1
|
Žoldák G, Knappe TA, Geitner AJ, Scholz C, Dobbek H, Schmid FX, Jakob RP. Bacterial Chaperone Domain Insertions Convert Human FKBP12 into an Excellent Protein-Folding Catalyst-A Structural and Functional Analysis. Molecules 2024; 29:1440. [PMID: 38611720 PMCID: PMC11013033 DOI: 10.3390/molecules29071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Many folding enzymes use separate domains for the binding of substrate proteins and for the catalysis of slow folding reactions such as prolyl isomerization. FKBP12 is a small prolyl isomerase without a chaperone domain. Its folding activity is low, but it could be increased by inserting the chaperone domain from the homolog SlyD of E. coli near the prolyl isomerase active site. We inserted two other chaperone domains into human FKBP12: the chaperone domain of SlpA from E. coli, and the chaperone domain of SlyD from Thermococcus sp. Both stabilized FKBP12 and greatly increased its folding activity. The insertion of these chaperone domains had no influence on the FKBP12 and the chaperone domain structure, as revealed by two crystal structures of the chimeric proteins. The relative domain orientations differ in the two crystal structures, presumably representing snapshots of a more open and a more closed conformation. Together with crystal structures from SlyD-like proteins, they suggest a path for how substrate proteins might be transferred from the chaperone domain to the prolyl isomerase domain.
Collapse
Affiliation(s)
- Gabriel Žoldák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, Pavol Jozef Šafárik University in Košice, 040 11 Kosice, Slovakia
| | - Thomas A. Knappe
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Anne-Juliane Geitner
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, 95447 Bayreuth, Germany
| | | | - Holger Dobbek
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany;
| | - Franz X. Schmid
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Roman P. Jakob
- Departement Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| |
Collapse
|
2
|
Gordon BH, Liu P, Whittington AC, Silvers R, Miller BG. Biochemical methods to map and quantify allosteric motions in human glucokinase. Methods Enzymol 2023; 685:433-459. [PMID: 37245911 PMCID: PMC10308428 DOI: 10.1016/bs.mie.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Allosteric regulation of protein function is ubiquitous in biology. Allostery originates from ligand-mediated alterations in polypeptide structure and/or dynamics, which produce a cooperative kinetic or thermodynamic response to changing ligand concentrations. Establishing a mechanistic description of individual allosteric events requires both mapping the relevant changes in protein structure and quantifying the rates of differential conformational dynamics in the absence and presence of effectors. In this chapter, we describe three biochemical approaches to understand the dynamic and structural signatures of protein allostery using the well-established cooperative enzyme glucokinase as a case study. The combined application of pulsed proteolysis, biomolecular nuclear magnetic resonance spectroscopy and hydrogen-deuterium exchange mass spectrometry offers complementary information that can used to establish molecular models for allosteric proteins, especially when differential protein dynamics are involved.
Collapse
Affiliation(s)
- Blaine H Gordon
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, United States; Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States
| | - Peilu Liu
- Protein Analytical Chemistry, Genentech Inc., South San Francisco, CA, United States
| | - A Carl Whittington
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, United States; Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Robert Silvers
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, United States; Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States
| | - Brian G Miller
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, United States.
| |
Collapse
|
3
|
Zhang Z. Complete Extraction of Protein Dynamics Information in Hydrogen/Deuterium Exchange Mass Spectrometry Data. Anal Chem 2020; 92:6486-6494. [DOI: 10.1021/acs.analchem.9b05724] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zhongqi Zhang
- Process Development, Amgen Incorporated, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
4
|
Eggertson MJ, Fadgen K, Engen JR, Wales TE. Considerations in the Analysis of Hydrogen Exchange Mass Spectrometry Data. Methods Mol Biol 2020; 2051:407-435. [PMID: 31552640 DOI: 10.1007/978-1-4939-9744-2_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A major component of a hydrogen exchange mass spectrometry experiment is the analysis of protein and peptide mass spectra to yield information about deuterium incorporation. The processing of data that are produced includes the identification of each peptic peptide to create a master table/array of peptide identity that typically includes sequence, retention time and retention time range, mass range, and undeuterated mass. The amount of deuterium incorporated into each of the peptides in this array must then be determined. Various software platforms have been developed in order to perform this specific type of data analysis. We describe the fundamental parameters to be considered at each step along the way and how data processing, either by an individual or by software, must approach the analysis.
Collapse
Affiliation(s)
| | | | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
5
|
Graham BW, Bougoulias ME, Dodge KL, Thaxton CT, Olaso D, Tao Y, Young NL, Marshall AG, Trakselis MA. Control of Hexamerization, Assembly, and Excluded Strand Specificity for the Sulfolobus solfataricus MCM Helicase. Biochemistry 2018; 57:5672-5682. [DOI: 10.1021/acs.biochem.8b00766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brian W. Graham
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael E. Bougoulias
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Katie L. Dodge
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Carly T. Thaxton
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Danae Olaso
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Yeqing Tao
- Department of Chemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Nicolas L. Young
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030-3411, United States
| | - Alan G. Marshall
- Department of Chemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Michael A. Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
6
|
Tao Y, Fang P, Kim S, Guo M, Young NL, Marshall AG. Mapping the contact surfaces in the Lamin A:AIMP3 complex by hydrogen/deuterium exchange FT-ICR mass spectrometry. PLoS One 2017; 12:e0181869. [PMID: 28797100 PMCID: PMC5552228 DOI: 10.1371/journal.pone.0181869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/07/2017] [Indexed: 11/23/2022] Open
Abstract
Aminoacyl-tRNA synthetases-interacting multifunctional protein3 (AIMP3/p18) is involved in the macromolecular tRNA synthetase complex via its interaction with several aminoacyl-tRNA synthetases. Recent reports reveal a novel function of AIMP3 as a tumor suppressor by accelerating cellular senescence and causing defects in nuclear morphology. AIMP3 specifically mediates degradation of mature Lamin A (LmnA), a major component of the nuclear envelope matrix; however, the mechanism of how AIMP3 interacts with LmnA is unclear. Here we report solution-phase hydrogen/deuterium exchange (HDX) for AIMP3, LmnA, and AIMP3 in association with the LmnA C-terminus. Reversed-phase LC coupled with LTQ 14.5 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) results in high mass accuracy and resolving power for comparing the D-uptake profiles for AIMP3, LmnA, and their complex. The results show that the AIMP3-LmnA interaction involves one of the two putative binding sites and an adjacent novel interface on AIMP3. LmnA binds AIMP3 via its extreme C-terminus. Together these findings provide a structural insight for understanding the interaction between AIMP3 and LmnA in AIMP3 degradation.
Collapse
Affiliation(s)
- Yeqing Tao
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Pengfei Fang
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Min Guo
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Nicolas L. Young
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alan G. Marshall
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
7
|
Brown KA, Wilson DJ. Bottom-up hydrogen deuterium exchange mass spectrometry: data analysis and interpretation. Analyst 2017; 142:2874-2886. [DOI: 10.1039/c7an00662d] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A tutorial review on the fundamentals of HDX-MS with an emphasis on data analysis and interpretation.
Collapse
Affiliation(s)
- Kerene A. Brown
- Department of Chemistry
- York University
- Toronto
- Canada
- Center for Research in Mass Spectrometry
| | - Derek J. Wilson
- Department of Chemistry
- York University
- Toronto
- Canada
- Center for Research in Mass Spectrometry
| |
Collapse
|
8
|
Structural characterization of human aminoacyl-tRNA synthetases for translational and nontranslational functions. Methods 2017; 113:83-90. [DOI: 10.1016/j.ymeth.2016.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 11/18/2022] Open
|
9
|
Graham BW, Tao Y, Dodge KL, Thaxton CT, Olaso D, Young NL, Marshall AG, Trakselis MA. DNA Interactions Probed by Hydrogen-Deuterium Exchange (HDX) Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Confirm External Binding Sites on the Minichromosomal Maintenance (MCM) Helicase. J Biol Chem 2016; 291:12467-12480. [PMID: 27044751 DOI: 10.1074/jbc.m116.719591] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 11/06/2022] Open
Abstract
The archaeal minichromosomal maintenance (MCM) helicase from Sulfolobus solfataricus (SsoMCM) is a model for understanding structural and mechanistic aspects of DNA unwinding. Although interactions of the encircled DNA strand within the central channel provide an accepted mode for translocation, interactions with the excluded strand on the exterior surface have mostly been ignored with regard to DNA unwinding. We have previously proposed an extension of the traditional steric exclusion model of unwinding to also include significant contributions with the excluded strand during unwinding, termed steric exclusion and wrapping (SEW). The SEW model hypothesizes that the displaced single strand tracks along paths on the exterior surface of hexameric helicases to protect single-stranded DNA (ssDNA) and stabilize the complex in a forward unwinding mode. Using hydrogen/deuterium exchange monitored by Fourier transform ion cyclotron resonance MS, we have probed the binding sites for ssDNA, using multiple substrates targeting both the encircled and excluded strand interactions. In each experiment, we have obtained >98.7% sequence coverage of SsoMCM from >650 peptides (5-30 residues in length) and are able to identify interacting residues on both the interior and exterior of SsoMCM. Based on identified contacts, positively charged residues within the external waist region were mutated and shown to generally lower DNA unwinding without negatively affecting the ATP hydrolysis. The combined data globally identify binding sites for ssDNA during SsoMCM unwinding as well as validating the importance of the SEW model for hexameric helicase unwinding.
Collapse
Affiliation(s)
- Brian W Graham
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Yeqing Tao
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306
| | - Katie L Dodge
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798
| | - Carly T Thaxton
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798
| | - Danae Olaso
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798
| | - Nicolas L Young
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310
| | - Alan G Marshall
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306; National High Magnetic Field Laboratory, Tallahassee, Florida 32310
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798.
| |
Collapse
|
10
|
Askenasy I, Pennington JM, Tao Y, Marshall AG, Young NL, Shang W, Stroupe ME. The N-terminal Domain of Escherichia coli Assimilatory NADPH-Sulfite Reductase Hemoprotein Is an Oligomerization Domain That Mediates Holoenzyme Assembly. J Biol Chem 2015; 290:19319-33. [PMID: 26088143 PMCID: PMC4521050 DOI: 10.1074/jbc.m115.662379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/05/2015] [Indexed: 11/06/2022] Open
Abstract
Assimilatory NADPH-sulfite reductase (SiR) from Escherichia coli is a structurally complex oxidoreductase that catalyzes the six-electron reduction of sulfite to sulfide. Two subunits, one a flavin-binding flavoprotein (SiRFP, the α subunit) and the other an iron-containing hemoprotein (SiRHP, the β subunit), assemble to make a holoenzyme of about 800 kDa. How the two subunits assemble is not known. The iron-rich cofactors in SiRHP are unique because they are a covalent arrangement of a Fe4S4 cluster attached through a cysteine ligand to an iron-containing porphyrinoid called siroheme. The link between cofactor biogenesis and SiR stability is also ill-defined. By use of hydrogen/deuterium exchange and biochemical analysis, we show that the α8β4 SiR holoenzyme assembles through the N terminus of SiRHP and the NADPH binding domain of SiRFP. By use of small angle x-ray scattering, we explore the structure of the SiRHP N-terminal oligomerization domain. We also report a novel form of the hemoprotein that occurs in the absence of its cofactors. Apo-SiRHP forms a homotetramer, also dependent on its N terminus, that is unable to assemble with SiRFP. From these results, we propose that homotetramerization of apo-SiRHP serves as a quality control mechanism to prevent formation of inactive holoenzyme in the case of limiting cellular siroheme.
Collapse
Affiliation(s)
- Isabel Askenasy
- From the Department of Biological Science and Institute of Molecular Biophysics and
| | - Joseph M Pennington
- From the Department of Biological Science and Institute of Molecular Biophysics and
| | - Yeqing Tao
- the Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306
| | - Alan G Marshall
- the Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, the National High Magnetic Field Laboratory, Tallahassee, Florida 32310, and
| | - Nicolas L Young
- the National High Magnetic Field Laboratory, Tallahassee, Florida 32310, and
| | - Weifeng Shang
- the Center for Synchrotron Radiation Research and Instrumentation and Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - M Elizabeth Stroupe
- From the Department of Biological Science and Institute of Molecular Biophysics and
| |
Collapse
|
11
|
Guan X, Noble KA, Tao Y, Roux KH, Sathe SK, Young NL, Marshall AG. Epitope mapping of 7S cashew antigen in complex with antibody by solution-phase H/D exchange monitored by FT-ICR mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:812-819. [PMID: 26169135 DOI: 10.1002/jms.3589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
The potential epitope of a recombinant food allergen protein, cashew Ana o 1, reactive to monoclonal antibody, mAb 2G4, has been mapped by solution-phase amide backbone H/D exchange (HDX) monitored by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Purified mAb 2G4 was incubated with recombinant Ana o 1 (rAna o 1) to form antigen:monoclonal antibody (Ag:mAb) complexes. Complexed and uncomplexed (free) rAna o 1 were then subjected to HDX-MS analysis. Five regions protected from H/D exchange upon mAb binding are identified as potential conformational epitope-contributing segments.
Collapse
Affiliation(s)
- Xiaoyan Guan
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL, 32310, USA
| | - Kyle A Noble
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Yeqing Tao
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL, 32306, USA
| | - Kenneth H Roux
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Shridhar K Sathe
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Nicolas L Young
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL, 32310, USA
| | - Alan G Marshall
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL, 32310, USA
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL, 32306, USA
| |
Collapse
|
12
|
Keppel TR, Weis DD. Mapping residual structure in intrinsically disordered proteins at residue resolution using millisecond hydrogen/deuterium exchange and residue averaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:547-554. [PMID: 25481641 DOI: 10.1007/s13361-014-1033-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 06/04/2023]
Abstract
Measurement of residual structure in intrinsically disordered proteins can provide insights into the mechanisms by which such proteins undergo coupled binding and folding. The present work describes an approach to measure residual structure in disordered proteins using millisecond hydrogen/deuterium (H/D) exchange in a conventional bottom-up peptide-based workflow. We used the exchange mid-point, relative to a totally deuterated control, to quantify the rate of H/D exchange in each peptide. A weighted residue-by-residue average of these midpoints was used to map the extent of residual structure at near single-residue resolution. We validated this approach both by simulating a disordered protein and experimentally using the p300 binding domain of ACTR, a model disordered protein already well-characterized by other approaches. Secondary structure elements mapped in the present work are in good agreement with prior nuclear magnetic resonance measurements. The new approach was somewhat limited by a loss of spatial resolution and subject to artifacts because of heterogeneities in intrinsic exchange. Approaches to correct these limitations are discussed.
Collapse
Affiliation(s)
- Theodore R Keppel
- Department of Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS, 66045, USA
| | | |
Collapse
|
13
|
Engen JR, Wales TE. Analytical Aspects of Hydrogen Exchange Mass Spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:127-48. [PMID: 26048552 PMCID: PMC4989240 DOI: 10.1146/annurev-anchem-062011-143113] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This article reviews the analytical aspects of measuring hydrogen exchange by mass spectrometry (HX MS). We describe the nature of analytical selectivity in hydrogen exchange, then review the analytical tools required to accomplish fragmentation, separation, and the mass spectrometry measurements under restrictive exchange quench conditions. In contrast to analytical quantitation that relies on measurements of peak intensity or area, quantitation in HX MS depends on measuring a mass change with respect to an undeuterated or deuterated control, resulting in a value between zero and the maximum amount of deuterium that can be incorporated. Reliable quantitation is a function of experimental fidelity and to achieve high measurement reproducibility, a large number of experimental variables must be controlled during sample preparation and analysis. The method also reports on important qualitative aspects of the sample, including conformational heterogeneity and population dynamics.
Collapse
Affiliation(s)
- John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115;
| | | |
Collapse
|
14
|
Kim DG, Lee JY, Kwon NH, Fang P, Zhang Q, Wang J, Young NL, Guo M, Cho HY, Mushtaq AU, Jeon YH, Choi JW, Han JM, Kang HW, Joo JE, Hur Y, Kang W, Yang H, Nam DH, Lee MS, Lee JW, Kim ES, Moon A, Kim K, Kim D, Kang EJ, Moon Y, Rhee KH, Han BW, Yang JS, Han G, Yang WS, Lee C, Wang MW, Kim S. Chemical inhibition of prometastatic lysyl-tRNA synthetase-laminin receptor interaction. Nat Chem Biol 2013; 10:29-34. [PMID: 24212136 DOI: 10.1038/nchembio.1381] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/18/2013] [Indexed: 01/11/2023]
Abstract
Lysyl-tRNA synthetase (KRS), a protein synthesis enzyme in the cytosol, relocates to the plasma membrane after a laminin signal and stabilizes a 67-kDa laminin receptor (67LR) that is implicated in cancer metastasis; however, its potential as an antimetastatic therapeutic target has not been explored. We found that the small compound BC-K-YH16899, which binds KRS, impinged on the interaction of KRS with 67LR and suppressed metastasis in three different mouse models. The compound inhibited the KRS-67LR interaction in two ways. First, it directly blocked the association between KRS and 67LR. Second, it suppressed the dynamic movement of the N-terminal extension of KRS and reduced membrane localization of KRS. However, it did not affect the catalytic activity of KRS. Our results suggest that specific modulation of a cancer-related KRS-67LR interaction may offer a way to control metastasis while avoiding the toxicities associated with inhibition of the normal functions of KRS.
Collapse
Affiliation(s)
- Dae Gyu Kim
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea. [3]
| | - Jin Young Lee
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea. [3]
| | - Nam Hoon Kwon
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Pengfei Fang
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, USA
| | - Qian Zhang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA
| | - Jing Wang
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, USA
| | - Nicolas L Young
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Min Guo
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, USA
| | - Hye Young Cho
- College of Pharmacy, Korea University, Sejong, Korea
| | | | - Young Ho Jeon
- College of Pharmacy, Korea University, Sejong, Korea
| | - Jin Woo Choi
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jung Min Han
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | | - Youn Hur
- Yuhan Research Institute, Yongin, Korea
| | - Wonyoung Kang
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Heekyoung Yang
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mi-Sook Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jung Weon Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Eun-Sook Kim
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Aree Moon
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Kibom Kim
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Doyeun Kim
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Eun Joo Kang
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea
| | - Youngji Moon
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea
| | - Kyung Hee Rhee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jee Sun Yang
- Translational Research Center for Protein Function Control, Department of Biotechnology and WCU Department of Biomedical Sciences, Yonsei University, Seoul, Korea
| | - Gyoonhee Han
- Translational Research Center for Protein Function Control, Department of Biotechnology and WCU Department of Biomedical Sciences, Yonsei University, Seoul, Korea
| | - Won Suk Yang
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Cheolju Lee
- BRI, Korea Institute of Science and Technology, Seoul, Korea
| | - Ming-Wei Wang
- The National Center for Drug Screening, Zhangjiang High-Tech Park, Shanghai, China
| | - Sunghoon Kim
- 1] Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea. [2] Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea. [3] World Class University Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
15
|
Tittebrandt S, Edelson-Averbukh M, Spengler B, Lehmann WD. Abzählen von chemisch unterschiedlichen labilen Wasserstoffatomen über Wasserstoff-Deuterium-Austausch in einer ESI-Quelle. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Tittebrandt S, Edelson-Averbukh M, Spengler B, Lehmann WD. ESI Hydrogen/Deuterium Exchange Can Count Chemical Forms of Heteroatom-Bound Hydrogen. Angew Chem Int Ed Engl 2013; 52:8973-5. [DOI: 10.1002/anie.201304249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Indexed: 11/07/2022]
|
17
|
Zhang Q, Noble KA, Mao Y, Young NL, Sathe SK, Roux KH, Marshall AG. Rapid screening for potential epitopes reactive with a polycolonal antibody by solution-phase H/D exchange monitored by FT-ICR mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1016-1025. [PMID: 23681851 DOI: 10.1007/s13361-013-0644-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 04/03/2013] [Accepted: 04/03/2013] [Indexed: 06/02/2023]
Abstract
The potential epitopes of a recombinant food allergen protein, cashew Ana o 2, reactive to polyclonal antibodies, were mapped by solution-phase amide backbone H/D exchange (HDX) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Ana o 2 polyclonal antibodies were purified in the serum from a goat immunized with cashew nut extract. Antibodies were incubated with recombinant Ana o 2 (rAna o 2) to form antigen:polyclonal antibody (Ag:pAb) complexes. Complexed and uncomplexed (free) rAna o 2 were then subjected to HDX-MS analysis. Four regions protected from H/D exchange upon pAb binding are identified as potential epitopes and mapped onto a homologous model.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Zhang Q, Chen J, Kuwajima K, Zhang HM, Xian F, Young NL, Marshall AG. Nucleotide-induced conformational changes of tetradecameric GroEL mapped by H/D exchange monitored by FT-ICR mass spectrometry. Sci Rep 2013; 3:1247. [PMID: 23409238 PMCID: PMC3570780 DOI: 10.1038/srep01247] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/06/2012] [Indexed: 11/29/2022] Open
Abstract
Here we employ hydrogen/deuterium exchange mass spectrometry (HDX-MS) to access E. coli chaperonin GroEL conformation. The ~800 kDa tetradecameric GroEL plays an essential role in the proper folding of many proteins. Previous studies of the structural dynamics of GroEL upon ATP binding have been inconsistent, showing either minimal or major allosteric changes. Our results, based on the native, non-mutated, protein under physiological conditions in solution demonstrate substantial changes in conformation and/or flexibility upon ATP binding. We capture the pivotal step in its functional cycle by use of a non-hydrolyzable ATP analog, ATPγS, to mimic the ATP-bound GroEL state. Comparison of HDX-MS results for apo GroEL and GroEL-ATPγS enables the characterization of the nucleotide-regulated conformational changes throughout the entire protein with high sequence resolution. The 14-mer GroEL complex is the largest protein assembly yet accessed by HDX-MS, with sequence resolution of segments of as few as five amino acids.
Collapse
Affiliation(s)
- Qian Zhang
- Florida State University, Department of Chemistry, Tallahassee, FL 32306, USA
- These authors contributed equally to this work
| | - Jin Chen
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- These authors contributed equally to this work
| | - Kunihiro Kuwajima
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies (Sokendai), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Hui-Min Zhang
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Feng Xian
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Nicolas L. Young
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Alan G. Marshall
- Florida State University, Department of Chemistry, Tallahassee, FL 32306, USA
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| |
Collapse
|
19
|
Pester O, Barrett PJ, Hornburg D, Hornburg P, Pröbstle R, Widmaier S, Kutzner C, Dürrbaum M, Kapurniotu A, Sanders CR, Scharnagl C, Langosch D. The backbone dynamics of the amyloid precursor protein transmembrane helix provides a rationale for the sequential cleavage mechanism of γ-secretase. J Am Chem Soc 2013; 135:1317-29. [PMID: 23265086 PMCID: PMC3560327 DOI: 10.1021/ja3112093] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The etiology of Alzheimer's disease depends on the relative abundance of different amyloid-β (Aβ) peptide species. These peptides are produced by sequential proteolytic cleavage within the transmembrane helix of the 99 residue C-terminal fragment of the amyloid precursor protein (C99) by the intramembrane protease γ-secretase. Intramembrane proteolysis is thought to require local unfolding of the substrate helix, which has been proposed to be cleaved as a homodimer. Here, we investigated the backbone dynamics of the substrate helix. Amide exchange experiments of monomeric recombinant C99 and of synthetic transmembrane domain peptides reveal that the N-terminal Gly-rich homodimerization domain exchanges much faster than the C-terminal cleavage region. MD simulations corroborate the differential backbone dynamics, indicate a bending motion at a diglycine motif connecting dimerization and cleavage regions, and detect significantly different H-bond stabilities at the initial cleavage sites. Our results are consistent with the following hypotheses about cleavage of the substrate: First, the GlyGly hinge may precisely position the substrate within γ-secretase such that its catalytic center must start proteolysis at the known initial cleavage sites. Second, the ratio of cleavage products formed by subsequent sequential proteolysis could be influenced by differential extents of solvation and by the stabilities of H-bonds at alternate initial sites. Third, the flexibility of the Gly-rich domain may facilitate substrate movement within the enzyme during sequential proteolysis. Fourth, dimerization may affect substrate processing by decreasing the dynamics of the dimerization region and by increasing that of the C-terminal part of the cleavage region.
Collapse
Affiliation(s)
- Oxana Pester
- Lehrstuhl Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, and Munich Center For Integrated Protein Science (CIPS), Germany
| | - Paul J. Barrett
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee USA 37232-8725
| | - Daniel Hornburg
- Lehrstuhl Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, and Munich Center For Integrated Protein Science (CIPS), Germany
| | - Philipp Hornburg
- Lehrstuhl Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, and Munich Center For Integrated Protein Science (CIPS), Germany
| | - Rasmus Pröbstle
- Lehrstuhl Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, and Munich Center For Integrated Protein Science (CIPS), Germany
| | - Simon Widmaier
- Lehrstuhl Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, and Munich Center For Integrated Protein Science (CIPS), Germany
| | - Christoph Kutzner
- Lehrstuhl Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, and Munich Center For Integrated Protein Science (CIPS), Germany
| | - Milena Dürrbaum
- Lehrstuhl Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, and Munich Center For Integrated Protein Science (CIPS), Germany
| | - Aphrodite Kapurniotu
- Fachgebiet Peptidbiochemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Charles R. Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee USA 37232-8725
| | - Christina Scharnagl
- Fakultät für Physik E14, Technische Universität München, Maximus-von-Imhof-Forum 4, 85354 Freising, Germany
| | - Dieter Langosch
- Lehrstuhl Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, and Munich Center For Integrated Protein Science (CIPS), Germany
| |
Collapse
|
20
|
Abstract
A major component of a hydrogen exchange mass spectrometry experiment is the analysis of protein and peptide mass spectra to yield information about deuterium incorporation. The processing of data that are produced includes the identification of each peptic peptide to create a master table/array of peptide sequence, retention time and retention time range, mass range, and undeuterated mass. The amount of deuterium incorporated into each of the peptides in this array must then be determined. Various software platforms have been developed in order to perform this specific type of data analysis. We describe the fundamental parameters to be considered at each step along the way and how data processing, either by an individual or by software, must approach the analysis.
Collapse
|
21
|
Fajer PG, Bou-Assaf GM, Marshall AG. Improved sequence resolution by global analysis of overlapped peptides in hydrogen/deuterium exchange mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1202-8. [PMID: 22528203 DOI: 10.1007/s13361-012-0373-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 02/28/2012] [Accepted: 02/28/2012] [Indexed: 05/12/2023]
Abstract
Management of the enormous amount of data produced during solution-phase hydrogen/deuterium exchange monitored by mass spectrometry has stimulated software analysis development. The proteolysis step of the experiment generates multiple peptide fragments, most of which overlap. Prior automated data reduction algorithms extract the deuteration level for individual peptides, but do not exploit the additional information arising from fragment overlap. Here, we describe an algorithm that determines discrete rate constant values to each of the amide hydrogens in overlapped fragments. By considering all of the overlapped peptide segments simultaneously, sequence resolution can be improved significantly, sometimes to the individual amino acid level. We have validated the method with simulated deuterium uptake data for seven overlapped fragments of a poly-Ala nonapeptide, and then applied it to extract rate constant values for the first 29 N-terminal amino acids of C22A FK506-binding protein.
Collapse
Affiliation(s)
- Piotr G Fajer
- Institute of Molecular Biophysics, Biological Sciences Department, Florida State University, Tallahassee, FL 32306, USA.
| | | | | |
Collapse
|
22
|
Brock A. Fragmentation hydrogen exchange mass spectrometry: A review of methodology and applications. Protein Expr Purif 2012; 84:19-37. [DOI: 10.1016/j.pep.2012.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 04/13/2012] [Indexed: 01/19/2023]
|
23
|
Lee PS, Zhang HM, Marshall AG, Yang XL, Schimmel P. Uncovering of a short internal peptide activates a tRNA synthetase procytokine. J Biol Chem 2012; 287:20504-8. [PMID: 22549774 PMCID: PMC3370235 DOI: 10.1074/jbc.c112.369439] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 04/28/2012] [Indexed: 11/06/2022] Open
Abstract
In higher organisms, aminoacyl-tRNA synthetases developed receptor-mediated ex-translational functions that are activated by various natural mechanisms. Hydrogen-deuterium exchange combined with mass spectrometry and small-angle x-ray scattering showed that activation of the cytokine function of the 528-amino acid human tyrosyl-tRNA synthetase was associated with pinpointed uncovering of a miniature internal ELR tripeptide that triggers receptor signaling. The results reveal the structural simplicity of how the ex-translational function is implemented.
Collapse
Affiliation(s)
| | - Hui-Min Zhang
- the National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310
| | - Alan G. Marshall
- the National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310
| | - Xiang-Lei Yang
- From the Departments of Molecular Biology and
- Chemical Physiology and
| | - Paul Schimmel
- From the Departments of Molecular Biology and
- The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La, Jolla, California 92037 and
| |
Collapse
|
24
|
Zhang Z, Zhang A, Xiao G. Improved Protein Hydrogen/Deuterium Exchange Mass Spectrometry Platform with Fully Automated Data Processing. Anal Chem 2012; 84:4942-9. [DOI: 10.1021/ac300535r] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Unique domain appended to vertebrate tRNA synthetase is essential for vascular development. Nat Commun 2012; 3:681. [PMID: 22353712 PMCID: PMC3293412 DOI: 10.1038/ncomms1686] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 01/16/2012] [Indexed: 11/08/2022] Open
Abstract
New domains were progressively added to cytoplasmic aminoacyl transfer RNA (tRNA) synthetases during evolution. One example is the UNE-S domain, appended to seryl-tRNA synthetase (SerRS) in species that developed closed circulatory systems. Here we show using solution and crystal structure analyses and in vitro and in vivo functional studies that UNE-S harbours a robust nuclear localization signal (NLS) directing SerRS to the nucleus where it attenuates vascular endothelial growth factor A expression. We also show that SerRS mutants previously linked to vasculature abnormalities either deleted the NLS or have the NLS sequestered in an alternative conformation. A structure-based second-site mutation, designed to release the sequestered NLS, restored normal vasculature. Thus, the essential function of SerRS in vascular development depends on UNE-S. These results are the first to show an essential role for a tRNA synthetase-associated appended domain at the organism level, and suggest that acquisition of UNE-S has a role in the establishment of the closed circulatory systems of vertebrates.
Collapse
|
26
|
Zhang Q, Willison LN, Tripathi P, Sathe SK, Roux KH, Emmett MR, Blakney GT, Zhang HM, Marshall AG. Epitope mapping of a 95 kDa antigen in complex with antibody by solution-phase amide backbone hydrogen/deuterium exchange monitored by Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 2011; 83:7129-36. [PMID: 21861454 PMCID: PMC3173601 DOI: 10.1021/ac201501z] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The epitopes of a homohexameric food allergen protein, cashew Ana o 2, identified by two monoclonal antibodies, 2B5 and 1F5, were mapped by solution-phase amide backbone H/D exchange (HDX) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and the results were compared to previous mapping by immunological and mutational analyses. Antibody 2B5 defines a conformational epitope, and 1F5 defines a linear epitope. Intact murine IgG antibodies were incubated with recombinant Ana o 2 (rAna o 2) to form antigen-monoclonal antibody (Ag-mAb) complexes. mAb-complexed and uncomplexed (free) rAna o 2 were then subjected to HDX. HDX instrumentation and automation were optimized to achieve high sequence coverage by protease XIII digestion. The regions protected from H/D exchange upon antibody binding overlap and thus confirm the previously identified epitope-bearing segments: the first extension of HDX monitored by mass spectrometry to a full-length antigen-antibody complex in solution.
Collapse
Affiliation(s)
- Qian Zhang
- Department Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306
| | - LeAnna N. Willison
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| | - Pallavi Tripathi
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| | - Shridhar K. Sathe
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306
| | - Kenneth H. Roux
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306
| | - Mark R. Emmett
- Department Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State Universitiy, 1800 E. Paul Dirac Drive, Tallahassee, FL 323010-4005
| | - Greg T. Blakney
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State Universitiy, 1800 E. Paul Dirac Drive, Tallahassee, FL 323010-4005
| | - Hui-Min Zhang
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State Universitiy, 1800 E. Paul Dirac Drive, Tallahassee, FL 323010-4005
| | - Alan G. Marshall
- Department Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State Universitiy, 1800 E. Paul Dirac Drive, Tallahassee, FL 323010-4005
| |
Collapse
|
27
|
Structural context for mobilization of a human tRNA synthetase from its cytoplasmic complex. Proc Natl Acad Sci U S A 2011; 108:8239-44. [PMID: 21536907 DOI: 10.1073/pnas.1100224108] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human lysyl-tRNA synthetase is bound to the multi-tRNA synthetase complex (MSC) that maintains and regulates the aminoacylation and nuclear functions of LysRS. The p38 scaffold protein binds LysRS to the MSC and, only with the appropriate cue, mobilizes LysRS for redirection to the nucleus to interact with the microphthalmia associated transcription factor (MITF). In recent work, an (α(2))(2) LysRS tetramer crystallized to yield a high-resolution structure and raised the question of how LysRS is arranged (dimer or tetramer) in the MSC to interact with p38. To understand the structural organization of the LysRS-p38 complex that regulates LysRS mobilization, we investigated the complex by use of small angle X-ray scattering and hydrogen-deuterium exchange with mass spectrometry in solution. The structure revealed a surprising α(2)β(1):β(1)α(2) organization in which a dimeric p38 scaffold holds two LysRS α(2) dimers in a parallel configuration. Each of the N-terminal 48 residues of p38 binds one LysRS dimer and, in so doing, brings two copies of the LysRS dimer into the MSC. The results suggest that this unique geometry, which reconfigures the LysRS tetramer from α(2):α(2) to α(2)β(1):β(1)α(2), is designed to control both retention and mobilization of LysRS from the MSC.
Collapse
|
28
|
Zhang HM, Yu X, Greig MJ, Gajiwala KS, Wu JC, Diehl W, Lunney EA, Emmett MR, Marshall AG. Drug binding and resistance mechanism of KIT tyrosine kinase revealed by hydrogen/deuterium exchange FTICR mass spectrometry. Protein Sci 2010; 19:703-15. [PMID: 20095048 DOI: 10.1002/pro.347] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutations of the receptor tyrosine kinase KIT are linked to certain cancers such as gastrointestinal stromal tumors (GISTs). Biophysical, biochemical, and structural studies have provided insight into the molecular basis of resistance to the KIT inhibitors, imatinib and sunitinib. Here, solution-phase hydrogen/deuterium exchange (HDX) and direct binding mass spectrometry experiments provide a link between static structure models and the dynamic equilibrium of the multiple states of KIT, supporting that sunitinib targets the autoinhibited conformation of WT-KIT. The D816H mutation shifts the KIT conformational equilibrium toward the activated state. The V560D mutant exhibits two low energy conformations: one is more flexible and resembles the D816H mutant shifted toward the activated conformation, and the other is less flexible and resembles the wild-type KIT in the autoinhibited conformation. This result correlates with the V560D mutant exhibiting a sensitivity to sunitinib that is less than for WT KIT but greater than for KIT D816H. These findings support the elucidation of the resistance mechanism for the KIT mutants.
Collapse
Affiliation(s)
- Hui-Min Zhang
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310-4005, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Local conformational stability of HIV-1 gp120 in unliganded and CD4-bound states as defined by amide hydrogen/deuterium exchange. J Virol 2010; 84:10311-21. [PMID: 20660185 DOI: 10.1128/jvi.00688-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The binding reaction of the HIV-1 gp120 envelope glycoprotein to the CD4 receptor involves exceptional changes in enthalpy and entropy. Crystal structures of gp120 in unliganded and various ligand-bound states, meanwhile, reveal an inner domain able to fold into diverse conformations, a structurally invariant outer domain, and, in the CD4-bound state, a bridging sheet minidomain. These studies, however, provide only hints as to the flexibility of each state. Here we use amide hydrogen/deuterium exchange coupled to mass spectrometry to provide quantifications of local conformational stability for HIV-1 gp120 in unliganded and CD4-bound states. On average, unliganded core gp120 displayed >10,000-fold slower exchange of backbone-amide hydrogens than a theoretically unstructured protein of the same composition, with binding by CD4 reducing the rate of gp120 amide exchange a further 10-fold. For the structurally constant CD4, alterations in exchange correlated well with alterations in binding surface (P value = 0.0004). For the structurally variable gp120, however, reductions in flexibility extended outside the binding surface, and regions of expected high structural diversity (inner domain/bridging sheet) displayed roughly 20-fold more rapid exchange in the unliganded state than regions of low diversity (outer domain). Thus, despite an extraordinary reduction in entropy, neither unliganded gp120 nor free CD4 was substantially unstructured, suggesting that most of the diverse conformations that make up the gp120 unliganded state are reasonably ordered. The results provide a framework for understanding how local conformational stability influences entropic change, conformational diversity, and structural rearrangements in the gp120-CD4 binding reaction.
Collapse
|
30
|
Edwards AA, Tipton JD, Brenowitz MD, Emmett MR, Marshall AG, Evans GB, Tyler PC, Schramm VL. Conformational states of human purine nucleoside phosphorylase at rest, at work, and with transition state analogues. Biochemistry 2010; 49:2058-67. [PMID: 20108972 DOI: 10.1021/bi902041j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human purine nucleoside phosphorylase (PNP) is a homotrimer binding tightly to the transition state analogues Immucillin-H (ImmH; K(d) = 56 pM) and DATMe-ImmH-Immucillin-H (DATMe-ImmH; K(d) = 8.6 pM). ImmH binds with a larger entropic penalty than DATMe-ImmH, a chemically more flexible inhibitor. The testable hypothesis is that PNP conformational states are more relaxed (dynamic) with DATMe-ImmH, despite tighter binding than with ImmH. PNP conformations are probed by peptide amide deuterium exchange (HDX) using liquid chromatography high-resolution Fourier transform ion cyclotron resonance mass spectrometry and by sedimentation rates. Catalytically equilibrating Michaelis complexes (PNP.PO(4).inosine <--> PNP.Hx.R-1-P) and inhibited complexes (PNP.PO(4).DATMe-ImmH and PNP.PO(4).ImmH) show protection from HDX at 9, 13, and 15 sites per subunit relative to resting PNP (PNP.PO(4)) in extended incubations. The PNP.PO(4).ImmH complex is more compact (by sedimentation rate) than the other complexes. HDX kinetic analysis of ligand-protected sites corresponds to peptides near the catalytic sites. HDX and sedimentation results establish that PNP protein conformation (dynamic motion) correlates more closely with entropy of binding than with affinity. Catalytically active turnover with saturated substrate sites causes less change in HDX and sedimentation rates than binding of transition state analogues. DATMe-ImmH more closely mimics the transition of human PNP than does ImmH and achieves strong binding interactions at the catalytic site while causing relatively modest alterations of the protein dynamic motion. Transition state analogues causing the most rigid, closed protein conformation are therefore not necessarily the most tightly bound. Close mimics of the transition state are hypothesized to retain enzymatic dynamic motions related to transition state formation.
Collapse
Affiliation(s)
- Achelle A Edwards
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Poschner BC, Langosch D. Stabilization of conformationally dynamic helices by covalently attached acyl chains. Protein Sci 2009; 18:1801-5. [PMID: 19569191 DOI: 10.1002/pro.155] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Acylation of proteins is known to mediate membrane attachment and to influence subcellular sorting. Here, we report that acylation can stabilize secondary structure. Circular dichroism spectroscopy showed that N-terminal attachment of acyl chains decreases the ability of an intrinsically flexible hydrophobic model peptide to refold from an alpha-helical state to beta-sheet in response to changing solvent conditions. Acylation also stabilized the membrane-embedded alpha-helix. This increase of global helix stability did not result from decreased local conformational dynamics of the helix backbone as assessed by deuterium/hydrogen-exchange experiments. We concluded that acylation can stabilize the structure of intrinsically dynamic helices and may thus prevent misfolding.
Collapse
Affiliation(s)
- Bernhard C Poschner
- Lehrstuhl Chemie der Biopolymere, Technische Universität München, 85354 Freising, Germany
| | | |
Collapse
|
32
|
Frantom PA, Zhang HM, Emmett MR, Marshall AG, Blanchard JS. Mapping of the allosteric network in the regulation of alpha-isopropylmalate synthase from Mycobacterium tuberculosis by the feedback inhibitor L-leucine: solution-phase H/D exchange monitored by FT-ICR mass spectrometry. Biochemistry 2009; 48:7457-64. [PMID: 19606873 DOI: 10.1021/bi900851q] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As it is becoming accepted that allosteric regulation can occur through a change in local conformational equilibria as opposed to a change in overall static structure, a thorough description of the structural aspects of these types of mechanisms will be essential to understanding this fundamental biological process. Here we report the experimental identification of key regions of conformational perturbation in the allosteric network of a large (144 kDa), multidomain enzyme by use of solution-phase hydrogen/deuterium exchange. Large perturbations in the regulatory domain induced by effector molecule binding are linked to a very specific, targeted perturbation in the active site, some 50 A away. Binding of L-leucine to an enzyme variant (Y410F) that is kinetically insensitive to effector binding was shown to elicit similar changes in the regulatory domain, but perturbs an alternate region of the catalytic domain, consistent with the proposed allosteric mechanism. These results comprise one of the first reports of an experimentally mapped allosteric mechanism in a protein of this size and provide necessary information to be used toward the development of allostery-based drugs or enzymes with engineered regulatory properties.
Collapse
Affiliation(s)
- Patrick A Frantom
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
33
|
KIT kinase mutants show unique mechanisms of drug resistance to imatinib and sunitinib in gastrointestinal stromal tumor patients. Proc Natl Acad Sci U S A 2009; 106:1542-7. [PMID: 19164557 DOI: 10.1073/pnas.0812413106] [Citation(s) in RCA: 295] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most gastrointestinal stromal tumors (GISTs) exhibit aberrant activation of the receptor tyrosine kinase (RTK) KIT. The efficacy of the inhibitors imatinib mesylate and sunitinib malate in GIST patients has been linked to their inhibition of these mutant KIT proteins. However, patients on imatinib can acquire secondary KIT mutations that render the protein insensitive to the inhibitor. Sunitinib has shown efficacy against certain imatinib-resistant mutants, although a subset that resides in the activation loop, including D816H/V, remains resistant. Biochemical and structural studies were undertaken to determine the molecular basis of sunitinib resistance. Our results show that sunitinib targets the autoinhibited conformation of WT KIT and that the D816H mutant undergoes a shift in conformational equilibrium toward the active state. These findings provide a structural and enzymologic explanation for the resistance profile observed with the KIT inhibitors. Prospectively, they have implications for understanding oncogenic kinase mutants and for circumventing drug resistance.
Collapse
|
34
|
Poschner BC, Quint S, Hofmann MW, Langosch D. Sequence-specific conformational dynamics of model transmembrane domains determines their membrane fusogenic function. J Mol Biol 2009; 386:733-41. [PMID: 19154744 DOI: 10.1016/j.jmb.2008.12.077] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 12/29/2008] [Indexed: 10/21/2022]
Abstract
The transmembrane domains of fusion proteins are known to be functionally important and display an overabundance of helix-destabilizing Ile and Val residues. In an effort to systematically study the relationship of fusogenicity and helix stability, we previously designed LV peptides, a low-complexity model system whose hydrophobic core consists of Leu and Val residues at different ratios. The ability of LV peptides to fuse membranes increases with the content of helix-destabilizing residues. Here, we monitored the kinetics of amide deuterium/hydrogen exchange of LV-peptide helices to probe their conformational dynamics. The kinetics indeed increases strongly with the content of helix-destabilizing residues and is likely to reflect local fluctuations of the helix backbones as all peptides exhibit uncorrelated exchange and contain subpopulations of amide deuterium atoms that exchange with different velocities. Interestingly, helices whose amide deuterium atoms are shifted from slower to faster subpopulations are more fusogenic. Novel peptide variants in which Val residues are concentrated at peripheral or central domains of the hydrophobic core were designed to map functionally relevant helix subdomains. Their structural and functional analysis suggests that dynamic domains close to the helix termini are more relevant for fusogenicity than central domains but cooperate with the latter to achieve strong fusogenicity.
Collapse
Affiliation(s)
- Bernhard C Poschner
- Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | | | | | | |
Collapse
|
35
|
Zhang HM, Kazazic S, Schaub TM, Tipton JD, Emmett MR, Marshall AG. Enhanced digestion efficiency, peptide ionization efficiency, and sequence resolution for protein hydrogen/deuterium exchange monitored by Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 2008; 80:9034-41. [PMID: 19551977 PMCID: PMC2784605 DOI: 10.1021/ac801417d] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Solution-phase hydrogen/deuterium exchange (HDX) monitored by high-resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrometry offers a rapid method to study protein conformations and protein-protein interactions. Pepsin is usually used to digest proteins in HDX and is known for lack of cleavage specificity. To improve digestion efficiency and specificity, we have optimized digestion conditions and cleavage preferences for pepsin and protease type XIII from Aspergillus saitoi. A dilution series of the proteases was used to determine the digestion efficiency for several test proteins. Protease type XIII prefers to cleave on the C-terminal end of basic amino acids and produced the highest number of fragments and the best sequence coverage compared to pepsin or protease type XVIII from Rhizhopus. Furthermore, protease type XIII exhibited much less self-digestion than pepsin and thus is superior for HDX experiments. Many highly overlapped segments from protease type XIII and pepsin digestion, combined with high-resolution FTICR mass spectrometry, provide high sequence resolution (to as few as one or two amino acids) for the assignment of amide hydrogen exchange rate. Our H/D exchange results correlate well with the secondary and tertiary structure of myoglobin. Such assignments of highly overlapped fragments promise to greatly enhance the accuracy and sequence resolution for determining conformational differences resulting from ligand binding or protein-protein interactions.
Collapse
Affiliation(s)
- Hui-Min Zhang
- Molecular Biophysics Program, Florida State University, Tallahassee, FL 32306
| | - Saša Kazazic
- Laboratory for Chemical Kinetics and Atmospheric Chemistry at Ruder Boskovic Institute, Bijenicka 54, 10002, Zagreb, Croatia
| | - Tanner M. Schaub
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005
| | - Jeremiah D. Tipton
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005
| | - Mark R. Emmett
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005
- Department of Chemistry and Biochemistry, 95 Chieftain Way, Florida State University, Tallahassee, FL 32306-4390
| | - Alan G. Marshall
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005
- Department of Chemistry and Biochemistry, 95 Chieftain Way, Florida State University, Tallahassee, FL 32306-4390
| |
Collapse
|
36
|
Iacob RE, Murphy JP, Engen JR. Ion mobility adds an additional dimension to mass spectrometric analysis of solution-phase hydrogen/deuterium exchange. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:2898-904. [PMID: 18727141 PMCID: PMC9335573 DOI: 10.1002/rcm.3688] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The goal of this study was to determine the utility of adding ion mobility spectrometry to studies probing the solution-phase hydrogen/deuterium exchange (HX) of proteins. The HX profile of the Hck SH3 domain was measured at both the intact protein and the peptic peptide levels in the Waters Synapt HDMS system which uses a traveling wave to accomplish ion mobility separation prior to time-of-flight (Tof) m/z analysis. The results indicated a similar loss of deuterium with or without use of mobility in the Synapt and a level of deuterium loss comparable with a non-mobility Q-Tof instrument. The drift time of this small protein and its peptic peptides did not noticeably change due to solution-based deuterium incorporation. Importantly, ion mobility separations provided an orthogonal dimension of separation in addition to the reversed-phase high-performance liquid chromatography (RP-HPLC). The additional dimension of separation allowed for the deconvolution of overlapping isotopic patterns for co-eluting peptides and extraction of valuable deuterium incorporation data for those peptides. Taken together, these results indicate that including ion mobility separation in HX MS analyses further improves the mass spectrometry portion of such experiments.
Collapse
Affiliation(s)
- Roxana E. Iacob
- The Barnett Institute of Chemical & Biological Analysis, Northeastern University, Boston, Massachusetts 02115, USA
| | - James P. Murphy
- The Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - John R. Engen
- The Barnett Institute of Chemical & Biological Analysis, Northeastern University, Boston, Massachusetts 02115, USA
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
- Address reprint requests to: Prof. John R. Engen, 341 Mugar Life Sciences, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA, , Fax: 617-373-2855
| |
Collapse
|
37
|
Joh NH, Min A, Faham S, Whitelegge JP, Yang D, Woods VL, Bowie JU. Modest stabilization by most hydrogen-bonded side-chain interactions in membrane proteins. Nature 2008; 453:1266-70. [PMID: 18500332 PMCID: PMC2734483 DOI: 10.1038/nature06977] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 04/08/2008] [Indexed: 11/09/2022]
Abstract
Understanding the energetics of molecular interactions is fundamental to all of the central quests of structural biology including structure prediction and design, mapping evolutionary pathways, learning how mutations cause disease, drug design, and relating structure to function. Hydrogen-bonding is widely regarded as an important force in a membrane environment because of the low dielectric constant of membranes and a lack of competition from water. Indeed, polar residue substitutions are the most common disease-causing mutations in membrane proteins. Because of limited structural information and technical challenges, however, there have been few quantitative tests of hydrogen-bond strength in the context of large membrane proteins. Here we show, by using a double-mutant cycle analysis, that the average contribution of eight interhelical side-chain hydrogen-bonding interactions throughout bacteriorhodopsin is only 0.6 kcal mol(-1). In agreement with these experiments, we find that 4% of polar atoms in the non-polar core regions of membrane proteins have no hydrogen-bond partner and the lengths of buried hydrogen bonds in soluble proteins and membrane protein transmembrane regions are statistically identical. Our results indicate that most hydrogen-bond interactions in membrane proteins are only modestly stabilizing. Weak hydrogen-bonding should be reflected in considerations of membrane protein folding, dynamics, design, evolution and function.
Collapse
Affiliation(s)
- Nathan Hyunjoong Joh
- Department of Chemistry and Biochemistry, UCLA-DOE Center for Genomics and Proteomics, Molecular Biology Institute, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Suchanova B, Tuma R. Folding and assembly of large macromolecular complexes monitored by hydrogen-deuterium exchange and mass spectrometry. Microb Cell Fact 2008; 7:12. [PMID: 18394161 PMCID: PMC2365927 DOI: 10.1186/1475-2859-7-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 04/04/2008] [Indexed: 11/26/2022] Open
Abstract
Recent advances in protein mass spectrometry (MS) have enabled determinations of hydrogen deuterium exchange (HDX) in large macromolecular complexes. HDX-MS became a valuable tool to follow protein folding, assembly and aggregation. The methodology has a wide range of applications in biotechnology ranging from quality control for over-expressed proteins and their complexes to screening of potential ligands and inhibitors. This review provides an introduction to protein folding and assembly followed by the principles of HDX and MS detection, and concludes with selected examples of applications that might be of interest to the biotechnology community.
Collapse
|
39
|
The Deuterator: software for the determination of backbone amide deuterium levels from H/D exchange MS data. BMC Bioinformatics 2007; 8:156. [PMID: 17506883 PMCID: PMC1876250 DOI: 10.1186/1471-2105-8-156] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 05/16/2007] [Indexed: 11/19/2022] Open
Abstract
Background The combination of mass spectrometry and solution phase amide hydrogen/deuterium exchange (H/D exchange) experiments is an effective method for characterizing protein dynamics, and protein-protein or protein-ligand interactions. Despite methodological advancements and improvements in instrumentation and automation, data analysis and display remains a tedious process. The factors that contribute to this bottleneck are the large number of data points produced in a typical experiment, each requiring manual curation and validation, and then calculation of the level of backbone amide exchange. Tools have become available that address some of these issues, but lack sufficient integration, functionality, and accessibility required to address the needs of the H/D exchange community. To date there is no software for the analysis of H/D exchange data that comprehensively addresses these issues. Results We have developed an integrated software system for the automated analysis and representation of H/D exchange data that has been titled "The Deuterator". Novel approaches have been implemented that enable high throughput analysis, automated determination of deuterium incorporation, and deconvolution of overlapping peptides. This has been achieved by using methods involving iterative theoretical envelope fitting, and consideration of peak data within expected m/z ranges. Existing common file formats have been leveraged to allow compatibility with the output from the myriad of MS instrument platforms and peptide sequence database search engines. A web-based interface is used to integrate the components of The Deuterator that are able to analyze and present mass spectral data from instruments with varying resolving powers. The results, if necessary, can then be confirmed, adjusted, re-calculated and saved. Additional tools synchronize the curated calculation parameters with replicate time points, increasing throughput. Saved results can then be used to plot deuterium buildup curves and 3D structural overlays. The system has been used successfully in a production environment for over one year and is freely available as a web tool at the project home page . Conclusion The automated calculation and presentation of H/D exchange data in a user interface enables scientists to organize and analyze data efficiently. Integration of the different components of The Deuterator coupled with the flexibility of common data file formats allow this system to be accessible to the broadening H/D exchange community.
Collapse
|
40
|
Knappe TA, Eckert B, Schaarschmidt P, Scholz C, Schmid FX. Insertion of a Chaperone Domain Converts FKBP12 into a Powerful Catalyst of Protein Folding. J Mol Biol 2007; 368:1458-68. [PMID: 17397867 DOI: 10.1016/j.jmb.2007.02.097] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 02/28/2007] [Indexed: 11/28/2022]
Abstract
The catalytic activity of human FKBP12 as a prolyl isomerase is high towards short peptides, but very low in proline-limited protein folding reactions. In contrast, the SlyD proteins, which are members of the FKBP family, are highly active as folding enzymes. They contain an extra "insert-in-flap" or IF domain near the prolyl isomerase active site. The excision of this domain did not affect the prolyl isomerase activity of SlyD from Escherichia coli towards short peptide substrates but abolished its catalytic activity in proline-limited protein folding reactions. The reciprocal insertion of the IF domain of SlyD into human FKBP12 increased its folding activity 200-fold and generated a folding catalyst that is more active than SlyD itself. The IF domain binds to refolding protein chains and thus functions as a chaperone module. A prolyl isomerase catalytic site and a separate chaperone site with an adapted affinity for refolding protein chains are the key elements for a productive coupling between the catalysis of prolyl isomerization and conformational folding in the enzymatic mechanisms of SlyD and other prolyl isomerases, such as trigger factor and FkpA.
Collapse
Affiliation(s)
- Thomas A Knappe
- Laboratorium für Biochemie, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | | | | | | | |
Collapse
|
41
|
Lórenz-Fonfría VA, Kandori H. Practical aspects of the maximum entropy inversion of the laplace transform for the quantitative analysis of multi-exponential data. APPLIED SPECTROSCOPY 2007; 61:74-84. [PMID: 17311720 DOI: 10.1366/000370207779701460] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The number, position, area, and width of the bands in a lifetime distribution give the number of exponentials present in time-resolved data and their time constants, amplitudes, and heterogeneities. The maximum entropy inversion of the Laplace transform (MaxEnt-iLT) provides a lifetime distribution from time-resolved data, which is very helpful in the analysis of the relaxation of complex systems. In some applications both positive and negative values for the lifetime distribution amplitudes are physical, but most studies to date have focused on positive-constrained solutions. In this work, we first discuss optimal conditions to obtain a sign-unrestricted maximum entropy lifetime distribution, i.e., the selection of the entropy function and the regularization value. For the selection of the regularization value we compared four methods: the chi2 criterion and Bayesian inference (already used in sign-restricted MaxEnt-iLT), and the L-curve and the generalized cross-validation methods (not yet used in MaxEnt-iLT to our knowledge). Except for the frequently used chi2 criterion, these methods recommended similar regularization values, providing close to optimum solutions. However, even when an optimal entropy function and regularization value are used, a MaxEnt lifetime distribution will contain noise-induced errors, as well as systematic distortions induced by the entropy maximization (regularization-induced errors). We introduce the concept of the apparent resolution function in MaxEnt, which allows both the noise and regularization-induced errors to be estimated. We show the capability of this newly introduced concept in both synthetic and experimental time-resolved Fourier transform infrared (FT-IR) data from the bacteriorhodopsin photocycle.
Collapse
Affiliation(s)
- Víctor A Lórenz-Fonfría
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| | | |
Collapse
|
42
|
Lísal J, Kainov DE, Lam TT, Emmett MR, Wei H, Gottlieb P, Marshall AG, Tuma R. Interaction of packaging motor with the polymerase complex of dsRNA bacteriophage. Virology 2006; 351:73-9. [PMID: 16643976 DOI: 10.1016/j.virol.2006.03.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 02/15/2006] [Accepted: 03/12/2006] [Indexed: 11/29/2022]
Abstract
Many viruses employ molecular motors to package their genomes into preformed empty capsids (procapsids). In dsRNA bacteriophages the packaging motor is a hexameric ATPase P4, which is an integral part of the multisubunit procapsid. Structural and biochemical studies revealed a plausible RNA-translocation mechanism for the isolated hexamer. However, little is known about the structure and regulation of the hexamer within the procapsid. Here we use hydrogen-deuterium exchange and mass spectrometry to delineate the interactions of the P4 hexamer with the bacteriophage phi12 procapsid. P4 associates with the procapsid via its C-terminal face. The interactions also stabilize subunit interfaces within the hexamer. The conformation of the virus-bound hexamer is more stable than the hexamer in solution, which is prone to spontaneous ring openings. We propose that the stabilization within the viral capsid increases the packaging processivity and confers selectivity during RNA loading.
Collapse
Affiliation(s)
- Jirí Lísal
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 PL 65, 00014 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Spencer DS, Xu K, Logan TM, Zhou HX. Effects of pH, salt, and macromolecular crowding on the stability of FK506-binding protein: an integrated experimental and theoretical study. J Mol Biol 2005; 351:219-32. [PMID: 15992823 DOI: 10.1016/j.jmb.2005.05.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 04/27/2005] [Accepted: 05/16/2005] [Indexed: 11/15/2022]
Abstract
Environmental variables can exert significant influences on the folding stability of a protein, and elucidating these influences provides insight on the determinants of protein stability. Here, experimental data on the stability of FKBP12 are reported for the effects of three environmental variables: pH, salt, and macromolecular crowding. In the pH range of 5-9, contribution to the pH dependence of the unfolding free energy from residual charge-charge interactions in the unfolded state was found to be negligible. The negligible contribution was attributed to the lack of sequentially nearest neighboring charged residues around groups that titrate in the pH range. KCl lowered the stability of FKBP12 and the E31Q/D32N double mutant at small salt concentrations but raised stability after approximately 0.5 M salt. Such a turnover behavior was accounted for by the balance of two opposing types of protein-salt interactions: the Debye-Hückel type, modeling the response of the ions to protein charges, favors the unfolded state while the Kirkwood type, accounting for the disadvantage of the ions moving toward the low-dielectric protein cavity from the bulk solvent, disfavors the unfolded state. Ficoll 70 as a crowding agent was found to have a modest effect on protein stability, in qualitative agreement with a simple model suggesting that the folded and unfolded states are nearly equally adversely affected by macromolecular crowding. For any environmental variable, it is the balance of its effects on the folded and unfolded states that determines the outcome on the folding stability.
Collapse
Affiliation(s)
- Daniel S Spencer
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | |
Collapse
|
44
|
Lísal J, Lam TT, Kainov DE, Emmett MR, Marshall AG, Tuma R. Functional visualization of viral molecular motor by hydrogen-deuterium exchange reveals transient states. Nat Struct Mol Biol 2005; 12:460-6. [PMID: 15834422 DOI: 10.1038/nsmb927] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 03/22/2005] [Indexed: 11/09/2022]
Abstract
Molecular motors undergo cyclical conformational changes and convert chemical energy into mechanical work. The conformational dynamics of a viral packaging motor, the hexameric helicase P4 of dsRNA bacteriophage phi8, was visualized by hydrogen-deuterium exchange and high-resolution mass spectrometry. Concerted changes of exchange kinetics revealed a cooperative unit that dynamically links ATP-binding sites and the central RNA-binding channel. The cooperative unit is compatible with a structure-based model in which translocation is mediated by a swiveling helix. Deuterium labeling also revealed the transition state associated with RNA loading, which proceeds via opening of the hexameric ring. The loading mechanism is similar to that of other hexameric helicases. Hydrogen-deuterium exchange provides an important link between time-resolved spectroscopic observations and high-resolution structural snapshots of molecular machines.
Collapse
Affiliation(s)
- Jirí Lísal
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
45
|
Limited proteolysis combined with isotope labeling and quantitative LC-MALDI MS for monitoring protein conformational changes: a study on calcium-binding sites of cardiac Troponin C. Anal Chim Acta 2005. [DOI: 10.1016/j.aca.2004.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Abstract
Modern mass spectrometry (MS) is well known for its exquisite sensitivity in probing the covalent structure of macromolecules, and for that reason, it has become the major tool used to identify individual proteins in proteomics studies. This use of MS is now widespread and routine. In addition to this application of MS, a handful of laboratories are developing and using a methodology by which MS can be used to probe protein conformation and dynamics. This application involves using MS to analyze amide hydrogen/deuterium (H/D) content from exchange experiments. Introduced by Linderstøm-Lang in the 1950s, H/D exchange involves using (2)H labeling to probe the rate at which protein backbone amide protons undergo chemical exchange with the protons of water. With the advent of highly sensitive electrospray ionization (ESI)-MS, a powerful new technique for measuring H/D exchange in proteins at unprecedented sensitivity levels also became available. Although it is still not routine, over the past decade the methodology has been developed and successfully applied to study various proteins and it has contributed to an understanding of the functional dynamics of those proteins.
Collapse
Affiliation(s)
- Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, Oregon, USA
| | | |
Collapse
|
47
|
Abstract
Proteomics is the measurement of one or more protein populations or proteomes, preferably in a quantitative manner. A protein population may be the set of proteins found in an organism, in a tissue or biofluid, in a cell, or in a subcellular compartment. A population also may be the set of proteins with a common characteristic, for example, those that interact with each other in molecular complexes, those involved in the same process such as signal transduction or cell cycle control, or those that share a common posttranslational modification such as phosphorylation or glycosylation. Proteomics experiments that involve mass spectrometry are divided into five categories: (1) protein identification, (2) protein quantitation or differential analysis, (3) protein-protein interactions, (4) post-translational modifications, and (5) structural proteomics. Each of these proteomics categories is reviewed. Examples are given for quantitative experiments involving two-dimensional gel electrophoresis, and for gel-free analysis using isotope-coded affinity tags. The impact of proteomics on biological research and on drug development is discussed. Challenges for further development in proteomics are presented, including sample preparation, sensitivity, dynamic range, and automation.
Collapse
Affiliation(s)
- John T Stults
- Predicant Biosciences, Inc., South San Francisco, California, USA
| | | |
Collapse
|
48
|
Mazon H, Marcillat O, Forest E, Vial C. Hydrogen/deuterium exchange studies of native rabbit MM-CK dynamics. Protein Sci 2004; 13:476-86. [PMID: 14739330 PMCID: PMC2286700 DOI: 10.1110/ps.03380604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Creatine kinase (CK) isoenzymes catalyse the reversible transfer of a phosphoryl group from ATP onto creatine. This reaction plays a very important role in the regulation of intracellular ATP concentrations in excitable tissues. CK isoenzymes are highly resistant to proteases in native conditions. To appreciate localized backbone dynamics, kinetics of amide hydrogen exchange with deuterium was measured by pulse-labeling the dimeric cytosolic muscle CK isoenzyme. Upon exchange, the protein was digested with pepsin, and the deuterium content of the resulting peptides was determined by liquid chromatography coupled to mass spectrometry (MS). The deuteration kinetics of 47 peptides identified by MS/MS and covering 96% of the CK backbone were analyzed. Four deuteration patterns have been recognized: The less deuterated peptides are located in the saddle-shaped core of CK, whereas most of the highly deuterated peptides are close to the surface and located around the entrance to the active site. Their exchange kinetics are discussed by comparison with the known secondary and tertiary structures of CK with the goal to reveal the conformational dynamics of the protein. Some of the observed dynamic motions may be linked to the conformational changes associated with substrate binding and catalytic mechanism.
Collapse
Affiliation(s)
- Hortense Mazon
- UMR 5013 CNRS, Université Claude Bernard Lyon I, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne cedex, France
| | | | | | | |
Collapse
|
49
|
Hagman C, Håkansson P, Buijs J, Håkansson K. Inter-molecular migration during collisional activation monitored by hydrogen/deuterium exchange FT-ICR tandem mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2004; 15:639-646. [PMID: 15121192 DOI: 10.1016/j.jasms.2004.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Revised: 01/05/2004] [Accepted: 01/05/2004] [Indexed: 05/24/2023]
Abstract
The difficulty with integrating solution-phase hydrogen/deuterium exchange (HDX) and tandem mass spectrometry is that the energy added to cause fragmentation might promote gas-phase migration of the added deuterium atoms. Here, we compare the solution-phase HDX profiles generated from a- b- and y-type fragment ion series originating from capillary-skimmer dissociation. The isotopic distributions of fragments from the different fragment ion types were used to determine the isotopic state of the amide hydrogen within a specific residue. Even though the same amide hydrogen was examined, the result was different for different fragment ion types. This observation indicates that different fragment series are not equally subjected to inter-molecular migration during collision-induced dissociation (CID). We also investigated the gas-phase reactivity of originally undeuterated CID fragments of penta-phenylalanine using gas-phase HDX in an external accumulation hexapole. The incorporation of deuterium into the different fragments was studied as a function of hexapole pressure. It was found that different b- and y-ions from the same peptide had different gas-phase reactivity. However, the a-ions did not display significant gas-phase reactivity. The observed behavior has significant impact on any method that involves comparing the isotopic distributions of different fragment ions. Great care has to be taken in the interpretation of the HDX data using CID to increase the spatial resolution. The isotopic state observed after solution-phase exchange might be more preserved for some CID-fragment types.
Collapse
Affiliation(s)
- Charlotte Hagman
- Department of Engineering Sciences, Division of Ion Physics, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
50
|
Lanman J, Prevelige PE. High-sensitivity mass spectrometry for imaging subunit interactions: hydrogen/deuterium exchange. Curr Opin Struct Biol 2004; 14:181-8. [PMID: 15093832 DOI: 10.1016/j.sbi.2004.03.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In recent years, advances in mass spectrometry have provided unprecedented knowledge of protein expression within cells. It has become apparent that many proteins function as macromolecular complexes. Structural genomics programs are determining the fold of these proteins at an increasing rate and electron microscopic tomography potentially provides a means to determine the location of these complexes within the cell. A complete understanding of the molecular mechanism of these proteins requires detailed information on the interactions and dynamics within the complex. Recent advances in mass spectrometry now make it possible to use hydrogen/deuterium exchange to detect intersubunit interfaces and dynamics within supramolecular complexes.
Collapse
Affiliation(s)
- Jason Lanman
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|