1
|
Thapa G, Bhattacharya A, Bhattacharya S. Dynamics of AKAP/Calmodulin complex is largely driven by ionic occupancy state. J Mol Graph Model 2025; 134:108904. [PMID: 39547129 DOI: 10.1016/j.jmgm.2024.108904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
AKAP79/150 is a scaffold protein found in dendritic spines and other neuronal compartments. It localizes and regulates phosphorylation by protein kinase A and C and is, in turn regulated by Ca2+, mediated by Calmodulin (CaM). Thus, the interaction of AKAP79/150 with CaM is of biological interest. A 2017 study used a peptide cross linking coupled to mass spectrometry (XLMS) to identify the CaM binding site on AKAP79/150 and subsequently solved an X-ray crystallography structure of CaM in complex with a short helical AKAP79/150 peptide. The XRD structure revealed an unusual mixed ionic occupancy state of CaM as bound to the AKAP79/150 peptide. In this molecular dynamics-based study, we have explored the motional modes of the CaM-AKAP helix complex under three ionic occupancy conditions. Our results indicate that the dynamics of this CaM backbone is largely dominated by the ionic occupancy state. We find that binding of the AKAP79/150 peptide to CaM is not preferentially stabilized in energetic terms in the Ca2+ state as compared to apo. However, the Mg2+ state is destabilized energetically as compared to the apo state. In addition, in the Ca2+ state, the AKAP79/150 peptide appears to be preferentially stabilized by additional hydrogen bonds. Our simulations suggest that further structural biology studies should be carried out, with a focus on driving the system equilibrium to full Ca2+ occupancy. NMR studies may be able to capture conformational states which are not seen in crystals.
Collapse
Affiliation(s)
- Gauri Thapa
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | | | - Swati Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
2
|
Guan X, Tan C, Li W, Wang W, Thirumalai D. Role of water-bridged interactions in metal ion coupled protein allostery. PLoS Comput Biol 2022; 18:e1010195. [PMID: 35653400 PMCID: PMC9197054 DOI: 10.1371/journal.pcbi.1010195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/14/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
Allosteric communication between distant parts of proteins controls many cellular functions, in which metal ions are widely utilized as effectors to trigger the allosteric cascade. Due to the involvement of strong coordination interactions, the energy landscape dictating the metal ion binding is intrinsically rugged. How metal ions achieve fast binding by overcoming the landscape ruggedness and thereby efficiently mediate protein allostery is elusive. By performing molecular dynamics simulations for the Ca2+ binding mediated allostery of the calmodulin (CaM) domains, each containing two Ca2+ binding helix-loop-helix motifs (EF-hands), we revealed the key role of water-bridged interactions in Ca2+ binding and protein allostery. The bridging water molecules between Ca2+ and binding residue reduces the ruggedness of ligand exchange landscape by acting as a lubricant, facilitating the Ca2+ coupled protein allostery. Calcium-induced rotation of the helices in the EF-hands, with the hydrophobic core serving as the pivot, leads to exposure of hydrophobic sites for target binding. Intriguingly, despite being structurally similar, the response of the two symmetrically arranged EF-hands upon Ca2+ binding is asymmetric. Breakage of symmetry is needed for efficient allosteric communication between the EF-hands. The key roles that water molecules play in driving allosteric transitions are likely to be general in other metal ion mediated protein allostery. Natural proteins often utilize allostery in executing a variety of functions. Metal ions are typical cofactors to trigger the allosteric cascade. In this work, using the Ca2+ sensor protein calmodulin as the model system, we revealed crucial roles of water-bridged interactions in the metal ion coupled protein allostery. The coordination of the Ca2+ to the binding site involves an intermediate in which the water molecule bridges the Ca2+ and the liganding residue. The bridging water reduces the free energy barrier height of ligand exchange, therefore facilitating the ligand exchange and allosteric coupling by acting as a lubricant. We also showed that the response of the two symmetrically arranged EF-hand motifs of CaM domains upon Ca2+ binding is asymmetric, which is directly attributed to the differing dehydration process of the Ca2+ ions and is needed for efficient allosteric communication.
Collapse
Affiliation(s)
- Xingyue Guan
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Cheng Tan
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing, China
| | - Wenfei Li
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- * E-mail: (WL); (WW); (DT)
| | - Wei Wang
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing, China
- * E-mail: (WL); (WW); (DT)
| | - D. Thirumalai
- Department of Chemistry, University of Texas, Texas, United States of America
- * E-mail: (WL); (WW); (DT)
| |
Collapse
|
3
|
Young BD, Varney KM, Wilder PT, Costabile BK, Pozharski E, Cook ME, Godoy-Ruiz R, Clarke OB, Mancia F, Weber DJ. Physiologically Relevant Free Ca 2+ Ion Concentrations Regulate STRA6-Calmodulin Complex Formation via the BP2 Region of STRA6. J Mol Biol 2021; 433:167272. [PMID: 34592217 PMCID: PMC8568335 DOI: 10.1016/j.jmb.2021.167272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 11/28/2022]
Abstract
The interaction of calmodulin (CaM) with the receptor for retinol uptake, STRA6, involves an α-helix termed BP2 that is located on the intracellular side of this homodimeric transporter (Chen et al., 2016 [1]). In the absence of Ca2+, NMR data showed that a peptide derived from BP2 bound to the C-terminal lobe (C-lobe) of Mg2+-bound CaM (MgCaM). Upon titration of Ca2+ into MgCaM-BP2, NMR chemical shift perturbations (CSPs) were observed for residues in the C-lobe, including those in the EF-hand Ca2+-binding domains, EF3 and EF4 (CaKD = 60 ± 7 nM). As higher concentrations of free Ca2+ were achieved, CSPs occurred for residues in the N-terminal lobe (N-lobe) including those in EF1 and EF2 (CaKD = 1000 ± 160 nM). Thermodynamic and kinetic Ca2+ binding studies showed that BP2 addition increased the Ca2+-binding affinity of CaM and slowed its Ca2+ dissociation rates (koff) in both the C- and N-lobe EF-hand domains, respectively. These data are consistent with BP2 binding to the C-lobe of CaM at low free Ca2+ concentrations (<100 nM) like those found at resting intracellular levels. As free Ca2+ levels approach 1000 nM, which is typical inside a cell upon an intracellular Ca2+-signaling event, BP2 is shown here to interact with both the N- and C-lobes of Ca2+-loaded CaM (CaCaM-BP2). Because this structural rearrangement observed for the CaCaM-BP2 complex occurs as intracellular free Ca2+ concentrations approach those typical of a Ca2+-signaling event (CaKD = 1000 ± 160 nM), this conformational change could be relevant to vitamin A transport by full-length CaCaM-STRA6.
Collapse
Affiliation(s)
- Brianna D Young
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD 21201, USA
| | - Kristen M Varney
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD 21201, USA; The Institute of Bioscience and Biotechnology Research (IBBR), 9600 Gudelsky Dr., Rockville, MD 20850, USA
| | - Paul T Wilder
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD 21201, USA; The Institute of Bioscience and Biotechnology Research (IBBR), 9600 Gudelsky Dr., Rockville, MD 20850, USA
| | - Brianna K Costabile
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Edwin Pozharski
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD 21201, USA; The Institute of Bioscience and Biotechnology Research (IBBR), 9600 Gudelsky Dr., Rockville, MD 20850, USA
| | - Mary E Cook
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD 21201, USA
| | - Raquel Godoy-Ruiz
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD 21201, USA; The Institute of Bioscience and Biotechnology Research (IBBR), 9600 Gudelsky Dr., Rockville, MD 20850, USA
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - David J Weber
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD 21201, USA; The Institute of Bioscience and Biotechnology Research (IBBR), 9600 Gudelsky Dr., Rockville, MD 20850, USA.
| |
Collapse
|
4
|
Guo C, Cheng M, Gross ML. Protein-Metal-Ion Interactions Studied by Mass Spectrometry-Based Footprinting with Isotope-Encoded Benzhydrazide. Anal Chem 2018; 91:1416-1423. [PMID: 30495934 DOI: 10.1021/acs.analchem.8b04088] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metal ions, usually bound by various amino-acid side chains in proteins, play multiple roles in protein folding, conformational change, cellular communication, and catalysis. Ca(II) and Mg(II), abundant among biologically relevant cations, execute their cellular functions associated with the conformational change of bound proteins. They bind with proteins where carboxylic acid residues are dominant ligands. To develop mass spectrometry for mapping protein-binding sites, we implemented a new carboxyl group footprinter, benzhydrazide, and refined it with isotope encoding. The method uses carbodiimide chemistry to footprint carboxylic residues, whereby 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide activates a carboxyl group followed by nucleophilic attack by benzhydrazide forming a stable labeled product. We tested the effectiveness of isotope-encoded benzhydrazide by studying Ca2+ and Mg2+ binding of calmodulin, an EF-hand protein. The footprinting results indicate that the four active sites for metal-ion binding (EF hands I, II, III, and IV) and the linker region (peptide 78-86) undergo conformational changes upon Ca(II) and Mg(II) binding, respectively. The outcome is consistent with previously reported results and 3-D structures, thereby validating a new reagent that is more reactive and discriminating for specific amino-acid protein footprinting. This reagent should be important for locating metal-binding sites of other metalloproteins.
Collapse
Affiliation(s)
- Chunyang Guo
- Department of Chemistry , Washington University , St. Louis , Missouri 63130 , United States
| | - Ming Cheng
- Department of Chemistry , Washington University , St. Louis , Missouri 63130 , United States
| | - Michael L Gross
- Department of Chemistry , Washington University , St. Louis , Missouri 63130 , United States
| |
Collapse
|
5
|
OsCML16 interacts with a novel CC-NBS-LRR protein OsPi304 in the Ca 2+/Mg 2+ dependent and independent manner in rice. Biochem Biophys Res Commun 2018; 504:346-351. [PMID: 30190132 DOI: 10.1016/j.bbrc.2018.08.194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 11/20/2022]
Abstract
In plants, many target proteins of calmodulins (CaMs) have been identified in cellular metabolism and responses. However, calmodulin-like proteins (CMLs) and their target proteins have not been discovered in stress responses in rice. In this study, a novel CC-NBS-LRR protein was obtained in screening a cold stress rice seedlings yeast cDNA library with OsCML16 as bait. Furthermore, yeast two-hybrid and BiFC assays demonstrated that the full length, CC region in the N-terminus and LRR in the C-terminus of Pi304 protein could interact with OsCML16. More interestingly, OsCML16 bound to the 1-10 motif rather than 1-14 motif in the Ca2+ or Mg2+ dependent manner in vitro. In addition, transcript levels of OsCML16 and OsPi304 were induced more markedly in Nipponbare than in 9311 under cold stress. Taken together, these data indicates that they are involved in the cold stress signaling and response in rice.
Collapse
|
6
|
Springer TI, Emerson CC, Johns CW, Finley NL. Interaction with adenylate cyclase toxin from Bordetella pertussis affects the metal binding properties of calmodulin. FEBS Open Bio 2016; 7:25-34. [PMID: 28097085 PMCID: PMC5221433 DOI: 10.1002/2211-5463.12138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/16/2022] Open
Abstract
Adenylate cyclase toxin domain (CyaA‐ACD) is a calmodulin (CaM)‐dependent adenylate cyclase involved in Bordetella pertussis pathogenesis. Calcium (Ca2+) and magnesium (Mg2+) concentrations impact CaM‐dependent CyaA‐ACD activation, but the structural mechanisms remain unclear. In this study, NMR, dynamic light scattering, and native PAGE were used to probe Mg2+‐induced transitions in CaM's conformation in the presence of CyaA‐ACD. Mg2+ binding was localized to sites I and II, while sites III and IV remained Ca2+ loaded when CaM was bound to CyaA‐ACD. 2Mg2+/2Ca2+‐loaded CaM/CyaA‐ACD was elongated, whereas mutation of site I altered global complex conformation. These data suggest that CyaA‐ACD interaction moderates CaM's Ca2+‐ and Mg2+‐binding capabilities, which may contribute to pathobiology.
Collapse
Affiliation(s)
| | - Corey C Emerson
- Department of Microbiology Miami University Oxford OH USA; Present address: Department of Pharmacology Cleveland Center for Membrane and Structural Biology Case Western Reserve University Cleveland OH 44106 USA
| | - Christian W Johns
- Cell, Molecular, and Structural Biology Program Miami University Oxford OH USA
| | - Natosha L Finley
- Department of Microbiology Miami University Oxford OH USA; Cell, Molecular, and Structural Biology Program Miami University Oxford OH USA
| |
Collapse
|
7
|
Li Y, Xu L, Chan SLF, Li Y, Jiang R, Liu H, Che CM. Designed synthesis of a highly conjugated hexaethynylbenzene-based host for supramolecular architectures. Chem Asian J 2014; 9:2842-9. [PMID: 25111892 DOI: 10.1002/asia.201402500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Indexed: 11/10/2022]
Abstract
The construction of efficient synthetic functional receptors with tunable cavities, and the self-organization of guest molecules within these cavities through noncovalent interactions can be challenging. Here we have prepared a double-cavity molecular cup based on hexaethynylbenzene that possesses a highly π-conjugated interior for the binding of electron-rich guests. X-ray crystallography, NMR spectroscopy, UV/Vis spectroscopy, fluorescent spectroscopy, cyclic voltammetry, and SEM were used to investigate the structures and the binding behaviors. The results indicated that the binding of a guest in one cavity would affect the binding of the same or another guest in the other cavity. The effect of electron transfer in this system suggests ample opportunities for tuning the optical and electronic properties of the molecular cup and the encapsulated guest. The encapsulation of different guests would also lead to different aggregate nanostructures, which is a new way to tune their supramolecular architectures.
Collapse
Affiliation(s)
- Yongjun Li
- CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (P.R. China), Fax: (+86) 10-82616576
| | | | | | | | | | | | | |
Collapse
|
8
|
Bender KW, Dobney S, Ogunrinde A, Chiasson D, Mullen RT, Teresinski HJ, Singh P, Munro K, Smith SP, Snedden WA. The calmodulin-like protein CML43 functions as a salicylic-acid-inducible root-specific Ca(2+) sensor in Arabidopsis. Biochem J 2014; 457:127-36. [PMID: 24102643 DOI: 10.1042/bj20131080] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Many signalling pathways in plants are regulated by the second messenger calcium (Ca(2+)). In the standard model, Ca(2+)-sensor proteins, such as CaM (calmodulin), detect Ca(2+) signals and subsequently regulate downstream targets to advance the signal transduction cascade. In addition to CaM, plants possess many CMLs (CaM-like proteins) that are predicted to function as Ca(2+) sensors, but which remain largely uncharacterized. In the present study, we examined the biochemical properties, subcellular localization and tissue-specific distribution of Arabidopsis CML43. Our data indicate that CML43 displays characteristics typical of Ca(2+) sensors, including high-affinity Ca(2+) binding, conformational changes upon Ca(2+) binding that expose hydrophobic regions and stabilization of structure in the presence of Mg(2+) or Ca(2+). In vivo localization analysis demonstrates that CML43 resides in cytosolic and nuclear compartments. Transgenic plants expressing a CML43:GUS (β-glucoronidase) promoter reporter gene revealed that CML43 promoter activity is restricted almost exclusively to root tips under normal growth conditions. GUS reporter activity in these transgenic plants was strongly increased when exposed to the defence compound SA (salicylic acid). Furthermore, immunoblot analysis revealed that the CML43 protein accumulates following treatment with SA. Collectively, our findings suggest that CML43 functions as a Ca(2+) sensor in root tips during both normal growth and plant immune response.
Collapse
Affiliation(s)
- Kyle W Bender
- *Department of Biology, Queen's University, Kingston, ON, Canada, K7L 3N6
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Speight LC, Muthusamy AK, Goldberg JM, Warner JB, Wissner RF, Willi TS, Woodman BF, Mehl RA, Petersson EJ. Efficient synthesis and in vivo incorporation of acridon-2-ylalanine, a fluorescent amino acid for lifetime and Förster resonance energy transfer/luminescence resonance energy transfer studies. J Am Chem Soc 2013; 135:18806-14. [PMID: 24303933 DOI: 10.1021/ja403247j] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The amino acid acridon-2-ylalanine (Acd) can be a valuable probe of protein conformational change because it is a long lifetime, visible wavelength fluorophore that is small enough to be incorporated during ribosomal biosynthesis. Incorporation of Acd into proteins expressed in Escherichia coli requires efficient chemical synthesis to produce large quantities of the amino acid and the generation of a mutant aminoacyl tRNA synthetase that can selectively charge the amino acid onto a tRNA. Here, we report the synthesis of Acd in 87% yield over five steps from Tyr and the identification of an Acd synthetase by screening candidate enzymes previously evolved from Methanococcus janaschii Tyr synthetase for unnatural amino acid incorporation. Furthermore, we characterize the photophysical properties of Acd, including quenching interactions with select natural amino acids and Förster resonance energy transfer (FRET) interactions with common fluorophores such as methoxycoumarin (Mcm). Finally, we demonstrate the value of incorporation of Acd into proteins, using changes in Acd fluorescence lifetimes, Mcm/Acd FRET, or energy transfer to Eu(3+) to monitor protein folding and binding interactions.
Collapse
Affiliation(s)
- Lee C Speight
- University of Pennsylvania , Department of Chemistry, 231 South 34th Street, Philadelphia, Pennsylvania, 19104-6323, United States
| | | | | | | | | | | | | | | | | |
Collapse
|