1
|
Yavuz S, Abraham TE, Houtsmuller AB, van Royen ME. Phase Separation Mediated Sub-Nuclear Compartmentalization of Androgen Receptors. Cells 2024; 13:1693. [PMID: 39451211 PMCID: PMC11506798 DOI: 10.3390/cells13201693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
The androgen receptor (AR), a member of the nuclear steroid hormone receptor family of transcription factors, plays a crucial role not only in the development of the male phenotype but also in the development and growth of prostate cancer. While AR structure and AR interactions with coregulators and chromatin have been studied in detail, improving our understanding of AR function in gene transcription regulation, the spatio-temporal organization and the role of microscopically discernible AR foci in the nucleus are still underexplored. This review delves into the molecular mechanisms underlying AR foci formation, focusing on liquid-liquid phase separation and its role in spatially organizing ARs and their binding partners within the nucleus at transcription sites, as well as the influence of 3D-genome organization on AR-mediated gene transcription.
Collapse
Affiliation(s)
- Selçuk Yavuz
- Department of Pathology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.Y.); (M.E.v.R.)
| | - Tsion E. Abraham
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (T.E.A.)
| | - Adriaan B. Houtsmuller
- Department of Pathology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.Y.); (M.E.v.R.)
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (T.E.A.)
| | - Martin E. van Royen
- Department of Pathology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.Y.); (M.E.v.R.)
| |
Collapse
|
2
|
Paralkar D, Akbari A, Aron M. Prostatic adenocarcinoma: molecular underpinnings and treatment-related options. Urol Oncol 2024; 42:203-210. [PMID: 38508940 DOI: 10.1016/j.urolonc.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/28/2024] [Accepted: 03/03/2024] [Indexed: 03/22/2024]
Abstract
Prostate cancer is heterogeneous with varied pathologic features and presents with a wide spectrum of clinical manifestations from indolent to advanced cancer. Interrogation of the molecular landscape of prostate cancer has unveiled the complex genomic alterations in these tumors, which significantly impacts tumor biology. The documented array of chromosomal alterations, gene fusions, and epigenetic changes not only play a crucial role in oncogenesis and disease progression, but also impacts response and resistance to various therapeutic modalities. Various gene expression assays have been developed and are currently recommended in aiding clinical decision making in these clinically and molecularly heterogeneous cancer. In this review, we provide an overview of the molecular underpinnings of prostate cancer, and briefly review the current status of molecular testing and therapeutic options in the management of these tumors.
Collapse
Affiliation(s)
- Divyangi Paralkar
- Department of Urology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, Room 2409, HC4, Los Angeles, California
| | - Amir Akbari
- Department of Pathology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, Room 2409, HC4, Los Angeles, California
| | - Manju Aron
- Department of Urology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, Room 2409, HC4, Los Angeles, California; Department of Pathology, Keck School of Medicine, University of Southern California, 1500 San Pablo Street, Room 2409, HC4, Los Angeles, California.
| |
Collapse
|
3
|
Kim HJ, Kim YH. Exploring Acne Treatments: From Pathophysiological Mechanisms to Emerging Therapies. Int J Mol Sci 2024; 25:5302. [PMID: 38791344 PMCID: PMC11121268 DOI: 10.3390/ijms25105302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Acne vulgaris is a common dermatological condition that can present across different ages but predominantly affects adolescents and young adults. Characterized by various lesion types, the pathogenesis of acne is complex, involving genetic, hormonal, microbial, and inflammatory factors. This review comprehensively addresses current and emerging acne management strategies, emphasizing both topical and systemic treatments, procedural therapies, and dietary modifications. Key topical agents include retinoids, benzoyl peroxide, antibiotics, and other specialized compounds. Systemic options like antibiotics, hormonal therapies, and retinoids offer significant therapeutic benefits, particularly for moderate to severe cases. Procedural treatments such as laser devices, photodynamic therapy, chemical peels, and intralesional injections present viable alternatives for reducing acne symptoms and scarring. Emerging therapies focus on novel biologics, bacteriophages, probiotics, and peptides, providing promising future options. This review underscores the importance of personalized approaches to treatment due to the multifaceted nature of acne, highlighting the potential of innovative therapies for improving patient outcomes.
Collapse
Affiliation(s)
- Hyun Jee Kim
- Department of Dermatology, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea;
| | - Yeong Ho Kim
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
4
|
Sun R, Yan B, Li H, Ding D, Wang L, Pang J, Ye D, Huang H. Androgen Receptor Variants Confer Castration Resistance in Prostate Cancer by Counteracting Antiandrogen-Induced Ferroptosis. Cancer Res 2023; 83:3192-3204. [PMID: 37527336 PMCID: PMC10543964 DOI: 10.1158/0008-5472.can-23-0285] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/23/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
Androgen receptor (AR) inhibition by androgen deprivation and/or antiandrogen administration is the mainstay therapy for advanced prostate cancer. However, most prostate cancers ultimately become resistant to these therapies, indicating the importance of identifying mechanisms driving resistance to improve patient outcomes. Here we demonstrated that acute treatment with the antiandrogen enzalutamide (ENZ) decreased glutathione (GSH) production, increased lipid peroxidation, and induced ferroptosis in prostate cancer cells. Consistently, meta-analysis of transcriptomic data linked the androgen-AR axis to metabolism-related biological processes, including lipid metabolism. The cystine transporter gene SLC7A11 was a key AR target, and full-length AR (AR-FL) transactivated SLC7A11 transcription by directly occupying the SLC7A11 promoter and putative enhancer regions. AR variants (AR-V) preferentially bound the SLC7A11 enhancer and upregulated SLC7A11 expression, thereby conferring resistance to ferroptosis induced by ENZ treatment. However, this effect was abolished following downregulation of AR-Vs using the dual CBP/p300 and BET inhibitor NEO2734. These findings reveal ferroptosis induction as an anticancer mechanism of antiandrogens and SLC7A11 as a direct target gene of AR-FL and AR-Vs. AR-V-mediated SLC7A11 expression represents a mechanism coupling ferroptosis resistance to prostate cancer progression. SIGNIFICANCE Upregulation of SLC7A11 can be induced by androgen receptor variants to inhibit antiandrogen-induced prostate cancer cell ferroptosis and to drive castration resistance in prostate cancer.
Collapse
Affiliation(s)
- Rui Sun
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Binyuan Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hao Li
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Donglin Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Jun Pang
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
- Mayo Clinic Comprehensive Cancer Center, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
5
|
Raith F, O’Donovan DH, Lemos C, Politz O, Haendler B. Addressing the Reciprocal Crosstalk between the AR and the PI3K/AKT/mTOR Signaling Pathways for Prostate Cancer Treatment. Int J Mol Sci 2023; 24:ijms24032289. [PMID: 36768610 PMCID: PMC9917236 DOI: 10.3390/ijms24032289] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The reduction in androgen synthesis and the blockade of the androgen receptor (AR) function by chemical castration and AR signaling inhibitors represent the main treatment lines for the initial stages of prostate cancer. Unfortunately, resistance mechanisms ultimately develop due to alterations in the AR pathway, such as gene amplification or mutations, and also the emergence of alternative pathways that render the tumor less or, more rarely, completely independent of androgen activation. An essential oncogenic axis activated in prostate cancer is the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, as evidenced by the frequent alterations of the negative regulator phosphatase and tensin homolog (PTEN) and by the activating mutations in PI3K subunits. Additionally, crosstalk and reciprocal feedback loops between androgen signaling and the PI3K/AKT/mTOR signaling cascade that activate pro-survival signals and play an essential role in disease recurrence and progression have been evidenced. Inhibitors addressing different players of the PI3K/AKT/mTOR pathway have been evaluated in the clinic. Only a limited benefit has been reported in prostate cancer up to now due to the associated side effects, so novel combination approaches and biomarkers predictive of patient response are urgently needed. Here, we reviewed recent data on the crosstalk between AR signaling and the PI3K/AKT/mTOR pathway, the selective inhibitors identified, and the most advanced clinical studies, with a focus on combination treatments. A deeper understanding of the complex molecular mechanisms involved in disease progression and treatment resistance is essential to further guide therapeutic approaches with improved outcomes.
Collapse
Affiliation(s)
- Fabio Raith
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Daniel H. O’Donovan
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Clara Lemos
- Bayer Research and Innovation Center, Bayer US LLC, 238 Main Street, Cambridge, MA 02142, USA
| | - Oliver Politz
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Bernard Haendler
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
- Correspondence: ; Tel.: +49-30-2215-41198
| |
Collapse
|
6
|
Yin Y, Liu Q, Shao Y, He X, Zhu Q, Lu S, Liu P. Regulatory mechanism of androgen receptor on NCAPD3 gene expression in prostate cancer. Prostate 2022; 82:26-40. [PMID: 34591337 DOI: 10.1002/pros.24245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Androgen receptor (AR) is an essential transcriptional factor that contributes to the development and progression of prostate cancer (PCa). NCAPD3 is a component of the condensin II complex and plays a critical role in cell mitosis by regulating chromosome condensation; however, the relationship between NCAPD3 and AR remains unknown. METHODS Transcriptome sequencing assay is carried out to analyze the expression of the NCAP family in clinic samples. Chromatin immunoprecipitation (ChIP) sequencing, ChIP assay, and dual-luciferase assay are used to identify the androgen-responsive element in NCAPD3 enhancer. Immunohistochemistry, quantitative reverse transcription-polymerase chain reaction, and western-blot assay are employed to check the expression of genes in PCa tissues and in PCa cells. Confocal immunofluorescence microscopy analysis is used for identifying the regulation of AR on NCAPD3-mediated chromosome condensation. Colony formation, cell cycle assay, wound healing assay, and transwell experiments are used to explore the regulation of AR on the functions of NCAPD3. In vivo experiment is employed to identify in vitro experimental results. RESULTS NCAPD3 is an androgen/AR axis-targeted gene and is involved in AR-induced PCa cell proliferation, migration, and invasion in vitro and in vivo. Androgen treatment and AR overexpression increase the expression of NCAPD3 in PCa cell lines. The canonical exist in the enhancer region of NCAPD3. Androgen/AR axis regulates NCAPD3-invovled chromosome condensation during cell mitosis. CONCLUSIONS Our report demonstrated that NCAPD3 is an androgen-responsive gene and upregulated by androgen/AR axis and involved in AR-promoted progression of PCa, suggesting a potential role of NCAPD3 in the PCa development.
Collapse
Affiliation(s)
- Yingying Yin
- Department of Biochemistry,Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Qianmei Liu
- Department of Biochemistry,Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yingying Shao
- Department of Biochemistry,Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Xinyuan He
- Department of Biochemistry,Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Qingyi Zhu
- Department of Urology Surgery, Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shan Lu
- Department of Biochemistry,Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Ping Liu
- Department of Biochemistry,Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Waddell AR, Huang H, Liao D. CBP/p300: Critical Co-Activators for Nuclear Steroid Hormone Receptors and Emerging Therapeutic Targets in Prostate and Breast Cancers. Cancers (Basel) 2021; 13:2872. [PMID: 34201346 PMCID: PMC8229436 DOI: 10.3390/cancers13122872] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/10/2023] Open
Abstract
The CREB-binding protein (CBP) and p300 are two paralogous lysine acetyltransferases (KATs) that were discovered in the 1980s-1990s. Since their discovery, CBP/p300 have emerged as important regulatory proteins due to their ability to acetylate histone and non-histone proteins to modulate transcription. Work in the last 20 years has firmly established CBP/p300 as critical regulators for nuclear hormone signaling pathways, which drive tumor growth in several cancer types. Indeed, CBP/p300 are critical co-activators for the androgen receptor (AR) and estrogen receptor (ER) signaling in prostate and breast cancer, respectively. The AR and ER are stimulated by sex hormones and function as transcription factors to regulate genes involved in cell cycle progression, metabolism, and other cellular functions that contribute to oncogenesis. Recent structural studies of the AR/p300 and ER/p300 complexes have provided critical insights into the mechanism by which p300 interacts with and activates AR- and ER-mediated transcription. Breast and prostate cancer rank the first and forth respectively in cancer diagnoses worldwide and effective treatments are urgently needed. Recent efforts have identified specific and potent CBP/p300 inhibitors that target the acetyltransferase activity and the acetytllysine-binding bromodomain (BD) of CBP/p300. These compounds inhibit AR signaling and tumor growth in prostate cancer. CBP/p300 inhibitors may also be applicable for treating breast and other hormone-dependent cancers. Here we provide an in-depth account of the critical roles of CBP/p300 in regulating the AR and ER signaling pathways and discuss the potential of CBP/p300 inhibitors for treating prostate and breast cancer.
Collapse
Affiliation(s)
- Aaron R. Waddell
- UF Health Cancer Center, Department of Anatomy and Cell Biology, University Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA;
| | - Haojie Huang
- Departments of Biochemistry and Molecular Biology and Urology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA;
| | - Daiqing Liao
- UF Health Cancer Center, Department of Anatomy and Cell Biology, University Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA;
| |
Collapse
|
8
|
Zhang ZB, Ip SP, Cho WCS, Ng ACF, Hu Z, Huang YF, Luo DD, Xian YF, Lin ZX. Herb-drug interactions between androgenic Chinese herbal medicines and androgen receptor antagonist on tumor growth: Studies on two xenograft prostate cancer animal models. Phytother Res 2021; 35:2758-2772. [PMID: 33440458 DOI: 10.1002/ptr.7020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 01/25/2023]
Abstract
Our previous study revealed that Epimedii Folium (EF) and Codonopsis Radix (CNR) significantly promoted tumor growth on a subcutaneous mouse model of prostate cancer (PCa) via enhancing the mRNA and protein expressions of androgen receptor (AR), while Astragali Radix (AGR) inhibited tumor growth via suppressing the protein expression of AR. In the present study, we aimed to investigate the potential interactions between EF, CNR or AGR and AR antagonist (abiraterone acetate [ABI]) on the tumor growth using subcutaneous and orthotopic PCa mouse models. EF, CNR, AGR and ABI were intragastrically given to mice once every 2 days for 4 weeks. The pharmacokinetics of ABI were evaluated in the plasma of rats when combined with EF, CNR, or AGR. Our results demonstrated that EF or CNR could weaken the anti-tumor effects of ABI via increasing the AR expression involving activation of the PI3K/AKT and Rb/E2F pathways and decreasing the bioavailability of ABI, while AGR could enhance the anti-tumor effects of ABI through suppressing the AR expression via inhibiting the activations of PI3K/AKT and Rb/E2F pathways and increasing the bioavailability of ABI. These findings imply that cautions should be exercised when prescribing EF and CNR for PCa patients.
Collapse
Affiliation(s)
- Zhen-Biao Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Siu-Po Ip
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- Brain Research Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | | | - Anthony Chi Fai Ng
- SH Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Zhen Hu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Yan-Feng Huang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Dan-Dan Luo
- Department of Pharmacy, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, PR China
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- Brain Research Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- Brain Research Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
9
|
Chen Y, Lan T. Molecular Origin, Expression Regulation, and Biological Function of Androgen Receptor Splicing Variant 7 in Prostate Cancer. Urol Int 2020; 105:337-353. [PMID: 32957106 DOI: 10.1159/000510124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022]
Abstract
The problem of resistance to therapy in prostate cancer (PCa) is multifaceted. Key determinants of drug resistance include tumor burden and growth kinetics, tumor heterogeneity, physical barriers, immune system and microenvironment, undruggable cancer drivers, and consequences of therapeutic pressures. With regard to the fundamental importance of the androgen receptor (AR) in all stages of PCa from tumorigenesis to progression, AR is postulated to have a continued critical role in castration-resistant prostate cancer (CRPC). Suppression of AR signaling mediated by the full-length AR (AR-FL) is the therapeutic goal of all AR-directed therapies. However, AR-targeting agents ultimately lead to AR aberrations that promote PCa progression and drug resistance. Among these AR aberrations, androgen receptor variant 7 (AR-V7) is gaining attention as a potential predictive marker for as well as one of the resistance mechanisms to the most current anti-AR therapies in CRPC. Meanwhile, development of next-generation drugs that directly or indirectly target AR-V7 signaling is urgently needed. In the present review of the current literature, we have summarized the origin, alternative splicing, expression induction, protein conformation, interaction with coregulators, relationship with AR-FL, transcriptional activity, and biological function of AR-V7 in PCa development and therapeutic resistance. We hope this review will help further understand the molecular origin, expression regulation, and role of AR-V7 in the progression of PCa and provide insight into the design of novel selective inhibitors of AR-V7 in PCa treatment.
Collapse
Affiliation(s)
- Ye Chen
- Department of Surgery and Anesthesiology, Joint Logistic Support 940 Hospital of CPLA, Lanzhou, China
| | - Tian Lan
- Department of Urology, Joint Logistic Support 940 Hospital of CPLA, Lanzhou, China,
| |
Collapse
|
10
|
Shao C, Yu B, Liu Y. Androgen receptor splicing variant 7: Beyond being a constitutively active variant. Life Sci 2019; 234:116768. [PMID: 31445027 DOI: 10.1016/j.lfs.2019.116768] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 01/01/2023]
Abstract
In prostate cancer development, the androgen receptor (AR) signaling plays a crucial role during both formation of early prostate lesions and progression to the lethal, incurable castration resistant stage. Accordingly, numerous approaches have been developed to inhibit AR activity including androgen deprivation therapy, application of the AR antagonists as well as the use of taxanes. However, these treatments, although effective initially, resistance inevitably occur for most of the patients within several years and limiting the therapeutic efficacy. Of note, alterations and reactivation of the AR signaling pathway have been demonstrated as the major reasons for the observed resistance. Accumulating evidences have suggested that synthesis of AR splicing variants, in particular, the constitutively active AR-V7, is one of the most important mechanisms that contribute to the abnormal AR signaling. In addition, clinical data also highlight the potential of using AR-V7 as a predictive biomarker and a therapeutic target in metastatic castration resistant prostate cancer (mCRPC). In this review, we summarize the recent findings concerning the specific role of AR-V7 in CRPC progression, drug resistance and its potential value in clinical assessment.
Collapse
Affiliation(s)
- Chen Shao
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Bingbing Yu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yanan Liu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
11
|
Cong TX, Hao D, Wen X, Li XH, He G, Jiang X. From pathogenesis of acne vulgaris to anti-acne agents. Arch Dermatol Res 2019; 311:337-349. [PMID: 30859308 DOI: 10.1007/s00403-019-01908-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 02/05/2023]
Abstract
Acne vulgaris is a cutaneous chronic inflammatory disorder with complex pathogenesis. Four factors play vital roles in acne pathophysiology: hyperseborrhea and dysseborrhea, altered keratinization of the pilosebaceous duct, Cutibacterium acnes (C. acnes) and inflammation. The main hormones responsible for the development of acne vulgaris include androgens, insulin and insulin-like growth factor-1. Other factors involved in this process are corticotropin-releasing hormone, α-melanocyte-stimulating hormone and substance P. Wnt/β-catenin signaling pathway, phosphoinositide 3-kinase (PI3K)/Akt pathway, mitogen-activated protein kinase pathway, adenosine 5'-monophosphate-activated protein kinase pathway and nuclear factor kappa B pathway participate in the modulation of sebocyte, keratinocyte and inflammatory cell (e.g. lymphocytes, monocytes, macrophages, neutrophils) activity. Among all the triggers and pathways mentioned above, IGF-1-induced PI3K/Akt/Forkhead box protein O1/mammalian target of rapamycin (mTOR) C1 pathway is the most important signaling responsible for acne pathogenesis. Commonly used anti-acne agents include retinoids, benzoyl peroxide, antibiotics and hormonal agents (e.g. spironolactone, combination oral contraceptive and flutamide). New approaches including peroxisome proliferator-activated receptor γ modifier, melanocortin receptor antagonists, epigallocatechin-3-gallate, metformin, olumacostat glasaretil, stearoyl-CoA desaturase inhibitor omiganan pentahydrochloride, KDPT, afamelanotide, apremilast and biologics have been developed as promising treatments for acne vulgaris. Although these anti-acne agents have various pharmacological effects against the diverse pathogenesis of acne, all of them have a synergistic mode of action, the attenuation of Akt/mTORC1 signaling and enhancement of p53 signal transduction. In addition to drug therapy, diet with no hyperglycemic carbohydrates, no milk and dairy products is also beneficial for treatment of acne.
Collapse
Affiliation(s)
- Tian-Xin Cong
- Department of Dermatology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dan Hao
- Department of Dermatology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiao-Hua Li
- Department of Dermatology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
12
|
Cao R, Ke M, Wu Q, Tian Q, Liu L, Dai Z, Lu S, Liu P. AZGP1 is androgen responsive and involved in AR‐induced prostate cancer cell proliferation and metastasis. J Cell Physiol 2019; 234:17444-17458. [DOI: 10.1002/jcp.28366] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Runyi Cao
- Department of Biochemistry, Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology College of Life Sciences, Nanjing Normal University Nanjing Jiangsu People’s Republic of China
| | - Min Ke
- Department of Biochemistry, Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology College of Life Sciences, Nanjing Normal University Nanjing Jiangsu People’s Republic of China
| | - Qingxin Wu
- Department of Biochemistry, Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology College of Life Sciences, Nanjing Normal University Nanjing Jiangsu People’s Republic of China
| | - Qian Tian
- Department of Biochemistry, Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology College of Life Sciences, Nanjing Normal University Nanjing Jiangsu People’s Republic of China
| | - Li Liu
- Department of Science and Technology, Central Laboratory Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing Jiangsu People’s Republic of China
| | - Zao Dai
- Department of Biochemistry, Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology College of Life Sciences, Nanjing Normal University Nanjing Jiangsu People’s Republic of China
| | - Shan Lu
- Department of Biochemistry, Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology College of Life Sciences, Nanjing Normal University Nanjing Jiangsu People’s Republic of China
| | - Ping Liu
- Department of Biochemistry, Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology College of Life Sciences, Nanjing Normal University Nanjing Jiangsu People’s Republic of China
| |
Collapse
|
13
|
Yan Y, Huang H. Interplay Among PI3K/AKT, PTEN/FOXO and AR Signaling in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:319-331. [DOI: 10.1007/978-3-030-32656-2_14] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Abstract
INTRODUCTION The androgen receptor variant AR-V7 is gaining attention as a potential predictive marker for as well as one of the resistance mechanisms to the most current anti-androgen receptor (AR) therapies in castration-resistant prostate cancer (CRPC). Accordingly, development of next-generation drugs that directly or indirectly target AR-V7 signaling is urgently needed. Areas covered: We review proposed mechanisms of drug resistance in relation to AR-V7 status, the mechanisms of generation of AR-V7, and its transcriptome, cistrome, and interactome. Pharmacological agents that interfere with these processes are being developed to counteract pan AR and AR-V7-specific signaling. Also, we address the current status of the preclinical and clinical studies targeting AR-V7 signaling. Expert opinion: AR-V7 is considered a true therapeutic target, however, it remains to be determined if AR-V7 is a principal driver or merely a bystander requiring heterodimerization with co-expressed full-length AR or other variants to drive CRPC progression. While untangling AR-V7 biology, multiple strategies are being developed to counteract drug resistance, including selective blockade of AR-V7 signaling as well as inhibition of pan-AR signaling. Ideally anti-AR therapies will be combined with agents preventing activation and enrichment of AR negative tumor cells that are otherwise depressed by AR activity axis.
Collapse
Affiliation(s)
- Takuma Uo
- a Department of Medicine , University of Washington , Seattle , WA , USA
| | - Stephen R Plymate
- a Department of Medicine , University of Washington , Seattle , WA , USA.,b Geriatrics Research Education and Clinical Center VA Puget Sound Health Care System , Seattle , WA , USA
| | - Cynthia C Sprenger
- a Department of Medicine , University of Washington , Seattle , WA , USA
| |
Collapse
|
15
|
Magani F, Peacock SO, Rice MA, Martinez MJ, Greene AM, Magani PS, Lyles R, Weitz JR, Burnstein KL. Targeting AR Variant-Coactivator Interactions to Exploit Prostate Cancer Vulnerabilities. Mol Cancer Res 2017; 15:1469-1480. [PMID: 28811363 PMCID: PMC5770277 DOI: 10.1158/1541-7786.mcr-17-0280] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/21/2017] [Accepted: 08/10/2017] [Indexed: 01/22/2023]
Abstract
Castration-resistant prostate cancer (CRPC) progresses rapidly and is incurable. Constitutively active androgen receptor splice variants (AR-Vs) represent a well-established mechanism of therapeutic resistance and disease progression. These variants lack the AR ligand-binding domain and, as such, are not inhibited by androgen deprivation therapy (ADT), which is the standard systemic approach for advanced prostate cancer. Signaling by AR-Vs, including the clinically relevant AR-V7, is augmented by Vav3, an established AR coactivator in CRPC. Using mutational and biochemical studies, we demonstrated that the Vav3 Diffuse B-cell lymphoma homology (DH) domain interacted with the N-terminal region of AR-V7 (and full length AR). Expression of the Vav3 DH domain disrupted Vav3 interaction with and enhancement of AR-V7 activity. The Vav3 DH domain also disrupted AR-V7 interaction with other AR coactivators: Src1 and Vav2, which are overexpressed in PC. This Vav3 domain was used in proof-of-concept studies to evaluate the effects of disrupting the interaction between AR-V7 and its coactivators on CRPC cells. This disruption decreased CRPC cell proliferation and anchorage-independent growth, caused increased apoptosis, decreased migration, and resulted in the acquisition of morphological changes associated with a less aggressive phenotype. While disrupting the interaction between FL-AR and its coactivators decreased N-C terminal interaction, disrupting the interaction of AR-V7 with its coactivators decreased AR-V7 nuclear levels.Implications: This study demonstrates the potential therapeutic utility of inhibiting constitutively active AR-V signaling by disrupting coactivator binding. Such an approach is significant, as AR-Vs are emerging as important drivers of CRPC that are particularly recalcitrant to current therapies. Mol Cancer Res; 15(11); 1469-80. ©2017 AACR.
Collapse
Affiliation(s)
- Fiorella Magani
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
| | - Stephanie O Peacock
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
| | - Meghan A Rice
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
| | - Maria J Martinez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
| | - Ann M Greene
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
| | - Pablo S Magani
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
| | - Rolando Lyles
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jonathan R Weitz
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
| | - Kerry L Burnstein
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida.
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida
| |
Collapse
|
16
|
Melnik BC. Milk disrupts p53 and DNMT1, the guardians of the genome: implications for acne vulgaris and prostate cancer. Nutr Metab (Lond) 2017; 14:55. [PMID: 28814964 PMCID: PMC5556685 DOI: 10.1186/s12986-017-0212-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023] Open
Abstract
There is accumulating evidence that milk shapes the postnatal metabolic environment of the newborn infant. Based on translational research, this perspective article provides a novel mechanistic link between milk intake and milk miRNA-regulated gene expression of the transcription factor p53 and DNA methyltransferase 1 (DNMT1), two guardians of the human genome, that control transcriptional activity, cell survival, and apoptosis. Major miRNAs of milk, especially miRNA-125b, directly target TP53 and complex p53-dependent gene regulatory networks. TP53 regulates the expression of key genes involved in cell homeostasis such as FOXO1, PTEN, SESN1, SESN2, AR, IGF1R, BAK1, BIRC5, and TNFSF10. Nuclear interaction of p53 with DNMT1 controls gene silencing. The most abundant miRNA of milk and milk fat, miRNA-148a, directly targets DNMT1. Reduced DNMT1 expression further attenuates the activity of histone deacetylase 1 (HDAC1) involved in the regulation of chromatin structure and access to transcription. The presented milk-mediated miRNA-p53-DNMT1 pathway exemplified at the promoter regulation of survivin (BIRC5) provides a novel explanation for the epidemiological association between milk consumption and acne vulgaris and prostate cancer. Notably, p53- and DNMT1-targeting miRNAs of bovine and human milk survive pasteurization and share identical seed sequences, which theoretically allows the interaction of bovine miRNAs with the human genome. Persistent intake of milk-derived miRNAs that attenuate p53- and DNMT1 signaling of the human milk consumer may thus present an overlooked risk factor promoting acne vulgaris, prostate cancer, and other p53/DNMT1-related Western diseases. Therefore, bioactive miRNAs of commercial milk should be eliminated from the human food chain.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany
| |
Collapse
|
17
|
Fan L, Zhu Q, Liu L, Zhu C, Huang H, Lu S, Liu P. CXCL13 is androgen-responsive and involved in androgen induced prostate cancer cell migration and invasion. Oncotarget 2017; 8:53244-53261. [PMID: 28881808 PMCID: PMC5581107 DOI: 10.18632/oncotarget.18387] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 05/09/2017] [Indexed: 12/11/2022] Open
Abstract
Androgen receptor (AR) is a key transcription factor playing a critical role in prostate cancer (PCa) initiation and progression. However, the molecular mechanisms of AR action in prostate cancer are not very clear. CXCL13, known as B cell attracting chemokine1 (BCA-1), is a member of CXC chemokine family and relevant to cancer metastasis. This study shows that CXCL13 is an androgen-responsive gene and involved in AR-induced PCa cell migration and invasion. In clinical specimens, expression of CXCL13 in PCa tissues is markedly higher than that in adjacent normal tissues. In cultures, expression of CXCL13 is up-regulated by androgen-AR axis at both mRNA and protein levels. Furthermore, Chip-Seq assay identifies canonical androgen responsive elements (ARE) at CXCL13 enhancer and dual-luciferase reporter assays reveals that the ARE is highly responsive to androgen while mutations of the ARE abolish the reporter activity. Additional chromatin immunoprecipitation (ChIP) assays also identify that the ARE presents androgen responsiveness. In addition, CXCL13 promotes G2/M phase transition by increasing Cyclin B1 levels in PCa cells. Functional studies demonstrate that reducing endogenous CXCL13 expression in LNCaP cells largely weakens androgen-AR axis induced cell migration and invasion. Taken together, our study implicates for the first time that CXCL13 is an AR target gene and involved in AR-mediated cell migration and invasion in primary PCa.
Collapse
Affiliation(s)
- Long Fan
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, Life Science College, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Qingyi Zhu
- Department of Urology, Jiangsu Province Hospital of TCM, Nanjing, Jiangsu, China
| | - Li Liu
- Laboratory of Molecular Biology, Jiangsu Province Hospital of TCM, Nanjing, Jiangsu, China
| | - Cuicui Zhu
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, Life Science College, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Haojie Huang
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Shan Lu
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, Life Science College, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Ping Liu
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, Life Science College, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Myung JK, Wang G, Chiu HHL, Wang J, Mawji NR, Sadar MD. Inhibition of androgen receptor by decoy molecules delays progression to castration-recurrent prostate cancer. PLoS One 2017; 12:e0174134. [PMID: 28306720 PMCID: PMC5357013 DOI: 10.1371/journal.pone.0174134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/23/2017] [Indexed: 12/20/2022] Open
Abstract
Androgen receptor (AR) is a member of the steroid receptor family and a therapeutic target for all stages of prostate cancer. AR is activated by ligand binding within its C-terminus ligand-binding domain (LBD). Here we show that overexpression of the AR NTD to generate decoy molecules inhibited both the growth and progression of prostate cancer in castrated hosts. Specifically, it was shown that lentivirus delivery of decoys delayed hormonal progression in castrated hosts as indicated by increased doubling time of tumor volume, prolonged time to achieve pre-castrate levels of serum prostate-specific antigen (PSA) and PSA nadir. These clinical parameters are indicative of delayed hormonal progression and improved therapeutic response and prognosis. Decoys reduced the expression of androgen-regulated genes that correlated with reduced in situ interaction of the AR with androgen response elements. Decoys did not reduce levels of AR protein or prevent nuclear localization of the AR. Nor did decoys interact directly with the AR. Thus decoys did not inhibit AR transactivation by a dominant negative mechanism. This work provides evidence that the AR NTD plays an important role in the hormonal progression of prostate cancer and supports the development of AR antagonists that target the AR NTD.
Collapse
Affiliation(s)
- Jae-Kyung Myung
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Gang Wang
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Helen H. L. Chiu
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Jun Wang
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Nasrin R. Mawji
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Marianne D. Sadar
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
19
|
Cao S, Zhan Y, Dong Y. Emerging data on androgen receptor splice variants in prostate cancer. Endocr Relat Cancer 2016; 23:T199-T210. [PMID: 27702752 PMCID: PMC5107136 DOI: 10.1530/erc-16-0298] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/04/2016] [Indexed: 12/13/2022]
Abstract
Androgen receptor splice variants are alternatively spliced variants of androgen receptor, which are C-terminally truncated and lack the canonical ligand-binding domain. Accumulating evidence has indicated a significant role of androgen receptor splice variants in mediating resistance of castration-resistant prostate cancer to current therapies and in predicting therapeutic responses. As such, there is an urgent need to target androgen receptor splicing variants for more effective treatment of castration-resistant prostate cancer. Identification of precise and critical targeting points to deactivate androgen receptor splicing variants relies on a deep understanding of how they are generated and the mechanisms of their action. In this review, we will focus on the emerging data on their generation, clinical significance and mechanisms of action as well as the therapeutic influence of these findings.
Collapse
Affiliation(s)
- Subing Cao
- College of Life SciencesJilin University, Changchun, Jilin, China
- Department of Structural and Cellular BiologyTulane University School of Medicine, Tulane Cancer Center, New Orleans, Louisiana, USA
| | - Yang Zhan
- College of Life SciencesJilin University, Changchun, Jilin, China
- Department of Structural and Cellular BiologyTulane University School of Medicine, Tulane Cancer Center, New Orleans, Louisiana, USA
| | - Yan Dong
- College of Life SciencesJilin University, Changchun, Jilin, China
- Department of Structural and Cellular BiologyTulane University School of Medicine, Tulane Cancer Center, New Orleans, Louisiana, USA
| |
Collapse
|
20
|
Antonarakis ES, Armstrong AJ, Dehm SM, Luo J. Androgen receptor variant-driven prostate cancer: clinical implications and therapeutic targeting. Prostate Cancer Prostatic Dis 2016; 19:231-41. [PMID: 27184811 PMCID: PMC5493501 DOI: 10.1038/pcan.2016.17] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/13/2022]
Abstract
While there are myriad mechanisms of primary and acquired resistance to conventional and next-generation hormonal therapies in prostate cancer, the potential role of androgen receptor splice variants (AR-Vs) has recently gained momentum. AR-Vs are abnormally truncated isoforms of the androgen receptor (AR) protein that lack the COOH-terminal domain but retain the NH2-terminal domain and DNA-binding domain and are thus constitutively active even in the absence of ligands. Although multiple preclinical studies have previously implicated AR-Vs in the development of castration resistance as well as resistance to abiraterone and enzalutamide, recent technological advances have made it possible to reliably detect and quantify AR-Vs from human clinical tumor specimens including blood samples. Initial clinical studies have now shown that certain AR-Vs, in particular AR-V7, may be associated with resistance to abiraterone and enzalutamide but not taxane chemotherapies when detected in circulating tumor cells. Efforts are now underway to clinically validate AR-V7 as a relevant treatment-selection biomarker in the context of other key genomic aberrations in men with metastatic castration-resistant prostate cancer. Additional efforts are underway to therapeutically target both AR and AR-Vs either directly or indirectly. Whether AR-Vs represent drivers of castration-resistant prostate cancer, or whether they are simply passenger events associated with aggressive disease or clonal heterogeneity, will ultimately be answered only through these types of clinical trials.
Collapse
MESH Headings
- Alternative Splicing
- Androgen Receptor Antagonists/therapeutic use
- Androgens/metabolism
- Animals
- Antineoplastic Agents, Hormonal/therapeutic use
- Biomarkers, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Clinical Trials as Topic
- Drug Evaluation, Preclinical
- Drug Resistance, Neoplasm/drug effects
- Epithelium/metabolism
- Epithelium/pathology
- Gene Expression Regulation, Neoplastic
- Genetic Variation
- Humans
- Male
- Molecular Targeted Therapy
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Protein Binding
- Protein Interaction Domains and Motifs
- Protein Multimerization
- Receptors, Androgen/chemistry
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Research
- Signal Transduction/drug effects
- Transcription, Genetic
- Treatment Outcome
Collapse
Affiliation(s)
- ES Antonarakis
- Departments of Oncology and Urology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - AJ Armstrong
- Departments of Medicine, Surgery, and Pharmacology and Cancer Biology, Divisions of Medical Oncology and Urology, Duke Cancer Institute, Durham, NC, USA
| | - SM Dehm
- Masonic Cancer Center and Departments of Laboratory Medicine and Pathology and Urology, University of Minnesota, Minneapolis, MN, USA
| | - J Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
21
|
Yap TA, Smith AD, Ferraldeschi R, Al-Lazikani B, Workman P, de Bono JS. Drug discovery in advanced prostate cancer: translating biology into therapy. Nat Rev Drug Discov 2016; 15:699-718. [DOI: 10.1038/nrd.2016.120] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Foley C, Mitsiades N. Moving Beyond the Androgen Receptor (AR): Targeting AR-Interacting Proteins to Treat Prostate Cancer. HORMONES & CANCER 2016; 7:84-103. [PMID: 26728473 PMCID: PMC5380740 DOI: 10.1007/s12672-015-0239-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/23/2015] [Indexed: 02/07/2023]
Abstract
Medical or surgical castration serves as the backbone of systemic therapy for advanced and metastatic prostate cancer, taking advantage of the importance of androgen signaling in this disease. Unfortunately, resistance to castration emerges almost universally. Despite the development and approval of new and more potent androgen synthesis inhibitors and androgen receptor (AR) antagonists, prostate cancers continue to develop resistance to these therapeutics, while often maintaining their dependence on the AR signaling axis. This highlights the need for innovative therapeutic approaches that aim to continue disrupting AR downstream signaling but are orthogonal to directly targeting the AR itself. In this review, we discuss the preclinical research that has been done, as well as clinical trials for prostate cancer, on inhibiting several important families of AR-interacting proteins, including chaperones (such as heat shock protein 90 (HSP90) and FKBP52), pioneer factors (including forkhead box protein A1 (FOXA1) and GATA-2), and AR transcriptional coregulators such as the p160 steroid receptor coactivators (SRCs) SRC-1, SRC-2, SRC-3, as well as lysine deacetylases (KDACs) and lysine acetyltransferases (KATs). Researching the effect of-and developing new therapeutic agents that target-the AR signaling axis is critical to advancing our understanding of prostate cancer biology, to continue to improve treatments for prostate cancer and for overcoming castration resistance.
Collapse
Affiliation(s)
- Christopher Foley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA
| | - Nicholas Mitsiades
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA.
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Suite R407, MS: BCM187, Houston, TX, 77030, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Schweizer MT, Plymate SR. Targeting constitutively active androgen receptor splice variants in castration resistant prostate cancer. Expert Opin Ther Targets 2016; 20:903-6. [PMID: 26927611 DOI: 10.1517/14728222.2016.1159676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- M T Schweizer
- a Department of Medicine, Division of Medical Oncology , University of Washington , Seattle , WA , USA.,b Fred Hutchinson Cancer Research Institute, Clinical Research Division , Seattle , WA , USA
| | - S R Plymate
- c Department of Medicine and GRECC VAPSHCE , University of Washington , Seattle , WA , USA
| |
Collapse
|
24
|
Modena A, Ciccarese C, Fantinel E, Bimbatti D, Tortora G, Massari F. Metastatic castration-resistant prostate cancer: targeting the mechanisms of resistance to abiraterone acetate and enzalutamide. Expert Rev Anticancer Ther 2015; 15:1037-48. [DOI: 10.1586/14737140.2015.1063423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Are androgen receptor variants a substitute for the full-length receptor? Nat Rev Urol 2015; 12:137-44. [PMID: 25666893 DOI: 10.1038/nrurol.2015.13] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Androgen receptor splice variants (AR-Vs)--which are expressed in castration-resistant prostate cancer (CRPC) cell lines and clinical samples--lack the C-terminal ligand-binding domain and are constitutively active. AR-Vs are, therefore, resistant to traditional androgen deprivation therapy (ADT). AR-Vs are induced by several mechanisms, including ADT, and might contribute to the progression of CRPC and resistance to ADT. AR-Vs could represent a novel therapeutic target for prostate cancer, especially in CRPC.
Collapse
|
26
|
Chism DD, De Silva D, Whang YE. Mechanisms of acquired resistance to androgen receptor targeting drugs in castration-resistant prostate cancer. Expert Rev Anticancer Ther 2014; 14:1369-78. [PMID: 24927631 PMCID: PMC4221359 DOI: 10.1586/14737140.2014.928594] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
After initial response to androgen receptor (AR) targeting drugs abiraterone or enzalutamide, most patients develop progressive disease and therefore, castration resistant prostate cancer remains a terminal disease. Multiple mechanisms underlying acquired resistance have been postulated. Intratumoral androgen synthesis may resume after abiraterone treatment. A point mutation in the ligand-binding domain of AR may confer resistance to enzalutamide. Emergence of AR splice variants lacking the ligand-binding domain may mediate resistance to abiraterone and enzalutamide. Steroid receptors such as glucocorticoid receptor may substitute for AR. Drugs with novel mechanisms of action or combination therapy, along with biomarkers for patient selection, may be needed to improve the therapy of castration resistant prostate cancer.
Collapse
Affiliation(s)
- David D. Chism
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina at Chapel Hill Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599
| | - Dinuka De Silva
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599
| | - Young E. Whang
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina at Chapel Hill Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599
| |
Collapse
|
27
|
Li N, Chen M, Truong S, Yan C, Buttyan R. Determinants of Gli2 co-activation of wildtype and naturally truncated androgen receptors. Prostate 2014; 74:1400-10. [PMID: 25132524 DOI: 10.1002/pros.22855] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/17/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND Gli2, a transcription factor in the Hedgehog pathway, is overexpressed in castrate-resistant prostate cancer (PCa). Previously we showed that Gli2 overexpression increased transcriptional activity of androgen receptor (AR) and conferred androgen growth-independence to normally growth-dependent PCa cells. Here we localized the regions of AR-Gli2 protein interaction and determined the domains within Gli2 needed for AR co-activation. METHODS Co-immunoprecipitation and GST-pulldown assays were used to define AR-Gli binding domains. Co-activation assays using androgen-responsive promoter reporters were used to define Gli2 regions needed for AR co-activation. Chromatin immunoprecipitation (ChIP) assays were used to confirm nuclear interactions of Gli2 with AR in PCa cells. RESULTS The Gli2 C-terminal domain (CTD) is sufficient for AR co-activation. Two elements within the CTD were required: (1) an AR binding domain within aa628-897; and (2) at least part of the Gli2 transactivation domain within aa1252-1586. In turn, Gli2 binds the tau5/AF5 ligand-independent activation domain in the AR N-terminus. Mutations in the WxxLF motif in tau5/AF5 greatly diminished binding to Gli2-CTD. Gli2 interaction with AR tau5/AF5 was further substantiated by the ability of Gli2/Gli2-CTD to co-activate truncated AR splice variants (AR-V7/ARV567es). ChIP assays confirmed that Gli2 associates with chromatin at androgen response elements found near androgen-responsive genes in LNCaP cells. These assays also showed that AR associates with chromatin containing a Gli-response element near a Gli-responsive gene. CONCLUSION Our findings indicate that Gli2 overexpression in PCa cells might support development of castration resistant PCa through AR co-activation and suggests that AR might modulate transcription from Gli2.
Collapse
Affiliation(s)
- Na Li
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
28
|
Ware KE, Garcia-Blanco MA, Armstrong AJ, Dehm SM. Biologic and clinical significance of androgen receptor variants in castration resistant prostate cancer. Endocr Relat Cancer 2014; 21:T87-T103. [PMID: 24859991 PMCID: PMC4277180 DOI: 10.1530/erc-13-0470] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As prostate cancer (PCa) progresses to the lethal castration resistant and metastatic form, genetic and epigenetic adaptation, clonal selection, and evolution of the tumor microenvironment contribute to the emergence of unique biological characteristics under the selective pressure of external stresses. These stresses include the therapies applied in the clinic or laboratory and the exposures of cancers to hormonal, paracrine, or autocrine stimuli in the context of the tumor micro- and macro-environment. The androgen receptor (AR) is a key gene involved in PCa etiology and oncogenesis, including disease development, progression, response to initial hormonal therapies, and subsequent resistance to hormonal therapies. Alterations in the AR signaling pathway have been observed in certain selection contexts and contribute to the resistance to agents that target hormonal regulation of the AR, including standard androgen deprivation therapy, antiandrogens such as enzalutamide, and androgen synthesis inhibition with abiraterone acetate. One such resistance mechanism is the synthesis of constitutively active AR variants lacking the canonical ligand-binding domain. This review focuses on the etiology, characterization, biological properties, and emerging data contributing to the clinical characteristics of AR variants, and suggests approaches to full-length AR and AR variant biomarker validation, assessment, and systemic targeting in the clinic.
Collapse
Affiliation(s)
- Kathryn E Ware
- Departments of Molecular Genetics and MedicineDuke University, 213 Research Dr, 0045 CARL Building, Durham, North Carolina 27710, USADepartment of MedicineDuke Cancer Institute, Duke University, Durham, North Carolina, USAMasonic Cancer CenterUniversity of Minnesota Masonic Cancer Center, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USADepartment of Laboratory Medicine and PathologyUniversity of Minnesota, Minneapolis, Minnesota, USA
| | - Mariano A Garcia-Blanco
- Departments of Molecular Genetics and MedicineDuke University, 213 Research Dr, 0045 CARL Building, Durham, North Carolina 27710, USADepartment of MedicineDuke Cancer Institute, Duke University, Durham, North Carolina, USAMasonic Cancer CenterUniversity of Minnesota Masonic Cancer Center, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USADepartment of Laboratory Medicine and PathologyUniversity of Minnesota, Minneapolis, Minnesota, USADepartments of Molecular Genetics and MedicineDuke University, 213 Research Dr, 0045 CARL Building, Durham, North Carolina 27710, USADepartment of MedicineDuke Cancer Institute, Duke University, Durham, North Carolina, USAMasonic Cancer CenterUniversity of Minnesota Masonic Cancer Center, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USADepartment of Laboratory Medicine and PathologyUniversity of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew J Armstrong
- Departments of Molecular Genetics and MedicineDuke University, 213 Research Dr, 0045 CARL Building, Durham, North Carolina 27710, USADepartment of MedicineDuke Cancer Institute, Duke University, Durham, North Carolina, USAMasonic Cancer CenterUniversity of Minnesota Masonic Cancer Center, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USADepartment of Laboratory Medicine and PathologyUniversity of Minnesota, Minneapolis, Minnesota, USADepartments of Molecular Genetics and MedicineDuke University, 213 Research Dr, 0045 CARL Building, Durham, North Carolina 27710, USADepartment of MedicineDuke Cancer Institute, Duke University, Durham, North Carolina, USAMasonic Cancer CenterUniversity of Minnesota Masonic Cancer Center, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USADepartment of Laboratory Medicine and PathologyUniversity of Minnesota, Minneapolis, Minnesota, USA
| | - Scott M Dehm
- Departments of Molecular Genetics and MedicineDuke University, 213 Research Dr, 0045 CARL Building, Durham, North Carolina 27710, USADepartment of MedicineDuke Cancer Institute, Duke University, Durham, North Carolina, USAMasonic Cancer CenterUniversity of Minnesota Masonic Cancer Center, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USADepartment of Laboratory Medicine and PathologyUniversity of Minnesota, Minneapolis, Minnesota, USADepartments of Molecular Genetics and MedicineDuke University, 213 Research Dr, 0045 CARL Building, Durham, North Carolina 27710, USADepartment of MedicineDuke Cancer Institute, Duke University, Durham, North Carolina, USAMasonic Cancer CenterUniversity of Minnesota Masonic Cancer Center, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USADepartment of Laboratory Medicine and PathologyUniversity of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
29
|
Androgen receptor splice variants in the era of enzalutamide and abiraterone. Discov Oncol 2014; 5:265-73. [PMID: 25048254 DOI: 10.1007/s12672-014-0190-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/10/2014] [Indexed: 01/24/2023] Open
Abstract
The FDA approvals of enzalutamide and abiraterone have rapidly changed the clinical landscape of prostate cancer treatment. Both drugs were designed to further suppress androgen receptor (AR) signaling, which is restored following first-line androgen deprivation therapies. Resistance to enzalutamide and abiraterone, however, is again marked by a return of AR signaling, indicating a remarkable "addiction" of prostate cancer cells to the AR pathway. Several mechanisms of castration resistance have been uncovered in the past decades, featuring a wide spectrum of molecular alterations that may explain sustained AR signaling in castration-resistant prostate cancers (CRPC). Among these, the androgen receptor splice variants (AR-Vs), particularly variant 7 (AR-V7), have been implicated in resistance to enzalutamide and abiraterone in preclinical studies, and they cannot be targeted by currently available AR-directed drugs. Drug development for AR-V-associated CRPC may therefore be necessary to augment the preexisting treatment repertoire. In this mini-review, we will discuss general mechanisms of resistance to AR-directed therapies, with a focus on the role of androgen receptor splice variants in the new era of treating advanced prostate cancer with enzalutamide and abiraterone.
Collapse
|
30
|
Zhao Y, Tindall DJ, Huang H. Modulation of androgen receptor by FOXA1 and FOXO1 factors in prostate cancer. Int J Biol Sci 2014; 10:614-9. [PMID: 24948874 PMCID: PMC4062954 DOI: 10.7150/ijbs.8389] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/22/2014] [Indexed: 12/18/2022] Open
Abstract
Androgens and the androgen receptor (AR) are essential for growth and differentiation of the normal prostate gland as well as proliferation and survival of prostate cancer (PCa). Increasing evidence suggests that reactivation of the AR plays a pivotal role in disease progression to castration-resistant PCa (CRPC). Forkhead box (FOX) factors exert two distinct effects on AR function in PCa. The A-class of FOX proteins, especially FOXA1, functions as a pioneer factor to facilitate AR transactivation and PCa growth. In contrast, the O-class of FOX proteins such as FOXO1 and FOXO3, which are downstream effectors of the PTEN tumor suppressor, inhibit the transcriptional activity of either full-length AR or constitutively active splice variants of AR in a direct or indirect manner in PCa. FOXO1 also contributes to taxane-mediated inhibition of the AR and CRPC growth. Therefore, FOX family members not only have a tight relationship with AR, but also represent a pivotal group of proteins to be targeted for PCa therapy. The present review focuses primarily on recent advances in the epigenetic, mechanistic and clinical relevant aspects of regulation of the AR by FOXA1 and FOXO1 factors in PCa.
Collapse
Affiliation(s)
- Yu Zhao
- 1. Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Donald J Tindall
- 1. Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; ; 2. Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; ; 3. Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Haojie Huang
- 1. Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; ; 2. Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; ; 3. Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
31
|
Thadani-Mulero M, Portella L, Sun S, Sung M, Matov A, Vessella RL, Corey E, Nanus DM, Plymate SR, Giannakakou P. Androgen receptor splice variants determine taxane sensitivity in prostate cancer. Cancer Res 2014; 74:2270-2282. [PMID: 24556717 DOI: 10.1158/0008-5472.can-13-2876] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostate cancer growth depends on androgen receptor signaling. Androgen ablation therapy induces expression of constitutively active androgen receptor splice variants that drive disease progression. Taxanes are a standard of care therapy in castration-resistant prostate cancer (CRPC); however, mechanisms underlying the clinical activity of taxanes are poorly understood. Recent work suggests that the microtubule network of prostate cells is critical for androgen receptor nuclear translocation and activity. In this study, we used a set of androgen receptor deletion mutants to identify the microtubule-binding domain of the androgen receptor, which encompasses the DNA binding domain plus hinge region. We report that two clinically relevant androgen receptor splice variants, ARv567 and ARv7, differentially associate with microtubules and dynein motor protein, thereby resulting in differential taxane sensitivity in vitro and in vivo. ARv7, which lacks the hinge region, did not co-sediment with microtubules or coprecipitate with dynein motor protein, unlike ARv567. Mechanistic investigations revealed that the nuclear accumulation and transcriptional activity of ARv7 was unaffected by taxane treatment. In contrast, the microtubule-interacting splice variant ARv567 was sensitive to taxane-induced microtubule stabilization. In ARv567-expressing LuCap86.2 tumor xenografts, docetaxel treatment was highly efficacious, whereas ARv7-expressing LuCap23.1 tumor xenografts displayed docetaxel resistance. Our results suggest that androgen receptor variants that accumulate in CRPC cells utilize distinct pathways of nuclear import that affect the antitumor efficacy of taxanes, suggesting a mechanistic rationale to customize treatments for patients with CRPC, which might improve outcomes.
Collapse
Affiliation(s)
- Maria Thadani-Mulero
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York 10065-4896, USA
| | - Luigi Portella
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York 10065-4896, USA
| | - Shihua Sun
- Department of Urology, University of Washington, Seattle, WA, 98195 USA
| | - Matthew Sung
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York 10065-4896, USA
| | - Alexandre Matov
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York 10065-4896, USA
| | - Robert L Vessella
- Department of Urology, University of Washington, Seattle, WA, 98195 USA.,Research Service, Puget Sound VA Health Care System, Seattle, WA, 98116, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, 98195 USA.,Research Service, Puget Sound VA Health Care System, Seattle, WA, 98116, USA
| | - David M Nanus
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York 10065-4896, USA.,Weill Cornell Cancer Center, New York, New York 10065-4896, USA
| | - Stephen R Plymate
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA.,GRECC Seattle VAMC, Seattle, WA 98116, USA
| | - Paraskevi Giannakakou
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York 10065-4896, USA.,Weill Cornell Cancer Center, New York, New York 10065-4896, USA
| |
Collapse
|
32
|
Destruction of full-length androgen receptor by wild-type SPOP, but not prostate-cancer-associated mutants. Cell Rep 2014; 6:657-69. [PMID: 24508459 PMCID: PMC4361392 DOI: 10.1016/j.celrep.2014.01.013] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/01/2014] [Accepted: 01/14/2014] [Indexed: 11/20/2022] Open
Abstract
The SPOP E3 ubiquitin ligase gene is frequently mutated in human prostate cancers. Here, we demonstrate that SPOP recognizes a Ser/Thr-rich degron in the hinge domain of androgen receptor (AR) and induces degradation of full-length AR and inhibition of AR-mediated gene transcription and prostate cancer cell growth. AR splicing variants, most of which lack the hinge domain, escape SPOP-mediated degradation. Prostate-cancer-associated mutants of SPOP cannot bind to and promote AR destruction. Furthermore, androgens antagonize SPOP-mediated degradation of AR, whereas antiandrogens promote this process. This study identifies AR as a bona fide substrate of SPOP and elucidates a role of SPOP mutations in prostate cancer, thus implying the importance of this pathway in resistance to antiandrogen therapy of prostate cancer.
Collapse
|
33
|
Chan SC, Dehm SM. Constitutive activity of the androgen receptor. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 70:327-66. [PMID: 24931201 DOI: 10.1016/b978-0-12-417197-8.00011-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer in the United States. The androgen receptor (AR) signaling axis is central to all stages of PCa pathophysiology and serves as the main target for endocrine-based therapy. The most advanced stage of the disease, castration-resistant prostate cancer (CRPC), is presently incurable and accounts for most PCa mortality. In this chapter, we highlight the mechanisms by which the AR signaling axis can bypass endocrine-targeted therapies and drive progression of CRPC. These mechanisms include alterations in growth factor, cytokine, and inflammatory signaling pathways, altered expression or activity of transcriptional coregulators, AR point mutations, and AR gene amplification leading to AR protein overexpression. Additionally, we will discuss the mechanisms underlying the synthesis of constitutively active AR splice variants (AR-Vs) lacking the COOH-terminal ligand-binding domain, as well as the role and regulation of AR-Vs in supporting therapeutic resistance in CRPC. Finally, we summarize the ongoing development of inhibitors targeting discrete AR functional domains as well as the status of new biomarkers for monitoring the AR signaling axis in patients.
Collapse
Affiliation(s)
- Siu Chiu Chan
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
34
|
Haflidadóttir BS, Larne O, Martin M, Persson M, Edsjö A, Bjartell A, Ceder Y. Upregulation of miR-96 enhances cellular proliferation of prostate cancer cells through FOXO1. PLoS One 2013; 8:e72400. [PMID: 23951320 PMCID: PMC3741168 DOI: 10.1371/journal.pone.0072400] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/10/2013] [Indexed: 12/21/2022] Open
Abstract
Aberrant expression of miR-96 in prostate cancer has previously been reported. However, the role and mechanism of action of miR-96 in prostate cancer has not been determined. In this study, the diagnostic and prognostic properties of miR-96 expression levels were investigated by qRT-PCR in two well documented prostate cancer cohorts. The miR-96 expression was found to be significantly higher in prostate cancer patients and correlate with WHO grade, and decreased overall survival time; patients with low levels of miR-96 lived 1.5 years longer than patients with high miR-96 levels. The therapeutic potential was further investigated in vitro, showing that ectopic levels of miR-96 enhances growth and cellular proliferation in prostate cancer cells, implying that miR-96 has oncogenic properties in this setting. We demonstrate that miR-96 expression decreases the transcript and protein levels of FOXO1 by binding to one of two predicted binding sites in the FOXO1 3'UTR sequence. Blocking this binding site completely inhibited the growth enhancement conveyed by miR-96. This finding was corroborated in a large external prostate cancer patient cohort where miR-96 expression inversely correlated to FOXO1 expression. Taken together these findings indicate that miR-96 plays a key role in prostate cancer cellular proliferation and can enhance prostate cancer progression. This knowledge might be utilized for the development of novel therapeutic tools for prostate cancer.
Collapse
Affiliation(s)
| | - Olivia Larne
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, Malmö, Sweden
| | - Myriam Martin
- Department of Laboratory Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Margareta Persson
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, Malmö, Sweden
| | - Anders Edsjö
- Department of Laboratory Medicine, Center for Molecular Pathology, Lund University, Malmö, Sweden
| | - Anders Bjartell
- Department of Clinical Sciences, Division of Urological Cancers, Lund University, Malmö, Sweden
| | - Yvonne Ceder
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, Malmö, Sweden
- * E-mail:
| |
Collapse
|