1
|
Zhou Y, Yao Z, Lin Y, Zhang H. From Tyrosine Kinases to Tyrosine Phosphatases: New Therapeutic Targets in Cancers and Beyond. Pharmaceutics 2024; 16:888. [PMID: 39065585 PMCID: PMC11279542 DOI: 10.3390/pharmaceutics16070888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) regulate the level of tyrosine phosphorylation in proteins. PTKs are key enzymes that catalyze the transfer of an ATP phosphoric acid to a tyrosine residue on target protein substrates. Protein tyrosine phosphatases (PTPs) are responsible for the dephosphorylation of tyrosine residues and play a role in countering PTK overactivity. As widespread oncogenes, PTKs were once considered to be promising targets for therapy. However, tyrosine kinase inhibitors (TKIs) now face a number of challenges, including drug resistance and toxic side effects. Treatment strategies now need to be developed from a new perspective. In this review, we assess the current state of TKIs and highlight the role of PTPs in cancer and other diseases. With the advances of allosteric inhibition and the development of multiple alternative proprietary drug strategies, the reputation of PTPs as "undruggable" targets has been overturned, and they are now considered viable therapeutic targets. We also discuss the strategies and prospects of PTP-targeted therapy, as well as its future development.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
| | - Zhimeng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Urology Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510660, China
| | - Yusheng Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510660, China
| | - Hao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Pathology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
- Zhuhai Institute of Jinan University, Zhuhai 511436, China
| |
Collapse
|
2
|
Samaržija I, Konjevoda P. Extracellular Matrix- and Integrin Adhesion Complexes-Related Genes in the Prognosis of Prostate Cancer Patients' Progression-Free Survival. Biomedicines 2023; 11:2006. [PMID: 37509645 PMCID: PMC10377098 DOI: 10.3390/biomedicines11072006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer is a heterogeneous disease, and one of the main obstacles in its management is the inability to foresee its course. Therefore, novel biomarkers are needed that will guide the treatment options. The extracellular matrix (ECM) is an important part of the tumor microenvironment that largely influences cell behavior. ECM components are ligands for integrin receptors which are involved in every step of tumor progression. An underlying characteristic of integrin activation and ligation is the formation of integrin adhesion complexes (IACs), intracellular structures that carry information conveyed by integrins. By using The Cancer Genome Atlas data, we show that the expression of ECM- and IACs-related genes is changed in prostate cancer. Moreover, machine learning methods revealed that they are a source of biomarkers for progression-free survival of patients that are stratified according to the Gleason score. Namely, low expression of FMOD and high expression of PTPN2 genes are associated with worse survival of patients with a Gleason score lower than 9. The FMOD gene encodes protein that may play a role in the assembly of the ECM and the PTPN2 gene product is a protein tyrosine phosphatase activated by integrins. Our results suggest potential biomarkers of prostate cancer progression.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Paško Konjevoda
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Developing New Treatment Options for Castration-Resistant Prostate Cancer and Recurrent Disease. Biomedicines 2022; 10:biomedicines10081872. [PMID: 36009418 PMCID: PMC9405166 DOI: 10.3390/biomedicines10081872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is a major diagnosed cancer among men globally, and about 20% of patients develop metastatic prostate cancer (mPCa) in the initial diagnosis. PCa is a typical androgen-dependent disease; thus, hormonal therapy is commonly used as a standard care for mPCa by inhibiting androgen receptor (AR) activities, or androgen metabolism. Inevitably, almost all PCa will acquire resistance and become castration-resistant PCa (CRPC) that is associated with AR gene mutations or amplification, the presence of AR variants, loss of AR expression toward neuroendocrine phenotype, or other hormonal receptors. Treating CRPC poses a great challenge to clinicians. Research efforts in the last decade have come up with several new anti-androgen agents to prolong overall survival of CRPC patients. In addition, many potential targeting agents have been at the stage of being able to translate many preclinical discoveries into clinical practices. At this juncture, it is important to highlight the emerging strategies including small-molecule inhibitors to AR variants, DNA repair enzymes, cell survival pathway, neuroendocrine differentiation pathway, radiotherapy, CRPC-specific theranostics and immune therapy that are underway or have recently been completed.
Collapse
|
4
|
Arnaud T, Rodrigues-Lima F, Viguier M, Deshayes F. Interplay between EGFR, E-cadherin, and PTP1B in epidermal homeostasis. Tissue Barriers 2022:2104085. [PMID: 35875939 PMCID: PMC10364651 DOI: 10.1080/21688370.2022.2104085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Maintaining epithelial homeostasis is crucial to allow embryo development but also the protective barrier which is ensured by the epidermis. This homeostasis is regulated through the expression of several molecules among which EGFR and E-cadherin which are of major importance. Indeed, defects in the regulation of these proteins lead to abnormalities in cell adhesion, proliferation, differentiation, and migration. Hence, regulation of these two proteins is of the utmost importance as they are involved in numerous skin pathologies and cancers. In the last decades it has been described several pathways of regulation of these two proteins and notably several mechanisms of cross-regulation between these partners. In this review, we aimed to describe the current understanding of the regulation of EGFR and interactions between EGFR and E-cadherin and, in particular, the implication of these cross-regulations in epithelium homeostasis. We pay particular attention to PTP1B, a phosphatase involved in the regulation of EGFR.
Collapse
Affiliation(s)
- Tessa Arnaud
- Université Paris Cité, BFA, UMR 8251, CNRS, Paris, France
| | | | | | | |
Collapse
|
5
|
Chen PJ, Zhang YT. Protein Tyrosine Phosphatase 1B (PTP1B): Insights into Its New Implications in Tumorigenesis. Curr Cancer Drug Targets 2022; 22:181-194. [PMID: 35088671 DOI: 10.2174/1568009622666220128113400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022]
Abstract
In vivo, tyrosine phosphorylation is a reversible and dynamic process governed by the opposing activities of protein tyrosine kinases and phosphatases. Defective or inappropriate operation of these proteins leads to aberrant tyrosine phosphorylation, which contributes to the development of many human diseases, including cancers. PTP1B, a non-transmembrane phosphatase, is generally considered a negative regulator of the metabolic signaling pathways and a promising drug target for type Ⅱ diabetes and obesity. Recently, PTP1B is also attracting considerable interest due to its important function and therapeutic potential in other diseases. An increasing number of studies have indicated that PTP1B plays a vital role in the initiation and progression of cancers and could be a target for new cancer therapies. Following recent advances in the aspects mentioned above, this review is focused on the major functions of PTP1B in different types of cancer and the underlying mechanisms behind these functions, as well as the potential pharmacological effects of PTP1B inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Pei-Jie Chen
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei 230012, China
| | - Yun-Tian Zhang
- Hefei Visionnox Technology Co., Lid, Hefei 230012, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
6
|
Protein Tyrosine Phosphatases: Mechanisms in Cancer. Int J Mol Sci 2021; 22:ijms222312865. [PMID: 34884670 PMCID: PMC8657787 DOI: 10.3390/ijms222312865] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Protein tyrosine kinases, especially receptor tyrosine kinases, have dominated the cancer therapeutics sphere as proteins that can be inhibited to selectively target cancer. However, protein tyrosine phosphatases (PTPs) are also an emerging target. Though historically known as negative regulators of the oncogenic tyrosine kinases, PTPs are now known to be both tumor-suppressive and oncogenic. This review will highlight key protein tyrosine phosphatases that have been thoroughly investigated in various cancers. Furthermore, the different mechanisms underlying pro-cancerous and anti-cancerous PTPs will also be explored.
Collapse
|
7
|
La Marca JE, Willoughby LF, Allan K, Portela M, Goh PK, Tiganis T, Richardson HE. PTP61F Mediates Cell Competition and Mitigates Tumorigenesis. Int J Mol Sci 2021; 22:12732. [PMID: 34884538 PMCID: PMC8657627 DOI: 10.3390/ijms222312732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
Tissue homeostasis via the elimination of aberrant cells is fundamental for organism survival. Cell competition is a key homeostatic mechanism, contributing to the recognition and elimination of aberrant cells, preventing their malignant progression and the development of tumors. Here, using Drosophila as a model organism, we have defined a role for protein tyrosine phosphatase 61F (PTP61F) (orthologue of mammalian PTP1B and TCPTP) in the initiation and progression of epithelial cancers. We demonstrate that a Ptp61F null mutation confers cells with a competitive advantage relative to neighbouring wild-type cells, while elevating PTP61F levels has the opposite effect. Furthermore, we show that knockdown of Ptp61F affects the survival of clones with impaired cell polarity, and that this occurs through regulation of the JAK-STAT signalling pathway. Importantly, PTP61F plays a robust non-cell-autonomous role in influencing the elimination of adjacent polarity-impaired mutant cells. Moreover, in a neoplastic RAS-driven polarity-impaired tumor model, we show that PTP61F levels determine the aggressiveness of tumors, with Ptp61F knockdown or overexpression, respectively, increasing or reducing tumor size. These effects correlate with the regulation of the RAS-MAPK and JAK-STAT signalling by PTP61F. Thus, PTP61F acts as a tumor suppressor that can function in an autonomous and non-cell-autonomous manner to ensure cellular fitness and attenuate tumorigenesis.
Collapse
Affiliation(s)
- John E. La Marca
- Cell Polarity, Cell Signaling & Cancer Laboratory, Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (J.E.L.M.); (K.A.); (M.P.)
| | - Lee F. Willoughby
- Cell Cycle & Development Laboratory, Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia;
| | - Kirsten Allan
- Cell Polarity, Cell Signaling & Cancer Laboratory, Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (J.E.L.M.); (K.A.); (M.P.)
| | - Marta Portela
- Cell Polarity, Cell Signaling & Cancer Laboratory, Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (J.E.L.M.); (K.A.); (M.P.)
| | - Pei Kee Goh
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (P.K.G.); (T.T.)
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (P.K.G.); (T.T.)
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Helena E. Richardson
- Cell Polarity, Cell Signaling & Cancer Laboratory, Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (J.E.L.M.); (K.A.); (M.P.)
- Cell Cycle & Development Laboratory, Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia;
- Peter MacCallum Department of Oncology, Department of Anatomy & Neuroscience, Department of Biochemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
8
|
Przychodzen P, Kuban-Jankowska A, Wyszkowska R, Barone G, Bosco GL, Celso FL, Kamm A, Daca A, Kostrzewa T, Gorska-Ponikowska M. PTP1B phosphatase as a novel target of oleuropein activity in MCF-7 breast cancer model. Toxicol In Vitro 2019; 61:104624. [PMID: 31419504 DOI: 10.1016/j.tiv.2019.104624] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
Abstract
Phosphatase PTP1B has become a therapeutic target for the treatment of type 2-diabetes, whereas recent studies have revealed that PTP1B plays a pivotal role in pathophysiology and development of breast cancer. Oleuropein is a natural, phenolic compound with anticancer activity. The aim of this study was to address the question whether PTP1B constitutes a target for oleuropein in breast cancer MCF-7 cells. The cellular MCF-7 breast cancer model was used in the study. The experiments were performed using cellular viability tests, Elisa assays, immunoprecipitation, flow cytometry analyses and computer modelling. Herein, we evidenced that the reduced activity of phosphatase PTP1B after treatment with oleuropein is strictly correlated with decreased MCF-7 cellular viability and cell cycle arrest. These results provide new insight into further research on oleuropein and possible role of the compound in adjuvant treatment of breast cancer.
Collapse
Affiliation(s)
- Paulina Przychodzen
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | | | - Roksana Wyszkowska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Giosuè Lo Bosco
- Department of Mathematics and Computer Science, University of Palermo, Palermo, Italy; The Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Fabrizio Lo Celso
- Department of Physics and Chemistry 'Emilio Segrè', University of Palermo, Palermo, Italy
| | - Anna Kamm
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Daca
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Kostrzewa
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Gorska-Ponikowska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland; Institute of Biomaterials and Biomolecular Systems, Department of Biophysics, University of Stuttgart, Stuttgart, Germany; The Euro-Mediterranean Institute of Science and Technology, Palermo, Italy.
| |
Collapse
|
9
|
Nunes-Xavier CE, Mingo J, López JI, Pulido R. The role of protein tyrosine phosphatases in prostate cancer biology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:102-113. [PMID: 30401533 DOI: 10.1016/j.bbamcr.2018.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/18/2018] [Accepted: 06/28/2018] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa) is the most frequent malignancy in the male population of Western countries. Although earlier detection and more active surveillance have improved survival, it is still a challenge how to treat advanced cases. Since androgen receptor (AR) and AR-related signaling pathways are fundamental in the growth of normal and neoplastic prostate cells, targeting androgen synthesis or AR activity constitutes the basis of the current hormonal therapies in PCa. However, resistance to these treatments develops, both by AR-dependent and -independent mechanisms. Thus, alternative therapeutic approaches should be developed to target more efficiently advanced disease. Protein tyrosine phosphatases (PTPs) are direct regulators of the protein- and residue-specific phosphotyrosine (pTyr) content of cells, and dysregulation of the cellular Tyr phosphorylation/dephosphorylation balance is a major driving event in cancer, including PCa. Here, we review the current knowledge on the role of classical PTPs in the growth, differentiation, and survival of epithelial prostate cells, and their potential as important players and therapeutic targets for modulation in PCa.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital Radiumhospitalet, N-0310 Oslo, Norway; Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Janire Mingo
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - José I López
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Bizkaia, Spain; Department of Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), 48903 Barakaldo, Bizkaia, Spain
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain.
| |
Collapse
|
10
|
Xu F, Huang X, Wu H, Wang X. Beneficial health effects of lupenone triterpene: A review. Biomed Pharmacother 2018; 103:198-203. [DOI: 10.1016/j.biopha.2018.04.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/26/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
|
11
|
Vafaee F, Krycer JR, Ma X, Burykin T, James DE, Kuncic Z. ORTI: An Open-Access Repository of Transcriptional Interactions for Interrogating Mammalian Gene Expression Data. PLoS One 2016; 11:e0164535. [PMID: 27723773 PMCID: PMC5056720 DOI: 10.1371/journal.pone.0164535] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 09/27/2016] [Indexed: 12/11/2022] Open
Abstract
Transcription factors (TFs) play a fundamental role in coordinating biological processes in response to stimuli. Consequently, we often seek to determine the key TFs and their regulated target genes (TGs) amidst gene expression data. This requires a knowledge-base of TF-TG interactions, which would enable us to determine the topology of the transcriptional network and predict novel regulatory interactions. To address this, we generated an Open-access Repository of Transcriptional Interactions, ORTI, by integrating available TF-TG interaction databases. These databases rely on different types of experimental evidence, including low-throughput assays, high-throughput screens, and bioinformatics predictions. We have subsequently categorised TF-TG interactions in ORTI according to the quality of this evidence. To demonstrate its capabilities, we applied ORTI to gene expression data and identified modulated TFs using an enrichment analysis. Combining this with pairwise TF-TG interactions enabled us to visualise temporal regulation of a transcriptional network. Additionally, ORTI enables the prediction of novel TF-TG interactions, based on how well candidate genes co-express with known TGs of the target TF. By filtering out known TF-TG interactions that are unlikely to occur within the experimental context, this analysis predicts context-specific TF-TG interactions. We show that this can be applied to experimental designs of varying complexities. In conclusion, ORTI is a rich and publicly available database of experimentally validated mammalian transcriptional interactions which is accompanied with tools that can identify and predict transcriptional interactions, serving as a useful resource for unravelling the topology of transcriptional networks.
Collapse
Affiliation(s)
- Fatemeh Vafaee
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
- * E-mail: (FV); (ZK)
| | - James R. Krycer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Xiuquan Ma
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Timur Burykin
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - David E. James
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Zdenka Kuncic
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Physics, The University of Sydney, Sydney, NSW, Australia
- * E-mail: (FV); (ZK)
| |
Collapse
|
12
|
Igawa T. Role of protein phosphatases in genitourinary cancers. Int J Urol 2016; 24:16-24. [DOI: 10.1111/iju.13197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 07/22/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Tsukasa Igawa
- Department of Urology; Kurume University School of Medicine; Kurume Fukuoka Japan
| |
Collapse
|
13
|
Tai WT, Chen YL, Chu PY, Chen LJ, Hung MH, Shiau CW, Huang JW, Tsai MH, Chen KF. Protein tyrosine phosphatase 1B dephosphorylates PITX1 and regulates p120RasGAP in hepatocellular carcinoma. Hepatology 2016; 63:1528-43. [PMID: 26840794 DOI: 10.1002/hep.28478] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 01/29/2016] [Indexed: 01/07/2023]
Abstract
UNLABELLED The effective therapeutic targets for hepatocellular carcinoma remain limited. Pituitary homeobox 1 (PITX1) functions as a tumor suppressor in hepatocarcinogenesis by regulating the expression level of Ras guanosine triphosphatase-activating protein. Here, we report that protein tyrosine phosphatases 1B (PTP1B) directly dephosphorylated PITX1 at Y160, Y175, and Y179 to further weaken the protein stability of PITX. The PTP1B-dependent decline of PITX1 reduced its transcriptional activity for p120RasGAP (RASA1), a Ras guanosine triphosphatase-activating protein. Both silencing of PTP1B and PTP1B inhibitor up-regulated the PITX1-p120RasGAP axis through hyperphosphorylation of PITX1. Sorafenib, the first and only targeted drug approved for hepatocellular carcinoma, directly decreased PTP1B activity and promoted the expression of PITX1 and p120RasGAP by PITX1 hyperphosphorylation. Molecular docking also supported the potential interaction between PTP1B and sorafenib. PTP1B overexpression impaired the sensitivity of sorafenib in vitro and in vivo, implying that PTP1B has a significant effect on sorafenib-induced apoptosis. In sorafenib-treated tumor samples, we further found inhibition of PTP1B activity and up-regulation of the PITX1-p120RasGAP axis, suggesting that PTP1B inhibitor may be effective for the treatment of hepatocellular carcinoma. By immunohistochemical staining of hepatic tumor tissue from 155 patients, the expression of PTP1B was significantly in tumor parts higher than nontumor parts (P = 0.02). Furthermore, high expression of PTP1B was significantly associated with poor tumor differentiation (P = 0.031). CONCLUSION PTP1B dephosphorylates PITX1 to weaken its protein stability and the transcriptional activity for p120RasGAP gene expression and acts as a determinant of the sorafenib-mediated drug effect; targeting the PITX1-p120RasGAP axis with a PTP1B inhibitor may provide a new therapy for patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Wei-Tien Tai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yao-Li Chen
- Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Li-Ju Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Man-Hsin Hung
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Program in Molecular Medicine, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Jui-Wen Huang
- Industrial Technology Research Institute, Hsin-Chu, Taiwan
| | - Ming-Hsien Tsai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
14
|
Harel M, Oren-Giladi P, Kaidar-Person O, Shaked Y, Geiger T. Proteomics of microparticles with SILAC Quantification (PROMIS-Quan): a novel proteomic method for plasma biomarker quantification. Mol Cell Proteomics 2015; 14:1127-36. [PMID: 25624350 DOI: 10.1074/mcp.m114.043364] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Indexed: 12/21/2022] Open
Abstract
Unbiased proteomic analysis of plasma samples holds the promise to reveal clinically invaluable disease biomarkers. However, the tremendous dynamic range of the plasma proteome has so far hampered the identification of such low abundant markers. To overcome this challenge we analyzed the plasma microparticle proteome, and reached an unprecedented depth of over 3000 plasma proteins in single runs. To add a quantitative dimension, we developed PROMIS-Quan-PROteomics of MIcroparticles with Super-Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) Quantification, a novel mass spectrometry-based technology for plasma microparticle proteome quantification. PROMIS-Quan enables a two-step relative and absolute SILAC quantification. First, plasma microparticle proteomes are quantified relative to a super-SILAC mix composed of cell lines from distinct origins. Next, the absolute amounts of selected proteins of interest are quantified relative to the super-SILAC mix. We applied PROMIS-Quan to prostate cancer and compared plasma microparticle samples of healthy individuals and prostate cancer patients. We identified in total 5374 plasma-microparticle proteins, and revealed a predictive signature of three proteins that were elevated in the patient-derived plasma microparticles. Finally, PROMIS-Quan enabled determination of the absolute quantitative changes in prostate specific antigen (PSA) upon treatment. We propose PROMIS-Quan as an innovative platform for biomarker discovery, validation, and quantification in both the biomedical research and in the clinical worlds.
Collapse
Affiliation(s)
- Michal Harel
- From the ‡Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Pazit Oren-Giladi
- §Department of Molecular Pharmacology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, Israel
| | | | - Yuval Shaked
- §Department of Molecular Pharmacology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, Israel
| | - Tamar Geiger
- From the ‡Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel;
| |
Collapse
|
15
|
Feldhammer M, Uetani N, Miranda-Saavedra D, Tremblay ML. PTP1B: a simple enzyme for a complex world. Crit Rev Biochem Mol Biol 2013; 48:430-45. [PMID: 23879520 DOI: 10.3109/10409238.2013.819830] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Our understanding of the fundamental regulatory roles that tyrosine phosphatases play within cells has advanced significantly in the last two decades. Out-dated ideas that tyrosine phosphatases acts solely as the "off" switch counterbalancing the action of tyrosine kinases has proved to be flawed. PTP1B is the most characterized of all the tyrosine phosphatases and it acts as a critical negative and positive regulator of numerous signaling cascades. PTP1B's direct regulation of the insulin and the leptin receptors makes it an ideal therapeutic target for type II diabetes and obesity. Moreover, the last decade has also seen several reports establishing PTP1B as key player in cancer serving as both tumor suppressor and tumor promoter depending on the cellular context. Despite many key advances in these fields one largely ignored area is what role PTP1B may play in the modulation of immune signaling. The important recognition that PTP1B is a major negative regulator of Janus kinase - signal transducer and activator of transcription (JAK-STAT) signaling throughout evolution places it as a key link between metabolic diseases and inflammation, as well as a unique regulator between immune response and cancer. This review looks at the emergence of PTP1B through evolution, and then explore at the cell and systemic levels how it is controlled physiologically. The second half of the review will focus on the role(s) PTP1B can play in disease and in particular its involvement in metabolic syndromes and cancer. Finally we will briefly examine several novel directions in the development of PTP1B pharmacological inhibitors.
Collapse
|
16
|
Labbé DP, Hardy S, Tremblay ML. Protein tyrosine phosphatases in cancer: friends and foes! PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:253-306. [PMID: 22340721 DOI: 10.1016/b978-0-12-396456-4.00009-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tyrosine phosphorylation of proteins serves as an exquisite switch in controlling several key oncogenic signaling pathways involved in cell proliferation, apoptosis, migration, and invasion. Since protein tyrosine phosphatases (PTPs) counteract protein kinases by removing phosphate moieties on target proteins, one may intuitively think that PTPs would act as tumor suppressors. Indeed, one of the most described PTPs, namely, the phosphatase and tensin homolog (PTEN), is a tumor suppressor. However, a growing body of evidence suggests that PTPs can also function as potent oncoproteins. In this chapter, we provide a broad historical overview of the PTPs, their mechanism of action, and posttranslational modifications. Then, we focus on the dual properties of classical PTPs (receptor and nonreceptor) and dual-specificity phosphatases in cancer and summarize the current knowledge of the signaling pathways regulated by key PTPs in human cancer. In conclusion, we present our perspective on the potential of these PTPs to serve as therapeutic targets in cancer.
Collapse
Affiliation(s)
- David P Labbé
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
17
|
Chen H, Sun Y, Wu C, Magyar CE, Li X, Cheng L, Yao JL, Shen S, Osunkoya AO, Liang C, Huang J. Pathogenesis of prostatic small cell carcinoma involves the inactivation of the P53 pathway. Endocr Relat Cancer 2012; 19:321-31. [PMID: 22389383 PMCID: PMC3433057 DOI: 10.1530/erc-11-0368] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Small cell neuroendocrine carcinoma (SCNC) of the prostate is a variant form of prostate cancer that occurs de novo or as a recurrent tumor in patients who received hormonal therapy for prostatic adenocarcinoma. It is composed of pure neuroendocrine (NE) tumor cells, but unlike the scattered NE cells in benign prostate and adenocarcinoma that are quiescent, the NE cells in SCNC are highly proliferative and aggressive, causing death in months. In this study, we provide evidence that interleukin 8 (IL8)-CXCR2-P53 (TP53) signaling pathway keeps the NE cells of benign prostate and adenocarcinoma in a quiescent state normally. While P53 appears to be wild-type in the NE cells of benign prostate and adenocarcinoma, immunohistochemical studies show that the majority of the NE tumor cells in SCNC are positive for nuclear p53, suggesting that the p53 is mutated. This observation is confirmed by sequencing of genomic DNA showing p53 mutation in five of seven cases of SCNC. Our results support the hypothesis that p53 mutation leads to inactivation of the IL8-CXCR2-p53 signaling pathway, resulting in the loss of an important growth inhibitory mechanism and the hyper-proliferation of NE cells in SCNC. Therefore, we have identified potential cells of origin and a molecular target for prostatic SCNC that are very different from those of conventional adenocarcinoma, which explains SCNC's distinct biology and the clinical observation that it does not respond to hormonal therapy targeting androgen receptor signaling, which produces short-term therapeutic effects in nearly all patients with prostatic adenocarcinoma.
Collapse
Affiliation(s)
- Hongbing Chen
- Department of Urology, The Geriatrics Research Institute, First Affiliated Hospital of Anhui Medical University, Anhui, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lessard L, Labbé DP, Deblois G, Bégin LR, Hardy S, Mes-Masson AM, Saad F, Trotman LC, Giguère V, Tremblay ML. PTP1B is an androgen receptor-regulated phosphatase that promotes the progression of prostate cancer. Cancer Res 2012; 72:1529-37. [PMID: 22282656 DOI: 10.1158/0008-5472.can-11-2602] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The androgen receptor (AR) signaling axis plays a key role in the pathogenesis of prostate cancer. In this study, we found that the protein tyrosine phosphatase PTP1B, a well-established regulator of metabolic signaling, was induced after androgen stimulation of AR-expressing prostate cancer cells. PTP1B induction by androgen occurred at the mRNA and protein levels to increase PTP1B activity. High-resolution chromosome mapping revealed AR recruitment to two response elements within the first intron of the PTP1B encoding gene PTPN1, correlating with an AR-mediated increase in RNA polymerase II recruitment to the PTPN1 transcriptional start site. We found that PTPN1 and AR genes were coamplified in metastatic tumors and that PTPN1 amplification was associated with a subset of high-risk primary tumors. Functionally, PTP1B depletion delayed the growth of androgen-dependent human prostate tumors and impaired androgen-induced cell migration and invasion in vitro. However, PTP1B was also required for optimal cell migration of androgen-independent cells. Collectively, our results established the AR as a transcriptional regulator of PTPN1 transcription and implicated PTP1B in a tumor-promoting role in prostate cancer. Our findings support the preclinical testing of PTP1B inhibitors for prostate cancer treatment.
Collapse
|
19
|
Tyan YC, Yang MH, Chen SCJ, Jong SB, Chen WC, Yang YH, Chung TW, Liao PC. Urinary protein profiling by liquid chromatography/tandem mass spectrometry: ADAM28 is overexpressed in bladder transitional cell carcinoma. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:2851-2862. [PMID: 21913264 DOI: 10.1002/rcm.5169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Bladder cancer is the most common urological cancer with higher incidence rate in the endemic areas of Blackfoot disease (BFD) in southern Taiwan. The aim of this study was to utilize the proteomic approach to establish urinary protein patterns of bladder cancer. The experimental results showed that most patients with bladder cancer had proteinuria or albuminuria. The urine arsenic concentrations of bladder cancer patients in BFD areas were significantly higher than those patients from non-BFD areas. In the proteomic analysis, the urinary proteome was identified by nano-high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (nano-HPLC/ESI-MS/MS) followed by peptide fragmentation pattern analysis. We categorized 2782 unique proteins of which 89 proteins were identified with at least three unique matching peptide sequences. Among these 89 proteins, thirteen of them were not found in the control group and may represent proteins specific for bladder cancer. In this study, three proteins, SPINK5, ADAM28 and PTP1, were also confirmed by Western blotting and showed significant differential expression compared with the control group. ADAM28 may be used as a possible biomarker of bladder cancer.
Collapse
Affiliation(s)
- Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Members of the protein tyrosine phosphatase (Ptp) family dephosphorylate target proteins and counter the activities of protein tyrosine kinases that are involved in cellular phosphorylation and signalling. As such, certain PTPs might be tumour suppressors. Indeed, PTPs play an important part in the inhibition or control of growth, but accumulating evidence indicates that some PTPs may exert oncogenic functions. Recent large-scale genetic analyses of various human tumours have highlighted the relevance of PTPs either as putative tumour suppressors or as candidate oncoproteins. Progress in understanding the regulation and function of PTPs has provided insights into which PTPs might be potential therapeutic targets in human cancer.
Collapse
Affiliation(s)
- Sofi G Julien
- Goodman Cancer Research Centre, Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
21
|
Abstract
Tyrosine kinases play significant roles in tumor progression and therapy resistance. Inhibitors of tyrosine kinases are on the forefront of targeted therapy. For prostate cancer, tyrosine kinases play an additional role in the development of castration-resistant disease state, the most troubling aspect of prostate cancinogenesis which presently defies any effective treatment. Among the 30 or so tyrosine kinases expressed in a typical prostate cancer cell, nearly one third of them have been implicated in prostate carcinogenesis. Interestingly, most of them channel signals through a trio of non-receptor tyrosine kinases, Src/Etk/FAK, referred here as Src tyrosine kinase complex. This complex has been shown to play a significant role in the aberrant activation of androgen receptor (AR) mediated by growth factors (e.g., epidermal growth factor (EGF)), cytokines (interleukin (IL)-6), chemokines (IL-8), and neurokines (gastrin-releasing peptide). These factors are induced and released from the prostate cancer to the stromal cells upon androgen withdrawal. The Src kinase complex has the ability to phosphorylate androgen receptor, resulting in the nuclear translocation and stabilization of un-liganded androgen receptor. Indeed, tyrosine kinase inhibitors targeting Src can inhibit androgen-independent growth of prostate cancer cells in vitro and in preclinical xenograft model. While effective in inducing growth arrest and inhibiting metastasis of castration-resistant tumors, Src inhibitors rarely induce a significant level of apoptosis. This is also reflected by the general ineffectiveness of tyrosine kinase inhibitors as monotherapy in clinical trials. One of the underlying causes of apoptosis resistance is "autophagy," which is induced by tyrosine kinase inhibitors and by androgen withdrawal. Autophagy is a self-digesting process to regenerate energy by removal of long-lived proteins and retired organelles to provide a survival mechanism to cells encountering stresses. Excessive autophagy, sometimes, could lead to type II programmed cell death. We demonstrated that autophagy blockade sensitizes prostate cancer cells toward Src tyrosine kinase inhibitor. Thus, a combination therapy based on Src tyrosine kinase inhibitor and autophagy modulator deserves further attention as a potential treatment for relapsed prostate cancer.
Collapse
Affiliation(s)
- Hsing-Jien Kung
- UC Davis Cancer Center, UCDMC, Res III, Rm. 2400, 4645 2nd Avenue, Sacramento, CA 95817, USA.
| |
Collapse
|
22
|
Khamis ZI, Iczkowski KA, Sahab ZJ, Sang QXA. Protein profiling of isolated leukocytes, myofibroblasts, epithelial, Basal, and endothelial cells from normal, hyperplastic, cancerous, and inflammatory human prostate tissues. J Cancer 2010; 1:70-9. [PMID: 20842227 PMCID: PMC2938068 DOI: 10.7150/jca.1.70] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In situ neoplastic prostate cells are not lethal unless they become invasive and metastatic. For cells to become invasive, the prostate gland must undergo degradation of the basement membrane and disruption of the basal cell layer underneath the luminal epithelia. Although the roles of proteinases in breaking down the basement membrane have been well-studied, little is known about the factors that induce basal cell layer disruption, degeneration, and its eventual disappearance in invasive cancer. It is hypothesized that microenvironmental factors may affect the degradation of the basal cell layer, which if protected may prevent tumor progression and invasion. In this study, we have revealed differential protein expression patterns between epithelial and stromal cells isolated from different prostate pathologies and identified several important epithelial and stromal proteins that may contribute to inflammation and malignant transformation of human benign prostate tissues to cancerous tissues using matrix-assisted laser desorption ionization time-of-flight mass spectrometry and proteomics methods. Cellular retinoic acid-binding protein 2 was downregulated in basal cells of benign prostate. Caspase-1 and interleukin-18 receptor 1 were highly expressed in leukocytes of prostate cancer. Proto-oncogene Wnt-3 was downregulated in endothelial cells of prostatitis tissue and tyrosine phosphatase non receptor type 1 was only found in normal and benign endothelial cells. Poly ADP-ribose polymerase 14 was downregulated in myofibroblasts of prostatitis tissue. Interestingly, integrin alpha-6 was upregulated in epithelial cells but not detected in myofibroblasts of prostate cancer. Further validation of these proteins may generate new strategies for the prevention of basal cell layer disruption and subsequent cancer invasion.
Collapse
Affiliation(s)
- Zahraa I. Khamis
- 1. Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Kenneth A. Iczkowski
- 2. Department of Pathology, University of Colorado Health Science Center, Aurora, CO 80045, USA
| | - Ziad J. Sahab
- 1. Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Qing-Xiang Amy Sang
- 1. Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
23
|
Protein Tyrosine Phosphatase-1B (PTP-1B) Knockdown Improves Palmitate-Induced Insulin Resistance in C2C12 Skeletal Muscle Cells. Lipids 2010; 45:237-44. [DOI: 10.1007/s11745-010-3394-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Accepted: 01/26/2010] [Indexed: 12/15/2022]
|
24
|
Koch P, Petri M, Paradowska A, Stenzinger A, Sturm K, Steger K, Wimmer M. PTPIP51 mRNA and protein expression in tissue microarrays and promoter methylation of benign prostate hyperplasia and prostate carcinoma. Prostate 2009; 69:1751-62. [PMID: 19691131 DOI: 10.1002/pros.21025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Protein tyrosine phosphatase interacting protein 51 (PTPIP51) shows a tissue-specific expression pattern and is associated with cellular differentiation and apoptosis in several mammalian tissues. Overexpression of the full-length protein enhances apoptosis. It is also expressed in various carcinomas. In this study the expression of PTPIP51 and its in vitro interaction partners was investigated in human benign prostate hyperplasia (BPH) and in prostate carcinoma (PCa). METHODS Tissue microarrays of human BPH and PCa were analyzed by immunohistochemistry. For polymerase chain reaction (PCR), cryo samples of BPH and PCa were used. Bisulfite DNA treatment, followed by sequencing of PCR products was performed in order to analyze CpGs methylation within the promoter region of the PTPIP51 gene. RESULTS PTPIP51 mRNA and protein expression was detected in prostatic epithelia of BPH and in tumor cells of PCa, respectively, and within smooth muscle cells of the stromal compartment. A stronger expression was present in nerve fibers, particularly in PCa, in immune cells and in smooth muscle and endothelial cells of vessels of BPH and PCa. On mRNA levels, a slightly elevated expression of PTPIP51 was observed in the PCa group as tested by real-time quantitative PCR analyses. Methylation experiments revealed that at least 70% of methylated CpGs in the CpG island of the PTPIP51 gene promoter region were identified in BPH samples. In contrast, a loss of methylation has been found in the PCa group. CONCLUSION The promoter methylation status of PTPIP51 seems to influence the expression of PTPIP51, which was seen as elevated in the PCa.
Collapse
Affiliation(s)
- Philipp Koch
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
Dayon A, Brizuela L, Martin C, Mazerolles C, Pirot N, Doumerc N, Nogueira L, Golzio M, Teissié J, Serre G, Rischmann P, Malavaud B, Cuvillier O. Sphingosine kinase-1 is central to androgen-regulated prostate cancer growth and survival. PLoS One 2009; 4:e8048. [PMID: 19956567 PMCID: PMC2779655 DOI: 10.1371/journal.pone.0008048] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 11/02/2009] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Sphingosine kinase-1 (SphK1) is an oncogenic lipid kinase notably involved in response to anticancer therapies in prostate cancer. Androgens regulate prostate cancer cell proliferation, and androgen deprivation therapy is the standard of care in the management of patients with advanced disease. Here, we explored the role of SphK1 in the regulation of androgen-dependent prostate cancer cell growth and survival. METHODOLOGY/PRINCIPAL FINDINGS Short-term androgen removal induced a rapid and transient SphK1 inhibition associated with a reduced cell growth in vitro and in vivo, an event that was not observed in the hormono-insensitive PC-3 cells. Supporting the critical role of SphK1 inhibition in the rapid effect of androgen depletion, its overexpression could impair the cell growth decrease. Similarly, the addition of dihydrotestosterone (DHT) to androgen-deprived LNCaP cells re-established cell proliferation, through an androgen receptor/PI3K/Akt dependent stimulation of SphK1, and inhibition of SphK1 could markedly impede the effects of DHT. Conversely, long-term removal of androgen support in LNCaP and C4-2B cells resulted in a progressive increase in SphK1 expression and activity throughout the progression to androgen-independence state, which was characterized by the acquisition of a neuroendocrine (NE)-like cell phenotype. Importantly, inhibition of the PI3K/Akt pathway--by negatively impacting SphK1 activity--could prevent NE differentiation in both cell models, an event that could be mimicked by SphK1 inhibitors. Fascinatingly, the reversability of the NE phenotype by exposure to normal medium was linked with a pronounced inhibition of SphK1 activity. CONCLUSIONS/SIGNIFICANCE We report the first evidence that androgen deprivation induces a differential effect on SphK1 activity in hormone-sensitive prostate cancer cell models. These results also suggest that SphK1 activation upon chronic androgen deprivation may serve as a compensatory mechanism allowing prostate cancer cells to survive in androgen-depleted environment, giving support to its inhibition as a potential therapeutic strategy to delay/prevent the transition to androgen-independent prostate cancer.
Collapse
Affiliation(s)
- Audrey Dayon
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Leyre Brizuela
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Claire Martin
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Catherine Mazerolles
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- CHU Toulouse, Hôpital Rangueil, Laboratoire Anatomie Pathologique et Histologie-Cytologie, Toulouse, France
| | - Nelly Pirot
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Nicolas Doumerc
- Université de Toulouse, UPS, IPBS, Toulouse, France
- CHU Toulouse, Hôpital Rangueil, Service d'Urologie et de Transplantation Rénale, Toulouse, France
| | - Leonor Nogueira
- CHU Toulouse, Hôpital Purpan, Laboratoire de Biologie Cellulaire et Cytologie, Toulouse, France
| | - Muriel Golzio
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Justin Teissié
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Guy Serre
- CHU Toulouse, Hôpital Purpan, Laboratoire de Biologie Cellulaire et Cytologie, Toulouse, France
| | - Pascal Rischmann
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
- CHU Toulouse, Hôpital Rangueil, Service d'Urologie et de Transplantation Rénale, Toulouse, France
| | - Bernard Malavaud
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
- CHU Toulouse, Hôpital Rangueil, Service d'Urologie et de Transplantation Rénale, Toulouse, France
| | - Olivier Cuvillier
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
- CHU Toulouse, Hôpital Rangueil, Service d'Urologie et de Transplantation Rénale, Toulouse, France
- * E-mail:
| |
Collapse
|
26
|
Lessard L, Stuible M, Tremblay ML. The two faces of PTP1B in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:613-9. [PMID: 19782770 DOI: 10.1016/j.bbapap.2009.09.018] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/11/2009] [Accepted: 09/18/2009] [Indexed: 10/25/2022]
Abstract
PTP1B is a classical non-transmembrane protein tyrosine phosphatase that plays a key role in metabolic signaling and is a promising drug target for type 2 diabetes and obesity. Accumulating evidence also indicates that PTP1B is involved in cancer, but contrasting findings suggest that it can exert both tumor suppressing and tumor promoting effects depending on the substrate involved and the cellular context. In this review, we will discuss the diverse mechanisms by which PTP1B may influence tumorigenesis as well as recent in vivo data on the impact of PTP1B deficiency in murine cancer models. Together, these results highlight not only the great potential of PTP1B inhibitors in cancer therapy but also the need for a better understanding of PTP1B function prior to use of these compounds in human patients.
Collapse
Affiliation(s)
- Laurent Lessard
- Goodman Cancer Centre and Department of Biochemistry, McGill University, 1160 Pine Avenue, Montréal, Québec, Canada H3G 0B1
| | | | | |
Collapse
|
27
|
Lin HY, Yu IC, Wang RS, Chen YT, Liu NC, Altuwaijri S, Hsu CL, Ma WL, Jokinen J, Sparks JD, Yeh S, Chang C. Increased hepatic steatosis and insulin resistance in mice lacking hepatic androgen receptor. Hepatology 2008; 47:1924-35. [PMID: 18449947 DOI: 10.1002/hep.22252] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED Early studies demonstrated that whole-body androgen receptor (AR)-knockout mice with hypogonadism exhibit insulin resistance. However, details about the mechanisms underlying how androgen/AR signaling regulates insulin sensitivity in individual organs remain unclear. We therefore generated hepatic AR-knockout (H-AR(-/y)) mice and found that male H-AR(-/y) mice, but not female H-AR(-/-) mice, fed a high-fat diet developed hepatic steatosis and insulin resistance, and aging male H-AR(-/y) mice fed chow exhibited moderate hepatic steatosis. We hypothesized that increased hepatic steatosis in obese male H-AR(-/y) mice resulted from decreased fatty acid beta-oxidation, increased de novo lipid synthesis arising from decreased PPARalpha, increased sterol regulatory element binding protein 1c, and associated changes in target gene expression. Reduced insulin sensitivity in fat-fed H-AR(-/y) mice was associated with decreased phosphoinositide-3 kinase activity and increased phosphenolpyruvate carboxykinase expression and correlated with increased protein-tyrosine phosphatase 1B expression. CONCLUSION Together, our results suggest that hepatic AR may play a vital role in preventing the development of insulin resistance and hepatic steatosis. AR agonists that specifically target hepatic AR might be developed to provide a better strategy for treatment of metabolic syndrome in men.
Collapse
Affiliation(s)
- Hung-Yun Lin
- George Whipple Lab for Cancer Research, Department of Pathology, and Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wu C, Huang J. Phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathway is essential for neuroendocrine differentiation of prostate cancer. J Biol Chem 2006; 282:3571-83. [PMID: 17148458 DOI: 10.1074/jbc.m608487200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hormonal therapy of prostate cancer, by inhibiting androgen production and/or androgen function, is the treatment of choice for advanced prostate cancer. Although most patients respond initially, the effect is only temporary, and the tumor cells will resume proliferation in an androgen-deprived environment. The mechanism for androgen-independent proliferation of cancer cells is unclear. Hormonal therapy induces neuroendocrine differentiation of prostate cancer cells, which is hypothesized to contribute to tumor recurrence by a paracrine mechanism. We studied signal transduction pathways of neuroendocrine differentiation in LNCaP cells after androgen withdrawal, and we showed that both the phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathway and ERK are activated, but only the former is required for neuroendocrine differentiation. A constitutively active AKT promotes neuroendocrine differentiation and a dominant negative AKT inhibits it. Activation of AKT by IGF-1 leads to neuroendocrine differentiation, and neuroendocrine differentiation induced by epinephrine requires AKT activation. We also show that the AKT pathway is likely responsible for neuroendocrine differentiation in DU145, an androgen-independent prostate cancer cell line. Therefore, our study demonstrated a novel function of the AKT pathway in prostate cancer progression and identified potential targets that may be explored for the treatment of androgen-independent cancer.
Collapse
Affiliation(s)
- Chengyu Wu
- Department of Pathology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | |
Collapse
|