1
|
Cohen RD, Pielak GJ. Quinary interactions with an unfolded state ensemble. Protein Sci 2017; 26:1698-1703. [PMID: 28571108 PMCID: PMC5563149 DOI: 10.1002/pro.3206] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/21/2017] [Accepted: 05/26/2017] [Indexed: 01/10/2023]
Abstract
Anfinsen's thermodynamic hypothesis states that the native three-dimensional fold of a protein represents the structure with the lowest Gibbs free energy. Changes in the free energy of denaturation can arise from changes to the folded state, the unfolded state, or both. It has been recently recognized that quinary interactions, transient contacts that take place only in cells, can modulate protein stability through interactions involving the folded state. Here we show that the cellular environment can also remodel the unfolded state ensemble.
Collapse
Affiliation(s)
- Rachel D. Cohen
- Department of ChemistryUniversity of North CarolinaChapel HillNorth Carolina27599
| | - Gary J. Pielak
- Department of ChemistryUniversity of North CarolinaChapel HillNorth Carolina27599
- Department of Biochemistry and BiophysicsUniversity of North CarolinaChapel HillNorth Carolina27599
- Lineberger Comprehensive Cancer Center, University of North CarolinaChapel HillNorth Carolina27599
- Integrative Program for Biological and Genome SciencesUniversity of North CarolinaChapel HillNorth Carolina27599
| |
Collapse
|
2
|
Liu CC, LiCata VJ. The stability ofTaqDNA polymerase results from a reduced entropic folding penalty; identification of other thermophilic proteins with similar folding thermodynamics. Proteins 2013; 82:785-93. [DOI: 10.1002/prot.24458] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/26/2013] [Accepted: 10/10/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Chin-Chi Liu
- Department of Biological Sciences; Louisiana State University; Baton Rouge Louisiana 70803
| | - Vince J. LiCata
- Department of Biological Sciences; Louisiana State University; Baton Rouge Louisiana 70803
| |
Collapse
|
3
|
Intrinsically disordered proteins may escape unwanted interactions via functional misfolding. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:693-712. [DOI: 10.1016/j.bbapap.2011.03.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/16/2011] [Accepted: 03/16/2011] [Indexed: 12/30/2022]
|
4
|
Huang Y, Liu Z. Nonnative interactions in coupled folding and binding processes of intrinsically disordered proteins. PLoS One 2010; 5:e15375. [PMID: 21079758 PMCID: PMC2973977 DOI: 10.1371/journal.pone.0015375] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 08/18/2010] [Indexed: 11/19/2022] Open
Abstract
Proteins function by interacting with other molecules, where both native and nonnative interactions play important roles. Native interactions contribute to the stability and specificity of a complex, whereas nonnative interactions mainly perturb the binding kinetics. For intrinsically disordered proteins (IDPs), which do not adopt rigid structures when being free in solution, the role of nonnative interactions may be more prominent in binding processes due to their high flexibilities. In this work, we investigated the effect of nonnative hydrophobic interactions on the coupled folding and binding processes of IDPs and its interplay with chain flexibility by conducting molecular dynamics simulations. Our results showed that the free-energy profiles became rugged, and intermediate states occurred when nonnative hydrophobic interactions were introduced. The binding rate was initially accelerated and subsequently dramatically decreased as the strength of the nonnative hydrophobic interactions increased. Both thermodynamic and kinetic analysis showed that disordered systems were more readily affected by nonnative interactions than ordered systems. Furthermore, it was demonstrated that the kinetic advantage of IDPs (“fly-casting” mechanism) was enhanced by nonnative hydrophobic interactions. The relationship between chain flexibility and protein aggregation is also discussed.
Collapse
Affiliation(s)
- Yongqi Huang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Center for Theoretical Biology, Peking University, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Zhirong Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Center for Theoretical Biology, Peking University, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
5
|
Shortle D. Composites of local structure propensities: Evidence for local encoding of long-range structure. Protein Sci 2009. [DOI: 10.1110/ps.31002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Su Z, Tong W, Shi L, Shao X, Cai W. A Partial Least Squares‐Based Consensus Regression Method for the Analysis of Near‐Infrared Complex Spectral Data of Plant Samples. ANAL LETT 2006. [DOI: 10.1080/00032710600724088] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Middaugh CR, Edwards KL. Recent advances in our understanding of protein conformational stability from a pharmaceutical perspective. Expert Opin Investig Drugs 2005; 7:1493-500. [PMID: 15992046 DOI: 10.1517/13543784.7.9.1493] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The marginal conformational stability of proteins has made them in some cases less than ideal candidates for pharmaceutical agents. Recent progress in our understanding of protein structure and stability has provided the opportunity to design the desired degree of stability into protein drug candidates. Modifications such as the optimisation of interior side-chain packing, the introduction of new ion-pairs, as well as the design of stabilising disulfide bridges and ligand binding sites, all offer the opportunity to produce proteins with enhanced stability properties.
Collapse
Affiliation(s)
- C R Middaugh
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| | | |
Collapse
|
8
|
Deechongkit S, Dawson PE, Kelly JW. Toward Assessing the Position-Dependent Contributions of Backbone Hydrogen Bonding to β-Sheet Folding Thermodynamics Employing Amide-to-Ester Perturbations. J Am Chem Soc 2004; 126:16762-71. [PMID: 15612714 DOI: 10.1021/ja045934s] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An amide-to-ester backbone substitution in a protein is accomplished by replacing an alpha-amino acid residue with the corresponding alpha-hydroxy acid, preserving stereochemistry, and conformation of the backbone and the structure of the side chain. This substitution replaces the amide NH (a hydrogen bond donor) with an ester O (which is not a hydrogen bond donor) and the amide carbonyl (a strong hydrogen bond acceptor) with an ester carbonyl (a weaker hydrogen bond acceptor), thus perturbing folding energetics. Amide-to-ester perturbations were used to evaluate the thermodynamic contribution of each hydrogen bond in the PIN WW domain, a three-stranded beta-sheet protein. Our results reveal that removing a hydrogen bond donor destabilizes the native state more than weakening a hydrogen bond acceptor and that the degree of destabilization is strongly dependent on the location of the amide bond replaced. Hydrogen bonds near turns or at the ends of beta-strands are less influential than hydrogen bonds that are protected within a hydrophobic core. Beta-sheet destabilization caused by an amide-to-ester substitution cannot be directly related to hydrogen bond strength because of differences in the solvation and electrostatic interactions of amides and esters. We propose corrections for these differences to obtain approximate hydrogen bond strengths from destabilization energies. These corrections, however, do not alter the trends noted above, indicating that the destabilization energy of an amide-to-ester mutation is a good first-order approximation of the free energy of formation of a backbone amide hydrogen bond.
Collapse
Affiliation(s)
- Songpon Deechongkit
- Department of Chemistry, The Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, BCC 506, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
9
|
Abstract
The effect of non-random conformational averaging in the urea-unfolded state on the folding pathway has been investigated in a variant of the FK506 binding protein with three additional residues at the amino terminus (FKBP(*)). Three mutations (asparagine, aspartate, and threonine) were introduced into position Q53 to enhance formation of non-native helix observed in this part of the protein in the urea-unfolded state. NMR analysis showed minor structural changes in the native state of each mutant, but additional medium-range alphaN(i,i+2) of each mutant nuclear Overhauser enhancements were observed in the urea-unfolded state that were not in FKBP(*), indicating that the mutations had a more substantial effect on the unfolded state ensemble than on the native state ensemble. Isothermal equilibrium denaturation measurements showed that the Q53T and Q53D mutants were destabilized, whereas the Q53N mutant was stabilized relative to FKBP(*) with little change in the equilibrium m values. The unfolding rates of Q53N and Q53T were similar to that of FKBP(*), but Q53D unfolded twice as fast as FKBP(*). In contrast, the mutations had a more pronounced effect on the refolding kinetics. Q53N refolded slightly faster and exhibited a kinetic folding intermediate similar to that of FKBP(*). The Q53D and Q53T mutants also refolded faster than FKBP(*) but lacked the folding intermediate, indicating that these mutants experienced a different folding trajectory and transition state than FKBP(*) and Q53N. The refolding kinetic Phi values were 0.74, 1.4 and 7.9 for Q53N, Q53T, and Q53D, respectively. The data point to Q53 functioning as a gatekeeper residue in the folding of FKBP(*). This study shows that perturbing the unfolded state ensemble via mutagenesis can provide insights into residues that play important roles in the folding pathway, and represents an attractive strategy for mapping the high-energy portions of the folding energy landscape.
Collapse
Affiliation(s)
- Alla Korepanova
- Graduate Program in Molecular Biophysics, Florida State University, 501 MBB 4380, Tallahassee, FL 32306-4380, USA
| | | | | |
Collapse
|
10
|
Shortle D. Composites of local structure propensities: evidence for local encoding of long-range structure. Protein Sci 2002; 11:18-26. [PMID: 11742118 PMCID: PMC2368770 DOI: 10.1110/ps.ps.31002] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2001] [Revised: 10/01/2001] [Accepted: 10/04/2001] [Indexed: 10/16/2022]
Abstract
To estimate how extensively the ensemble of denatured-state conformations is constrained by local side-chain-backbone interactions, propensities of each of the 20 amino acids to occur in mono- and dipeptides mapped to discrete regions of the Ramachandran map are computed from proteins of known structure. In addition, propensities are computed for the trans, gauche-, and gauche+ rotamers, with or without consideration of the values of phi and psi. These propensities are used in scoring functions for fragment threading, which estimates the energetic favorability of fragments of protein sequence to adopt the native conformation as opposed to hundreds of thousands of incorrect conformations. As finer subdivisions of the Ramachandran plot, neighboring residue phi/psi angles, and rotamers are incorporated, scoring functions become better at ranking the native conformation as the most favorable. With the best composite propensity function, the native structure can be distinguished from 300,000 incorrect structures for 71% of the 2130 arbitrary protein segments of length 40, 48% of 2247 segments of length 30, and 20% of 2368 segments of length 20. A majority of fragments of length 30-40 are estimated to be folded into the native conformation a substantial fraction of the time. These data suggest that the variations observed in amino acid frequencies in different phi/psi/chi1 environments in folded proteins reflect energetically important local side-chain-backbone interactions, interactions that may severely restrict the ensemble of conformations populated in the denatured state to a relatively small subset with nativelike structure.
Collapse
Affiliation(s)
- David Shortle
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| |
Collapse
|
11
|
Mok YK, Elisseeva EL, Davidson AR, Forman-Kay JD. Dramatic stabilization of an SH3 domain by a single substitution: roles of the folded and unfolded states. J Mol Biol 2001; 307:913-28. [PMID: 11273710 DOI: 10.1006/jmbi.2001.4521] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The N-terminal SH3 domain of the Drosophila drk protein (drkN SH3) exists in equilibrium between folded and unfolded states under non-denaturing buffer conditions. In order to examine the origins of this instability, we have made mutations in the domain and characterized the thermodynamics and kinetics of folding. Results of substitutions of negatively charged residues to neutral amino acid residues suggest that the large electrostatic potential of the domain does not play a dominant role in the instability of the domain. Sequence alignment of a large number of SH3 domains reveals that the drkN SH3 domain has a threonine (T22) at a position corresponding to an otherwise highly conserved glycine residue in the diverging beta-turn connecting the beta3 and beta4 strands. Mutation of T22 to glycine results in significant stabilization of the drkN SH3 domain by 2.5 kcal/mole. To further characterize the basis for the stabilization of the T22 mutant relative to wild-type, we made additional mutant proteins with substitutions of residue T22. A strong correlation is seen between protein stability or folding rate and propensity for native beta-turn structure at this position. Correlation of folding rates with AGADIR predictions of non-native helical structure in the diverging turn region, along with our previous NMR evidence for non-native structure in this region of the unfolded state of the drkN SH3 domain, suggests that the free energy of the unfolded state also plays a role in stability. This result highlights the importance of both folded and unfolded states for understanding protein stability.
Collapse
Affiliation(s)
- Y K Mok
- Department of Biochemistry, Structural Biology and Biochemistry, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | | | | | | |
Collapse
|
12
|
Williams DJ, Hall KB. Experimental and theoretical studies of the effects of deoxyribose substitutions on the stability of the UUCG tetraloop. J Mol Biol 2000; 297:251-65. [PMID: 10704320 DOI: 10.1006/jmbi.2000.3547] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experimental and theoretical thermodynamic studies of the consequences of 2'-hydroxyl substitution in the RNA UUCG tetraloop show distinct position dependence consistent with the diverse structural contexts of the four-loop ribose hydroxyls in this motif. The results suggest that even for simple substitutions, such as the replacement of the ribose hydroxyl (2'-OH) with hydrogen (2'-H), the free energy change reflects a complex interplay of hydrogen bonding and solvation effects and is influenced by the intrinsic pucker preferences of the nucleotides. Furthermore, theoretical studies suggest that the effect of these mutations in the single-strand state is sequence dependent, in contrast to what is commonly assumed. Free energy perturbation simulations of ribose-deoxyribose mutations in a single-strand dodecamer and in trinucleotide models suggest that in the denatured state, the magnitude of the free energy change for deoxyribose substitutions is determined to a larger extent by the identity of the nucleotide (A, C, G or U) rather than its structural context. Single-strand mutational effects must be considered when interpreting mutational studies in molecular terms.
Collapse
Affiliation(s)
- D J Williams
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, USA
| | | |
Collapse
|
13
|
Abstract
One of the most challenging tasks in the development of protein pharmaceuticals is to deal with physical and chemical instabilities of proteins. Protein instability is one of the major reasons why protein pharmaceuticals are administered traditionally through injection rather than taken orally like most small chemical drugs. Protein pharmaceuticals usually have to be stored under cold conditions or freeze-dried to achieve an acceptable shelf life. To understand and maximize the stability of protein pharmaceuticals or any other usable proteins such as catalytic enzymes, many studies have been conducted, especially in the past two decades. These studies have covered many areas such as protein folding and unfolding/denaturation, mechanisms of chemical and physical instabilities of proteins, and various means of stabilizing proteins in aqueous or solid state and under various processing conditions such as freeze-thawing and drying. This article reviews these investigations and achievements in recent years and discusses the basic behavior of proteins, their instabilities, and stabilization in aqueous state in relation to the development of liquid protein pharmaceuticals.
Collapse
Affiliation(s)
- W Wang
- Biotechnology, Bayer Corporation, 800 Dwight Way, Berkeley, CA 94701, USA.
| |
Collapse
|
14
|
Constans AJ, Mayer MR, Sukits SF, Lecomte JT. A test of the relationship between sequence and structure in proteins: excision of the heme binding site in apocytochrome b5. Protein Sci 1998; 7:1983-93. [PMID: 9761479 PMCID: PMC2144161 DOI: 10.1002/pro.5560070914] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The water-soluble domain of rat hepatic holocytochrome b5 is an alphabeta protein containing elements of secondary structure in the sequence beta1-alpha1-beta4-beta3-alpha2-alpha3-beta5- alpha4-alpha5-beta2-alpha6. The heme group is enclosed by four helices, a2, a3, a4, and a5. To test the hypothesis that a small b hemoprotein can be constructed in two parts, one forming the heme site, the other an organizing scaffold, a protein fragment corresponding to beta1-alpha1-beta4-beta3-lambda-beta2-alpha6 was prepared, where lambda is a seven-residue linker bypassing the heme binding site. The fragment ("abridged b5") was found to contain alpha and beta secondary structure by circular dichroism spectroscopy and tertiary structure by Trp fluorescence emission spectroscopy. NMR data revealed a species with spectral properties similar to those of the full-length apoprotein. This folded form is in slow equilibrium on the chemical shift time scale with other less folded species. Thermal denaturation, as monitored by circular dichroism, absorption, and fluorescence spectroscopy, as well as size-exclusion chromatography-fast protein liquid chromatography (SEC-FPLC), confirmed the coexistence of at least two distinct conformational ensembles. It was concluded that the protein fragment is capable of adopting a specific fold likely related to that of cytochrome b5, but does not achieve high thermodynamic stability and cooperativity. Abridged b5 demonstrates that the spliced sequence contains the information necessary to fold the protein. It suggests that the dominating influence to restrict the conformational space searched by the chain is structural propensities at a local level rather than internal packing. The sequence also holds the properties necessary to generate a barrier to unfolding.
Collapse
Affiliation(s)
- A J Constans
- Department of Chemistry and the Center for Biomolecular Structure and Function, The Pennsylvania State University, University Park 16802, USA
| | | | | | | |
Collapse
|
15
|
Di Cera E. Site-Specific Thermodynamics: Understanding Cooperativity in Molecular Recognition. Chem Rev 1998; 98:1563-1592. [PMID: 11848942 DOI: 10.1021/cr960135g] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Enrico Di Cera
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Box 8231, St. Louis, Missouri 63110
| |
Collapse
|