the understanding of MIPS structure-based function, serving as a template for future studies targeting regulation and potential therapeutic applications.
Collapse
Affiliation(s)
- Toni K. Träger
- Faculty of Natural Sciences I, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale06120, Germany
- Biozentrum, Martin Luther University Halle-Wittenberg, Halle/Saale06120, Germany
| | - Fotis L. Kyrilis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens11635, Greece
| | - Farzad Hamdi
- Faculty of Natural Sciences I, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale06120, Germany
- Biozentrum, Martin Luther University Halle-Wittenberg, Halle/Saale06120, Germany
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle/Saale06120, Germany
| | - Christian Tüting
- Faculty of Natural Sciences I, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale06120, Germany
- Biozentrum, Martin Luther University Halle-Wittenberg, Halle/Saale06120, Germany
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle/Saale06120, Germany
| | - Marie Alfes
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle/Saale06120, Germany
- Biologics Analytical R&D, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen67061, Germany
| | - Tommy Hofmann
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle/Saale06120, Germany
- Impfstoffwerk Dessau-Tornau Biologika, Dessau-Roßlau06861, Germany
| | - Carla Schmidt
- Faculty of Natural Sciences I, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale06120, Germany
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle/Saale06120, Germany
- Department of Chemistry–Biochemistry, Johannes Gutenberg University Mainz, Mainz55128, Germany
| | - Panagiotis L. Kastritis
- Faculty of Natural Sciences I, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale06120, Germany
- Biozentrum, Martin Luther University Halle-Wittenberg, Halle/Saale06120, Germany
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens11635, Greece
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle/Saale06120, Germany
| |
Collapse
|
7
|
Rodriguez DCP, Weber KC, Sundberg B, Glasgow A. MAGPIE: An interactive tool for visualizing and analyzing protein-ligand interactions. Protein Sci 2024; 33:e5027. [PMID: 38989559 PMCID: PMC11237554 DOI: 10.1002/pro.5027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 07/12/2024]
Abstract
Quantitative tools to compile and analyze biomolecular interactions among chemically diverse binding partners would improve therapeutic design and aid in studying molecular evolution. Here we present Mapping Areas of Genetic Parsimony In Epitopes (MAGPIE), a publicly available software package for simultaneously visualizing and analyzing thousands of interactions between a single protein or small molecule ligand (the "target") and all of its protein binding partners ("binders"). MAGPIE generates an interactive three-dimensional visualization from a set of protein complex structures that share the target ligand, as well as sequence logo-style amino acid frequency graphs that show all the amino acids from the set of protein binders that interact with user-defined target ligand positions or chemical groups. MAGPIE highlights all the salt bridge and hydrogen bond interactions made by the target in the visualization and as separate amino acid frequency graphs. Finally, MAGPIE collates the most common target-binder interactions as a list of "hotspots," which can be used to analyze trends or guide the de novo design of protein binders. As an example of the utility of the program, we used MAGPIE to probe how different antibody fragments bind a viral antigen; how a common metabolite binds diverse protein partners; and how two ligands bind orthologs of a well-conserved glycolytic enzyme for a detailed understanding of evolutionarily conserved interactions involved in its activation and inhibition. MAGPIE is implemented in Python 3 and freely available at https://github.com/glasgowlab/MAGPIE, along with sample datasets, usage examples, and helper scripts to prepare input structures.
Collapse
Affiliation(s)
- Daniel C. Pineda Rodriguez
- Department of Biochemistry and Molecular BiophysicsColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Kyle C. Weber
- Department of Biochemistry and Molecular BiophysicsColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Belen Sundberg
- Department of Biochemistry and Molecular BiophysicsColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Anum Glasgow
- Department of Biochemistry and Molecular BiophysicsColumbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
8
|
Galpern EA, Jaafari H, Bueno C, Wolynes PG, Ferreiro DU. Reassessing the exon-foldon correspondence using frustration analysis. Proc Natl Acad Sci U S A 2024; 121:e2400151121. [PMID: 38954548 PMCID: PMC11252736 DOI: 10.1073/pnas.2400151121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Protein folding and evolution are intimately linked phenomena. Here, we revisit the concept of exons as potential protein folding modules across a set of 38 abundant and conserved protein families. Taking advantage of genomic exon-intron organization and extensive protein sequence data, we explore exon boundary conservation and assess the foldon-like behavior of exons using energy landscape theoretic measurements. We found deviations in the exon size distribution from exponential decay indicating selection in evolution. We show that when taken together there is a pronounced tendency to independent foldability for segments corresponding to the more conserved exons, supporting the idea of exon-foldon correspondence. While 45% of the families follow this general trend when analyzed individually, there are some families for which other stronger functional determinants, such as preserving frustrated active sites, may be acting. We further develop a systematic partitioning of protein domains using exon boundary hotspots, showing that minimal common exons correspond with uninterrupted alpha and/or beta elements for the majority of the families but not for all of them.
Collapse
Affiliation(s)
- Ezequiel A. Galpern
- Protein Physiology Lab, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos AiresC1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Cientificas y Tecnicas - Universidad de Buenos Aires, Buenos AiresC1428EGA, Argentina
| | - Hana Jaafari
- Center for Theoretical Biological Physics, Rice University, Houston, TX77005
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, TX77005
| | - Carlos Bueno
- Center for Theoretical Biological Physics, Rice University, Houston, TX77005
| | - Peter G. Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX77005
- Department of Chemistry, Rice University, Houston, TX77005
- Department of Physics, Rice University, Houston, TX77005
| | - Diego U. Ferreiro
- Protein Physiology Lab, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos AiresC1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Cientificas y Tecnicas - Universidad de Buenos Aires, Buenos AiresC1428EGA, Argentina
| |
Collapse
|
9
|
Porter LL, Artsimovitch I, Ramírez-Sarmiento CA. Metamorphic proteins and how to find them. Curr Opin Struct Biol 2024; 86:102807. [PMID: 38537533 PMCID: PMC11102287 DOI: 10.1016/j.sbi.2024.102807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
In the last two decades, our existing notion that most foldable proteins have a unique native state has been challenged by the discovery of metamorphic proteins, which reversibly interconvert between multiple, sometimes highly dissimilar, native states. As the number of known metamorphic proteins increases, several computational and experimental strategies have emerged for gaining insights about their refolding processes and identifying unknown metamorphic proteins amongst the known proteome. In this review, we describe the current advances in biophysically and functionally ascertaining the structural interconversions of metamorphic proteins and how coevolution can be harnessed to identify novel metamorphic proteins from sequence information. We also discuss the challenges and ongoing efforts in using artificial intelligence-based protein structure prediction methods to discover metamorphic proteins and predict their corresponding three-dimensional structures.
Collapse
Affiliation(s)
- Lauren L Porter
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; ANID, Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 833150, Chile.
| |
Collapse
|
10
|
Scott BM, Koh K, Rix GD. Structural and functional profile of phytases across the domains of life. Curr Res Struct Biol 2024; 7:100139. [PMID: 38562944 PMCID: PMC10982552 DOI: 10.1016/j.crstbi.2024.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Phytase enzymes are a crucial component of the natural phosphorus cycle, as they help make phosphate bioavailable by releasing it from phytate, the primary reservoir of organic phosphorus in grain and soil. Phytases also comprise a significant segment of the agricultural enzyme market, used primarily as an animal feed additive. At least four structurally and mechanistically distinct classes of phytases have evolved in bacteria and eukaryotes, and the natural diversity of each class is explored here using advances in protein structure prediction and functional annotation. This graphical review aims to provide a succinct description of the major classes of phytase enzymes across phyla, including their structures, conserved motifs, and mechanisms of action.
Collapse
Affiliation(s)
- Benjamin M. Scott
- Global Institute for Food Security, University of Saskatchewan, 421 Downey Road, S7N 4L8, Saskatoon, Saskatchewan, Canada
| | - Kevin Koh
- Global Institute for Food Security, University of Saskatchewan, 421 Downey Road, S7N 4L8, Saskatoon, Saskatchewan, Canada
| | - Gregory D. Rix
- Inspiralis Ltd., Innovation Centre, Norwich Research Park, Colney Lane, NR4 7UH, Norwich, UK
| |
Collapse
|
11
|
Dufault-Thompson K, Levy S, Hall B, Jiang X. Bilirubin reductase shows host-specific associations in animal large intestines. THE ISME JOURNAL 2024; 18:wrae242. [PMID: 39658189 DOI: 10.1093/ismejo/wrae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/12/2024]
Abstract
Animal gastrointestinal tracts contain diverse metabolites, including various host-derived compounds that gut-associated microbes interact with. Here, we explore the diversity and evolution of bilirubin reductase, a bacterial enzyme that metabolizes the host-derived tetrapyrrole bilirubin, performing a key role in the animal heme degradation pathway. Through an analysis of the bilirubin reductase phylogeny and predicted structures, we found that the enzyme family can be divided into three distinct clades with different structural features. Using these clade definitions, we analyzed metagenomic sequencing data from multiple animal species, finding that bilirubin reductase is significantly enriched in the large intestines of animals and that the clades exhibit differences in distribution among animals. Combined with phylogenetic signal analysis, we find that the bilirubin reductase clades exhibit significant associations with specific animals and animal physiological traits like gastrointestinal anatomy and diet. These patterns demonstrate that bilirubin reductase is specifically adapted to the anoxic lower gut environment of animals and that its evolutionary history is complex, involving adaptation to a diverse collection of animals harboring bilirubin-reducing microbes. The findings suggest that bilirubin reductase evolution has been shaped by the host environment, providing a new perspective on heme metabolism in animals and highlighting the importance of the microbiome in animal physiology and evolution.
Collapse
Affiliation(s)
- Keith Dufault-Thompson
- National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, Maryland 20894, United States
| | - Sophia Levy
- Department of Cell Biology and Molecular Genetics, University of Maryland, 4062 Campus Drive, College Park, Maryland 20742, United States
| | - Brantley Hall
- Department of Cell Biology and Molecular Genetics, University of Maryland, 4062 Campus Drive, College Park, Maryland 20742, United States
- Center for Bioinformatics and Computational Biology, University of Maryland, 8125 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, Maryland 20894, United States
| |
Collapse
|