1
|
Scharpf BR, Ruetten H, Sandhu J, Wegner KA, Chandrashekar S, Fox O, Turco AE, Cole C, Arendt LM, Strand DW, Vezina CM. Prostatic Escherichia coli infection drives CCR2-dependent recruitment of fibrocytes and collagen production. Dis Model Mech 2025; 18:DMM052012. [PMID: 39748675 PMCID: PMC11789281 DOI: 10.1242/dmm.052012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Prostate fibrosis contributes to lower urinary tract dysfunction (LUTD). To develop targeted treatments for prostate fibrosis, it is necessary to identify the cell types and molecular pathways required for collagen production. We used a genetic approach to label and track potential collagen-producing cell lineages in mouse prostate through a round of Escherichia coli UTI89-mediated prostate inflammation. E. coli increased collagen density and production in Gli1+, S100a4+, Lyz2+ and Cd2+ cell lineages, but not in Myh11+ or Srd5a2+ cell lineages, in the mouse prostate. Molecular phenotyping revealed GLI1+LYZ+S100A4+ cells (fibrocytes) in histologically inflamed human prostate. These fibrocytes colocalized with regions of increased collagen in men with LUTD. Fibrocyte recruitment and collagen synthesis was impaired in Ccr2 null mice but restored by allotransplantation of Rosa-GFP donor bone marrow-derived cells. These results suggest that bone marrow-derived fibrocytes are a mediator of prostatic collagen accumulation.
Collapse
Affiliation(s)
- Brandon R. Scharpf
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hannah Ruetten
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jaskiran Sandhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kyle A. Wegner
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sneha Chandrashekar
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Olivia Fox
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anne E. Turco
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Clara Cole
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lisa M. Arendt
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Douglas W. Strand
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chad M. Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
2
|
Imamura T, Ogawa T, Minagawa T, Daimon H, Nagai T, Ueno M, Saito T, Ishizuka O. Transient receptor potential ankyrin 1 channels in the bladder mediate low temperature elicited bladder overactivity in rats. Neurourol Urodyn 2024; 43:276-288. [PMID: 38010891 DOI: 10.1002/nau.25335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/13/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
AIMS This study aimed to investigate whether pathways involving transient receptor potential ankyrin 1 (TRPA1) channels in the urinary bladder mediate the bladder overactivity elicited by exposure to a low temperature in rats. METHODS At postnatal week 10, female Sprague-Dawley (SD) rats were intraperitoneally injected with the TRPA1 channel antagonist, HC030031, at room temperature (RT) and subsequently exposed to low temperature (LT). Bladder specimens treated with HC030031 were evaluated for contractions through cumulative addition of the TRPA1 channel agonist trans-cinnamaldehyde. Two days before cystometric investigation, small interfering RNA (siRNA) targeting TRPA1 was transfected into urinary bladders. Then, cystometric investigations were performed on rats subjected to TRPA1 siRNA transfection at both RT and LT. Expression of TRPA1 channels in the urinary bladder was assessed through immunohistochemistry and real-time reverse transcription-polymerase chain reaction. RESULTS At RT, micturition patterns were unaffected by HC030031 treatment. However, upon exposure to LT, rats treated with HC030031 exhibited a reduction of LT-elicited bladder overactivity, as evidenced by inhibited decreases in voiding interval, micturition volume, and bladder capacity. Additionally, HC030031 inhibited trans-cinnamaldehyde-induced contractions. Immunohistochemical analysis showed the presence of TRPA1 channels in the urinary bladder. Notably, rats with TRPA1 siRNA-transfected bladders could partially inhibit bladder overactivity during LT exposure. CONCLUSIONS These findings indicate that pathways involving TRPA1 channels expressed in the urinary bladder could mediate the LT-elicited bladder overactivity.
Collapse
Affiliation(s)
- Tetsuya Imamura
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Teruyuki Ogawa
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Tomonori Minagawa
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Hironori Daimon
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Takashi Nagai
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Manabu Ueno
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Tetsuichi Saito
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Osamu Ishizuka
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| |
Collapse
|
3
|
Pascal LE, Igarashi T, Mizoguchi S, Chen W, Rigatti LH, Madigan CG, Dhir R, Bushman W, DeFranco DB, Yoshimura N, Wang Z. E-cadherin deficiency promotes prostate macrophage inflammation and bladder overactivity in aged male mice. Aging (Albany NY) 2022; 14:2945-2965. [PMID: 35361739 PMCID: PMC9037276 DOI: 10.18632/aging.203994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
Abstract
Decreased E-cadherin immunostaining is frequently observed in benign prostatic hyperplasia (BPH) and was recently correlated with increased inflammation in aging prostate. Homozygous E-cadherin deletion in the murine prostate results in prostate inflammation and bladder overactivity at 6 months of age. However, this model is limited in that while E-cadherin is significantly reduced in BPH, it is not completely lost; BPH is also strongly associated with advanced age and is infrequent in young men. Here, we examined the functional consequences of aging in male mice with prostate luminal epithelial cell-specific E-cadherin heterozygosity. In control mice, aging alone resulted in an increase in prostate inflammation and changes in bladder voiding function indicative of bladder underactivity. At 24 months of age, mice with prostate-specific Cre-mediated heterozygous deletion of E-cadherin induced at 7 weeks of age developed additional prostatic defects, particularly increased macrophage inflammation and stromal proliferation, and bladder overactivity compared to age-matched control mice, which are similar to BPH/LUTS in that the phenotype is slow-progressing and age-dependent. These findings suggest that decreased E-cadherin may promote macrophage inflammation and fibrosis in the prostate and subsequent bladder overactivity in aging men, promoting the development and progression of BPH/LUTS.
Collapse
Affiliation(s)
- Laura E. Pascal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Taro Igarashi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Shinsuke Mizoguchi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Wei Chen
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Lora H. Rigatti
- Division of Laboratory Animal Resources, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Caroline G. Madigan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Rajiv Dhir
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Wade Bushman
- Department of Urology, University of Wisconsin, Madison, WI 53705, USA
| | - Donald B. DeFranco
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| |
Collapse
|
4
|
Male Lower Urinary Tract Dysfunction: An Underrepresented Endpoint in Toxicology Research. TOXICS 2022; 10:toxics10020089. [PMID: 35202275 PMCID: PMC8880407 DOI: 10.3390/toxics10020089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023]
Abstract
Lower urinary tract dysfunction (LUTD) is nearly ubiquitous in men of advancing age and exerts substantial physical, mental, social, and financial costs to society. While a large body of research is focused on the molecular, genetic, and epigenetic underpinnings of the disease, little research has been dedicated to the influence of environmental chemicals on disease initiation, progression, or severity. Despite a few recent studies indicating a potential developmental origin of male LUTD linked to chemical exposures in the womb, it remains a grossly understudied endpoint in toxicology research. Therefore, we direct this review to toxicologists who are considering male LUTD as a new aspect of chemical toxicity studies. We focus on the LUTD disease process in men, as well as in the male mouse as a leading research model. To introduce the disease process, we describe the physiology of the male lower urinary tract and the cellular composition of lower urinary tract tissues. We discuss known and suspected mechanisms of male LUTD and examples of environmental chemicals acting through these mechanisms to contribute to LUTD. We also describe mouse models of LUTD and endpoints to diagnose, characterize, and quantify LUTD in men and mice.
Collapse
|
5
|
Mechanism of Acupuncture and Moxibustion on Chronic Prostatitis/Chronic Pelvic Pain Syndrome: A Narrative Review of Animal Studies. Pain Res Manag 2021; 2021:2678242. [PMID: 34925658 PMCID: PMC8674039 DOI: 10.1155/2021/2678242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022]
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a genitourinary disease commonly seen in males, with symptoms involving pelvic pain, urinary system disease, and sexual dysfunction, which seriously affects physical and mental health, and it also influences the quality of life of patients. At present, the disease's aetiology and pathogenesis are unclear, and there is also no effective treatment for it. Acupuncture and moxibustion have been a way to CP/CPPS, showing good curative effect with advantages of safety and affordability. However, the relevant research in this field is less discussed. By adopting databases, such as CNKI, VIP, Wanfang, PubMed, and Medline, this review article used keywords including chronic prostatitis, chronic pelvic pain syndrome, and electric acupuncture, manual acupuncture, moxibustion, and animal experiments, rats, mice, and mechanism research and reviewing research papers published from 1998 to 2021. Then, it further summarized and evaluated the mechanism research and gave a brief comment about modeling methods, acupoints selection, and stimulus parameters that have been used in the selected research papers. Equally important, this review article proposes a reference for the in-depth study of the mechanism of acupuncture and moxibustion on CP/CPPS and provides a theoretical basis to better treat the disease in the clinic.
Collapse
|
6
|
Almeer RS, Muhammad NAE, Othman MS, Aref AM, Elgamal B, Moneim AEA. The Potential Protective Effect of Orange Peel and Selenium against 17β-Estradiol- Induced Chronic Non-Bacterial Prostatitis in Rats. Anticancer Agents Med Chem 2021; 20:1061-1071. [PMID: 32228431 DOI: 10.2174/1871520620666200331102609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Prostate Cancer (PCa) is defined as a major health problem faced by the male population. AIM We aimed to investigate the protective effects of Orange Peel Extract (OPE) and/or Selenium (Se) on chronic non-bacterial prostatitis in a rat model. METHODS Fifty-six adult male Wistar albino rats were castrated; after 5 days, they were divided randomly into eight groups (n= 7). The control group received saline treatment; while 17β-estradiol (E2) (0.25mg/kg) was injected subcutaneously in rats from Groups V, VI, VII, and VIII to induce chronic non-bacterial prostatitis. They were then treated with OPE (400mg/kg body weight; Groups II, IV, VI, and VIII) and/or sodium selenite (0.5mg/kg body weight; Groups III, IV, VII, and VIII) for 30 days. Interleukin-2 (IL2) and Prostate Cancer Antigen 3 (PCA3) mRNA expressions were determined using qPCR; Prostate-Specific Antigen (PSA) protein expression was determined immunohistochemically. Prostate tissue histology was examined by hematoxylin and eosin staining, and the levels of oxidative stress markers and antioxidant enzymes were measured. RESULTS E2 administration significantly increased IL2 and PCA3 mRNA expressions, and PSA protein expression. It also increased the prostate wet weight and body weight, and lipid peroxidation, nitric oxide, TNF-α, and IL-1β levels, decreased the glutathione and antioxidant enzyme levels and caused distinct histological alterations in the prostate gland. OPE and/or Se markedly improved all the studied parameters due to their antioxidant properties and anti-inflammatory effects. CONCLUSION OPE and Se showed protective effects against 17β-estradiol-induced chronic non-bacterial prostatitis. These results suggest that protection of chronic non-bacterial prostatitis by OPE+Se combination involves anti-oxidation and anti-inflammation. Moreover, their synergistic mechanism was mostly achieved via the regulation of oxidative stress and inflammation processes.
Collapse
Affiliation(s)
- Rafa S Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nada A E Muhammad
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mohamed S Othman
- Faculty of Biotechnology, Modern Sciences and Arts University (MSA), Giza, Egypt
| | - Ahmed M Aref
- Faculty of Biotechnology, Modern Sciences and Arts University (MSA), Giza, Egypt
| | - Basma Elgamal
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
7
|
Chen LJ, Hu B, Han ZQ, Zhu JH, Fan X, Chen XX, Li ZP, Zhou H. BAG2-Mediated Inhibition of CHIP Expression and Overexpression of MDM2 Contribute to the Initiation of Endometriosis by Modulating Estrogen Receptor Status. Front Cell Dev Biol 2021; 8:554190. [PMID: 33987175 PMCID: PMC8111302 DOI: 10.3389/fcell.2020.554190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
Endometriosis is an estrogen-dependent gynecological disease primarily affecting women of childbearing age, which gives rise to pelvic pain calling for multiple operations, and sometimes leading to infertility. However, the etiology of endometriosis remains poorly understood. In this study we investigated the roles of two Ubiquitin E3 Ligases, namely hsc70-interacting protein (CHIP) and mouse double minute 2 (MDM2), in the abnormal estrogenic activity in endometriosis. We first collected endometrial tissues from 91 cases of endometriosis and 78 cases of uterine myomas. Next, we established a murine endometriosis model by ectopic endometrial tissue implantation. In other studies, we isolated human endometrial stromal cells (HESCs) were isolated from the endometrial tissues, and performed HA- or FLAG-immunoprecipitation assays and immunoblotting with an anti-ubiquitin antibody to test the interactions among BAG2, CHIP, MDM2, estrogen receptor α (ERα), and ERβ. The expression of ERα was downregulated while that of ERβ, BAG2, and MDM2 was upregulated in human endometriosis and in the mouse model. CHIP degraded ERβ instead of ERα via the ubiquitin-proteasome pathway, while BAG2 impaired the CHIP-mediated degradation of ERβ in cultured HESCs derived from human endometriosis. The degradation of ERα by MDM2 in cultured endometriosis-HESCs also occurred through the ubiquitin-proteasome pathway. Knockdown of both BAG2 and MDM2 alleviated the development of endometriosis in mice. Our findings suggest that the interference of BAG2 and MDM2 may have therapeutic effects in endometriosis. Understanding better the molecular mechanisms underlying the regulation of the abnormal estrogenic activity in endometriosis is crucial for the advancement of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Li-Juan Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Hu
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Qiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Hua Zhu
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Fan
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xue-Xing Chen
- Union Hospital, Tongji Medical College, Institute of Hematology, Huazhong University of Science and Technology, Wuhan, China
| | - Zi-Ping Li
- Union Hospital, Tongji Medical College, Institute of Hematology, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhou
- Union Hospital, Tongji Medical College, Institute of Hematology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Ruetten H, Sandhu J, Mueller B, Wang P, Zhang HL, Wegner KA, Cadena M, Sandhu S, L Abler L, Zhu J, O'Driscoll CA, Chelgren B, Wang Z, Shen T, Barasch J, Bjorling DE, Vezina CM. A uropathogenic E. coli UTI89 model of prostatic inflammation and collagen accumulation for use in studying aberrant collagen production in the prostate. Am J Physiol Renal Physiol 2021; 320:F31-F46. [PMID: 33135480 PMCID: PMC7847049 DOI: 10.1152/ajprenal.00431.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/09/2020] [Accepted: 10/24/2020] [Indexed: 11/22/2022] Open
Abstract
Bacterial infection is one known etiology of prostatic inflammation. Prostatic inflammation is associated with prostatic collagen accumulation and both are linked to progressive lower urinary tract symptoms in men. We characterized a model of prostatic inflammation using transurethral instillations of Escherichia coli UTI89 in C57BL/6J male mice with the goal of determining the optimal instillation conditions, understanding the impact of instillation conditions on urinary physiology, and identifying ideal prostatic lobes and collagen 1a1 prostatic cell types for further analysis. The smallest instillation volume tested (50 µL) distributed exclusively to the bladder, 100- and 200-µL volumes distributed to the bladder and prostate, and a 500-µL volume distributed to the bladder, prostate, and ureter. A threshold optical density of 0.4 E. coli UTI89 in the instillation fluid was necessary for significant (P < 0.05) prostate colonization. E. coli UTI89 infection resulted in a low frequency, high volume spontaneous voiding pattern. This phenotype was due to exposure to E. coli UTI89, not catheterization alone, and was minimally altered by a 50-µL increase in instillation volume and doubling of E. coli concentration. Prostate inflammation was isolated to the dorsal prostate and was accompanied by increased collagen density. This was partnered with increased density of protein tyrosine phosphatase receptor type C+, procollagen type I-α1+ copositive cells and decreased density of α2-smooth muscle actin+, procollagen type I-α1+ copositive cells. Overall, we determined that this model is effective in altering urinary phenotype and producing prostatic inflammation and collagen accumulation in mice.
Collapse
Affiliation(s)
- Hannah Ruetten
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Jaskiran Sandhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Brett Mueller
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Peiqing Wang
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Helen L Zhang
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Kyle A Wegner
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Mark Cadena
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Simran Sandhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Lisa L Abler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Jonathan Zhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Chelsea A O'Driscoll
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Britta Chelgren
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
| | - Zunyi Wang
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Tian Shen
- Columbia University, Department of Medicine, New York, New York
| | | | - Dale E Bjorling
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Chad M Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin, and Boston, Massachusetts
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
9
|
Pascal LE, Mizoguchi S, Chen W, Rigatti LH, Igarashi T, Dhir R, Tyagi P, Wu Z, Yang Z, de Groat WC, DeFranco DB, Yoshimura N, Wang Z. Prostate-Specific Deletion of Cdh1 Induces Murine Prostatic Inflammation and Bladder Overactivity. Endocrinology 2021; 162:5992231. [PMID: 33211830 PMCID: PMC7745638 DOI: 10.1210/endocr/bqaa212] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 12/25/2022]
Abstract
Benign prostatic hyperplasia (BPH) is an age-related debilitating prostatic disease that is frequently associated with prostatic inflammation and bothersome lower urinary tract symptoms (LUTS). Animal models have shown that formalin- and bacterial-induced prostatic inflammation can induce bladder dysfunction; however, the underlying mechanisms contributing to prostatic inflammation in BPH and bladder dysfunction are not clear. We previously reported that E-cadherin expression in BPH is downregulated in hyperplastic nodules compared with expression in adjacent normal tissues. Here, we explored the potential consequences of prostatic E-cadherin downregulation on the prostate and bladder in vivo using an inducible murine model of prostate luminal epithelial-specific deletion of Cdh1. The prostate-specific antigen (PSA)-CreERT2 transgenic mouse strain expressing tamoxifen-inducible CreERT2 recombinase driven by a 6-kb human PSA promoter/enhancer was crossed with the B6.129-Cdh1tm2Kem/J mouse to generate bigenic PSA-CreERT2/Cdh1-/- mice. Deletion of E-cadherin was induced by transient administration of tamoxifen when mice reached sexual maturity (7 weeks of age). At 21 to 23 weeks of age, the prostate, bladder, and prostatic urethra were examined histologically, and bladder function was assessed using void spot assays and cystometry. Mice with Cdh1 deletion had increased prostatic inflammation, prostatic epithelial hyperplasia, and stromal changes at 21 to 23 weeks of age, as well as changes in bladder voiding function compared with age-matched controls. Thus, loss of E-cadherin in the murine prostate could result in prostatic defects that are characteristic of BPH and LUTS, suggesting that E-cadherin downregulation could be a driving force in human BPH development and progression.
Collapse
Affiliation(s)
- Laura E Pascal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Correspondence: Zhou Wang, PhD, Department of Urology, University of Pittsburgh Medical Center, 5200 Centre Ave, Suite G40, Pittsburgh, PA 15232, USA. ; or Laura E. Pascal, PhD, Department of Urology, University of Pittsburgh Medical Center, 5200 Centre Ave, Suite G34, Pittsburgh, PA 15232, USA.
| | - Shinsuke Mizoguchi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wei Chen
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lora H Rigatti
- Division of Laboratory Animal Resources, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Taro Igarashi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rajiv Dhir
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zeyu Wu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhenyu Yang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Donald B DeFranco
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Correspondence: Zhou Wang, PhD, Department of Urology, University of Pittsburgh Medical Center, 5200 Centre Ave, Suite G40, Pittsburgh, PA 15232, USA. ; or Laura E. Pascal, PhD, Department of Urology, University of Pittsburgh Medical Center, 5200 Centre Ave, Suite G34, Pittsburgh, PA 15232, USA.
| |
Collapse
|
10
|
Mizoguchi S, Mori K, Shin T, Wang Z, DeFranco DB, Yoshimura N, Mimata H. Effects of dutasteride in a rat model of chemically induced prostatic inflammation-Potential role of estrogen receptor β. Prostate 2020; 80:1413-1420. [PMID: 32941694 PMCID: PMC7685523 DOI: 10.1002/pros.24071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 11/12/2022]
Abstract
BACKGROUND Dutasteride administration reportedly improves lower urinary tract symptoms in patient with chronic, histologically-identified prostatic inflammation, potentially through estrogen receptor β (ERβ), activation of which has anti-inflammatory effects in the prostate tissue. Therefore, we investigated the effect of dutasteride on intraprostatic inflammatory responses and bladder activity using a rat model of chemically induced prostatic inflammation. METHODS Male Sprague-Dawley rats at 10 weeks old were used. Prostatic inflammation was induced by 5% formalin injection into ventral lobes of the prostate and saline was injected in the control group (control, n = 5). Rats with prostatic inflammation were divided into dutasteride therapy (dutasteride, n = 5) and placebo groups (placebo, n = 5). Dutasteride was administrated at a dose of 0.5 mg/kg daily from 2 days before induction of prostatic inflammation whereas placebo rats received vehicle only. Twenty-eight days later, cystometry was performed in a conscious condition to measure non-voiding contractions (NVCs), intercontraction intervals (ICI) and postvoid residual volume (RV). After cystometry, the prostate was excised for analysis of messenger RNA (mRNA) expression levels of ERα, ERβ, interleukin-1β (IL-1β), and IL-18 by quantitative polymerase chain reaction. RESULTS The mean number of NVCs was significantly greater in placebo group than that of control group without prostatic inflammation (p < .05), and ICI were significantly decreased in placebo group compared with control group (p < .05). On the contrary, there was no significant change in NVCs or ICI between control and dutasteride groups. RV was not significantly different among three groups. Gene expression levels of ERα, IL-1β, and IL-18 was significantly increased in placebo rats compared with control rats (p < .05), but not significantly different between control and dutasteride rats. On the other hand, the mRNA expression level of ERβ was significantly decreased in placebo rats (p < .05), but not in dutasteride rats, compared with control rats. CONCLUSION Dutasteride treatment improved not only prostatic inflammation evident as increased gene expression levels in IL-1β and IL-18, but also bladder overactivity shown by increased NVCs during bladder filling. These therapeutic effects were associated with the restored expression of anti-inflammatory ERβ. Therefore, dutasteride might be effective via ERβ modulation for the treatment of prostatic inflammation in addition to its previously known, anti-androgenic effects on benign prostatic hyperplasia.
Collapse
Affiliation(s)
- Shinsuke Mizoguchi
- Department of Urology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Urology, Oita University Graduate School of Medicine, Yufu, Japan
| | - Kenichi Mori
- Department of Urology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Urology, Oita University Graduate School of Medicine, Yufu, Japan
| | - Toshitaka Shin
- Department of Urology, Oita University Graduate School of Medicine, Yufu, Japan
| | - Zhou Wang
- Department of Urology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Donald B. DeFranco
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Naoki Yoshimura
- Department of Urology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hiromitsu Mimata
- Department of Urology, Oita University Graduate School of Medicine, Yufu, Japan
| |
Collapse
|
11
|
Modulatory effect of aquaporin 5 on estrogen-induced epithelial-mesenchymal transition in prostate epithelial cells. Chin Med J (Engl) 2020; 134:448-455. [PMID: 33031138 PMCID: PMC7909481 DOI: 10.1097/cm9.0000000000001132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Estrogen is involved in the pathophysiological process of benign prostatic hyperplasia (BPH), in which epithelial-mesenchymal transition (EMT) plays an important role. Upregulation of aquaporin (AQP) 5, which is directly activated by estrogen, has been reported to promote EMT in multiple cells. This study aimed to examine the effects of AQP5 on estrogen-induced EMT in the prostate. Methods Normal prostate (NP) tissue samples without any histopathological changes and BPH tissue samples with pathologically confirmed hyperplasia were obtained. An EMT cell model was subsequently established by adding estradiol (E2) to RWPE-1 cells, after which AQP5 knockdown was performed. Tissue morphological and immunohistochemical features were examined using hematoxylin-eosin and immunohistochemical staining. Western blot analysis was performed to determine the expression of AQPs, estrogen receptors, and EMT-related proteins. Cell proliferation was assessed and supernatants were collected for enzyme-linked immunosorbent assay to determine transforming growth factor-β1 (TGF-β1) concentrations. Immunofluorescence staining was performed to assess protein expressions in RWPE-1 cells. Results BPH tissues exhibited greater EMT (TGF-β1: 1.362 ± 0.196 vs. 0.107 ± 0.067, P = 0.003; vimentin: 1.581 ± 0.508 vs. 0.221 ± 0.047, P < 0.001; E-cadherin: 0.197 ± 0.188 vs. 1.344 ± 0.088, P < 0.001), higher AQP5 (1.268 ± 0.136 vs. 0.227 ± 0.055, P < 0.001) and estrogen receptor (ER) α (1.250 ± 0.117 vs. 0.329 ± 0.134, P < 0.001) expression but lower ERβ (0.271 ± 0.184 vs. 1.564 ± 0.130, P < 0.001) expression than NP tissues. E2-stimulated cells had higher AQP5 expression (1.298 ± 0.058 vs. 1.085 ± 0.104, P = 0.049), increased cell proliferation (1.510 ± 0.089 vs.1.000 ± 0.038, P < 0.001), and EMT (TGF-β1 concentration: 0.352 ± 0.021 ng/mL vs. 0.125 ± 0.014 ng/mL, P < 0.001; vimentin: 1.641 ± 0.120 vs. 0.188 ± 0.020, P = 0.002; E-cadherin: 0.075 ± 0.030 vs. 0.843 ± 0.046, P < 0.001) than controls. E2-stimulated cells with AQP5 knockdown exhibited decreased EMT (TGF-β1 concentration: 0.223 ± 0.041 ng/mL vs. 0.352 ± 0.021 ng/mL, P = 0.016; vimentin: 0.675 ± 0.056 vs. 1.641 ± 0.120, P = 0.001; E-cadherin: 0.159 ± 0.037 vs. 0.075 ± 0.030, P = 0.040) than E2-stimulated cells with non-related small interfering RNA (siRNA). Conclusion Our findings suggest that estrogen induces BPH possibly by promoting AQP5 expression. Hence, AQP5 might be a novel target for modulating EMT in prostate epithelial cells.
Collapse
|
12
|
Wu S, Huang D, Su X, Yan H, Ma A, Li L, Wu J, Sun Z. The prostaglandin synthases, COX-2 and L-PGDS, mediate prostate hyperplasia induced by low-dose bisphenol A. Sci Rep 2020; 10:13108. [PMID: 32753632 PMCID: PMC7403327 DOI: 10.1038/s41598-020-69809-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
This study aimed to identify prostaglandin synthases (PGS) that mediate bisphenol A (BPA)-induced prostatic hyperplasia and explore their underlying mechanisms. In an in vivo study, male adult Sprague–Dawley rats were treated with different concentrations of BPA (10, 30, 90, or 270 μg/kg, i.g., daily), or with vehicle for 4 weeks. Results revealed that low-dose BPA induced prostatic hyperplasia with increased PCNA/TUNEL ratio. It significantly upregulated the expression of cyclooxygenase-2 (COX-2) and NF-κB in the dorsolateral prostate (P < 0.05) and the expression of lipocalin-type prostaglandin D synthase (L-PGDS) in ventral prostate (P < 0.05). The level of estradiol (E2)/testosterone (T) and expression of androgen receptor (AR) and estrogen receptor α (ERα) were also altered. In vitro studies showed that low-dose BPA (0.1–10 nM) promoted the proliferation of human prostate fibroblasts and epithelial cells, and significantly upregulated the expression of COX-2 and L-PGDS in the cells. The two types of cell proliferation induced by BPA were inhibited by COX-2 inhibitor (NS398) and L-PGDS inhibitor (AT56), with increased apoptosis level. These findings suggested that COX-2 and L-PGDS could mediate low-dose BPA-induced prostatic hyperplasia through pathways involved in cell proliferation and apoptosis, which might be related to the functions of ERα and AR. The role of COX-2/NF-κB pathway in dorsolateral prostate requires further research.
Collapse
Affiliation(s)
- Shuangshuang Wu
- Pharmacy School of Fudan University, Shanghai, 201203, China.,National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| | - Dongyan Huang
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| | - Xin Su
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| | - Han Yan
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| | - Aicui Ma
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| | - Lei Li
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| | - Jianhui Wu
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China. .,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China. .,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China.
| | - Zuyue Sun
- National Evaluation Centre for Toxicology of Fertility Regulating Drugs, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China.,Key Laboratory of Reproduction Regulation of NPFPC, Shanghai, 200032, China.,Reproductive and Developmental Research Institute of Fudan University, Shanghai, 200032, China
| |
Collapse
|
13
|
Alexandre EC, Cao N, Mizoguchi S, Saito T, Kurobe M, Gotoh D, Okorie M, Igarashi T, Antunes E, Yoshimura N. Urethral dysfunction in a rat model of chemically induced prostatic inflammation: potential involvement of the MRP5 pump. Am J Physiol Renal Physiol 2020; 318:F754-F762. [PMID: 32036697 DOI: 10.1152/ajprenal.00566.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Prostate inflammation (PI) is a clinical condition associated with infection and/or inflammation of the prostate. It is a common disease frequently associated to lower urinary tract (LUT) symptoms. The urethra is an understudied structure in the LUT and plays a fundamental role in the urinary cycle. Here, we proposed to evaluate the effect of PI on the urethra tissue. Male Sprague-Dawley rats were used, and PI was induced by formalin injection into the ventral lobes of the prostate. The pelvic urethra at the prostatic level was harvested for histological analysis, contraction (electrical field stimulation and phenylephrine), and relaxation (sodium nitroprusside/MK-571) experiments. Various gene targets [cytochrome c oxidase subunit 2, transforming growth factor-β1, interleukin-1β, hypoxia-inducible factor-1α, α1A-adrenoceptor, inositol 1,4,5-trisphosphate receptor type 1, voltage-gated Ca2+ channel subunit-α1D, neuronal nitric oxide synthase, soluble guanylyl cyclase, phosphodiesterase 5A, protein kinase CGMP-dependent 1, and multidrug resistance-associated protein 5 (MRP5; ATP-binding cassette subfamily C member 5)] were quantified, and cGMP levels were measured. No histological changes were detected, and functional assays revealed decreased contraction and increased relaxation of urethras from the PI group. The addition of MK-571 to functional assays increased urethral relaxation. Genes associated with inflammation were upregulated in urethras from the PI group, such as cytochrome oxidase c subunit 2, transforming growth factor-β1, interleukin-1β, and hypoxia-inducible factor-1α. We also found increased expression of L-type Ca2+ channels and the neuronal nitric oxide synthase enzyme and decreased expression of the MRP5 pump. Finally, cGMP production was enhanced in urethral tissue of PI animals. The results indicate that PI is associated with proinflammatory gene expression in the urethra without histologically evident inflammation and that PI produces a dysfunctional urethra and MRP5 pump downregulation, which results in cGMP accumulation inside the cell. These findings would help to better understand LUT dysfunctions associated with PI and the role of MRP pumps in the control of LUT function.
Collapse
Affiliation(s)
- Eduardo C Alexandre
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Nailong Cao
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shinsuke Mizoguchi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tetsuichi Saito
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Masahiro Kurobe
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Daisuke Gotoh
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Meri Okorie
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Taro Igarashi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Vásquez-Velásquez C, Gasco M, Fano-Sizgorich D, Gonzales GF. Inflammatory pathway employed by Red Maca to treat induced benign prostatic hyperplasia in rats. Andrologia 2020; 52:e13516. [PMID: 31989657 DOI: 10.1111/and.13516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is a pathology characterised by an increase in prostate size associated with low urinary tract symptoms. Finasteride (F), a 5a-reductase inhibitor, is the standard treatment for BPH reducing prostate weight but also sexual desire. The Peruvian plant known as Red Maca (RM) (Lepidium meyenii) inhibits BPH in rats and mice. The aim of the study was to assess the inflammatory effect of RM and finasteride in rats with testosterone enanthate (TE)-induced BPH. Thirty rats were divided into 5 groups: Control, TE (50 mg/rat), TE + F (0.6 mg/kg), and two groups of TE + RM 40/80 (40 or 80 mg). After treatments, tumour necrosis factor alpha (TNFa), interleukin 4 (IL4) and interferon gamma (INFg) as well as testosterone and oestradiol were evaluated and inflammatory cells (neutrophils, mast cells and lymphocytes) in prostate were quantified. Red Maca and finasteride treatments decreased inflammatory cells counts in prostate, inhibiting TNFa by different pathways. Finasteride increased IL4 whereas Red Maca increased INFg. In conclusion, data suggest that finasteride acts on Th2 response by increasing IL4 in prostate, while Red Maca acts on Th1 response mediated by INFg.
Collapse
Affiliation(s)
- Cinthya Vásquez-Velásquez
- Laboratory of Endocrinology and Reproduction, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru.,Altitude Research Institute, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Manuel Gasco
- Laboratory of Endocrinology and Reproduction, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru.,Altitude Research Institute, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Diego Fano-Sizgorich
- Laboratory of Endocrinology and Reproduction, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru.,Altitude Research Institute, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gustavo F Gonzales
- Laboratory of Endocrinology and Reproduction, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru.,Altitude Research Institute, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
15
|
Yamaguchi H, Kurita M, Yoshinaga R, Asao Y, Oka M. [Experimental rodent models of chronic prostatitis: effect of phosphodiesterase 5 inhibitor on chronic pelvic-pain-related behavior]. Nihon Yakurigaku Zasshi 2019; 154:259-264. [PMID: 31735755 DOI: 10.1254/fpj.154.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Chronic prostatitis / chronic pelvic pain syndrome (CP/CPPS) is commonly diagnosed in men younger than 50 years old. It is characterized by pelvic pain, voiding symptoms and sexual dysfunction. The considerable discomfort or pain experienced has a negative impact on the quality of life of patients and is a huge economic burden because of the high recurrence rate and the low cure rate. Appropriate animal models are essential for the development of new drugs for the treatment of CP/CPPS, and several rodent models induced by different methods and over different time frames have been established. This article reviews studies of three in vivo rodent models of prostatitis, namely, chemical-induced, autoimmune-induced and hormone-associated models reported by us and other investigators. Recent clinical investigation has suggested that tadalafil improves the International Prostatic Symptom Score and the total National Institutes of Health Chronic Prostatitis Symptom Index score of patients with benign prostatic hyperplasia with CP/CPPS, which enables us to investigate the effect of tadalafil on the pelvic-pain-related behavior and prostatic inflammation in two of these prostatitis model types, experimental autoimmune prostatitis (EAP) and hormone/castration-induced prostatitis (HCP). Both models showed the pelvic-pain-related behavior and prostatic inflammation that are characteristic of chronic prostatitis. In EAP, tadalafil suppressed both the pelvic-pain-related behavior and the prostatic inflammation. In HCP, tadalafil suppressed the pelvic-pain-related behavior. These results mimic the clinical findings. Therefore EAP and HCP are suitable for the evaluation of the potency of drugs for the treatment of CP/CPPS.
Collapse
Affiliation(s)
| | - Maki Kurita
- Discovery Research Laboratories, Nippon Shinyaku Co., Ltd
| | | | - Yasunori Asao
- Discovery Research Laboratories, Nippon Shinyaku Co., Ltd
| | - Michiko Oka
- Discovery Research Laboratories, Nippon Shinyaku Co., Ltd
| |
Collapse
|
16
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
17
|
Liu TT, Rodgers AC, Nicholson TM, Macoska JA, Marker PC, Vezina CM, Bjorling DE, Roldan-Alzate A, Hernando D, Lloyd GL, Hacker TA, Ricke WA. Ultrasonography of the Adult Male Urinary Tract for Urinary Functional Testing. J Vis Exp 2019:10.3791/59802. [PMID: 31475976 PMCID: PMC7328372 DOI: 10.3791/59802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The incidence of clinical benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS) is increasing due to the aging population, resulting in a significant economic and quality of life burden. Transgenic and other mouse models have been developed to recreate various aspects of this multifactorial disease; however, methods to accurately quantitate urinary dysfunction and the effectiveness of new therapeutic options are lacking. Here, we describe a method that can be used to measure bladder volume and detrusor wall thickness, urinary velocity, void volume and void duration, and urethral diameter. This would allow for the evaluation of disease progression and treatment efficacy over time. Mice were anesthetized with isoflurane, and the bladder was visualized by ultrasound. For non-contrast imaging, a 3D image was taken of the bladder to calculate volume and evaluate shape; the bladder wall thickness was measured from this image. For contrast-enhanced imaging, a catheter was placed through the dome of the bladder using a 27-gauge needle connected to a syringe by PE50 tubing. A bolus of 0.5 mL of contrast was infused into the bladder until a urination event occurred. Urethral diameter was determined at the point of the Doppler velocity sample window during the first voiding event. Velocity was measured for each subsequent event yielding a flow rate. In conclusion, high frequency ultrasound proved to be an effective method for assessing bladder and urethral measurements during urinary function in mice. This technique may be useful in the assessment of novel therapies for BPH/LUTS in an experimental setting.
Collapse
Affiliation(s)
- Teresa T Liu
- Department of Urology, University of Wisconsin-Madison; K12 Kure, University of Wisconsin-Madison
| | - Allison C Rodgers
- Cardiovascular Research Center, Department of Medicine, University of Wisconsin-Madison
| | | | - Jill A Macoska
- University of Massachusetts Boston; U54 George M. O'Brien Center, University of Wisconsin-Madison
| | - Paul C Marker
- U54 George M. O'Brien Center, University of Wisconsin-Madison; College of Pharmacy, University of Wisconsin-Madison
| | - Chad M Vezina
- U54 George M. O'Brien Center, University of Wisconsin-Madison; School of Veterinary Medicine, University of Wisconsin-Madison
| | - Dale E Bjorling
- U54 George M. O'Brien Center, University of Wisconsin-Madison; School of Veterinary Medicine, University of Wisconsin-Madison
| | - Alejandro Roldan-Alzate
- K12 Kure, University of Wisconsin-Madison; Department of Mechanical Engineering, University of Wisconsin-Madison; Department of Radiology, University of Wisconsin-Madison
| | - Diego Hernando
- Department of Radiology, University of Wisconsin-Madison; Department of Medical Physics, University of Wisconsin-Madison
| | | | - Timothy A Hacker
- Cardiovascular Research Center, Department of Medicine, University of Wisconsin-Madison
| | - William A Ricke
- Department of Urology, University of Wisconsin-Madison; U54 George M. O'Brien Center, University of Wisconsin-Madison;
| |
Collapse
|
18
|
Lloyd GL, Marks JM, Ricke WA. Benign Prostatic Hyperplasia and Lower Urinary Tract Symptoms: What Is the Role and Significance of Inflammation? Curr Urol Rep 2019; 20:54. [PMID: 31377881 PMCID: PMC7339114 DOI: 10.1007/s11934-019-0917-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the role and significance of inflammation as a putative additional factor contributing to lower urinary tract symptoms and the progression of benign prostatic hyperplasia. We review (1) the histologic definition of prostatic inflammation and its prevalence, (2) the effects inflammation in the prostate including on risk of acute urinary retention, and (3) the effects of systemic inflammation on the prostate and on voiding. RECENT FINDINGS Inflammation is a highly prevalent finding in the prostate, both on a histological and biochemical level. Men with inflammation have higher IPSS scores and increased prostate size; however, these differences appear to be imperceptibly small. Men with inflammation do experience a significantly increased risk of developing acute urinary retention, an event that is associated with significant morbidity. Recently, attempts have been made to identify more specific biochemical markers of local inflammation, and to identify regional patterns of inflamed tissue within the prostate which may be associated with higher IPSS scores, accelerated progression, and AUR. The effects of systemic inflammatory states, most notably MetS, and their role in LUTS have also been examined. Inflammation is a common finding in prostates of aging men, but its contribution to lower urinary tract symptoms and benign prostatic hyperplasia progression appears to be small when considered as a clinically relevant entity. Advances in the understanding of different forms of inflammation, and their impact when experienced in different locations within the prostate, may refine this knowledge. Systemic inflammation affects voiding, including in the absence of a prostate, but again significant effects of systemic inflammation on the prostate itself are also difficult to demonstrate. Prostatic inflammation is associated with a significantly increased risk of acute urinary retention.
Collapse
Affiliation(s)
- Granville L Lloyd
- Department of Surgery, Rocky Mountain Regional Veterans Hospital, University of Colorado Anschutz School of Medicine, 1700 N Wheeling Street, Aurora, CO, 80045, USA.
| | - Jeffrey M Marks
- Division of Urology, UCSOM, Academic Office One Bldg., Room #5602, 12631 East 17th Ave., M/S C-319, Aurora, CO, 80045, USA
| | - William A Ricke
- Department of Urology, Wisconsin Institutes for Medical Research, University of Wisconsin, 1111 Highland Avenue, Madison, WI, 53705, USA
| |
Collapse
|
19
|
Mizoguchi S, Wolf-Johnson AS, Ni J, Mori K, Suzuki T, Takaoka E, Mimata H, DeFranco DB, Wang Z, Birder LA, Yoshimura N. The role of prostaglandin and E series prostaglandin receptor type 4 receptors in the development of bladder overactivity in a rat model of chemically induced prostatic inflammation. BJU Int 2019; 124:883-891. [PMID: 31166645 DOI: 10.1111/bju.14845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES To evaluate, using a rat model of non-bacterial prostatic inflammation, the prostaglandin production and expression profiles of E-series prostaglandin (EP) receptor subtypes, which are reportedly implicated in the development of overactive bladder, in the bladder mucosa, and to investigate the effect of EP receptor type 4 (EP4) blockade on bladder overactivity after prostatic inflammation. METHODS Male Sprague-Dawley rats were used. Prostatic inflammation was induced by formalin injection (5%; 50 μL per lobe) into the bilateral ventral lobes of the prostate. At 10 days after induction of prostatic inflammation or vehicle injection, bladder tissues from the deeply anaesthetized rats were harvested and separated into mucosal and detrusor layers. Then, prostaglandin E2 (PGE2) concentrations and protein levels of PGE2 receptors (EP1-4) in the bladder mucosa and detrusor were measured by ELISA and Western blotting, respectively. In separate groups of control and formalin-treated rats, awake cystometry was performed to evaluate the changes in bladder activity after prostatic inflammation. In addition, the effect of intravesical administration of a selective EP4 antagonist (ONO-AE3-208; 30 μm) on bladder activity was evaluated in control rats and rats with prostatic inflammation. RESULTS PGE2 concentration and protein levels of EP4, but not other EP receptor subtypes, in the bladder mucosa and detrusor layers were significantly increased in formalin-injected rats vs vehicle-injected control rats. In cystometry, rats with prostatic inflammation exhibited a significant decrease in intercontraction intervals (ICIs) compared with control rats. Intravesical application of ONO-AE3-208 (30 μm), but not vehicle application, significantly increased ICIs in rats with prostatic inflammation, whereas ONO-AE3-208 at this concentration did not significantly affect any cystometric values in control rats. CONCLUSIONS Because intravesical administration of an EP4 antagonist effectively improved bladder overactivity after prostatic inflammation, EP4 activation, along with increased PGE2 production in the bladder mucosa, seems to be an important contributing factor to bladder overactivity induced by prostatic inflammation. Thus, blockade of EP4 in the bladder could be a therapeutic approach to male lower urinary tract symptoms attributable to benign prostatic hyperplasia with prostatic inflammation.
Collapse
Affiliation(s)
- Shinsuke Mizoguchi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Urology, Oita University Graduate School of Medicine, Yufu, Japan
| | - Amanda S Wolf-Johnson
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jianshu Ni
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kenichi Mori
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Urology, Oita University Graduate School of Medicine, Yufu, Japan
| | - Takahisa Suzuki
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eiichiro Takaoka
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hiromitsu Mimata
- Department of Urology, Oita University Graduate School of Medicine, Yufu, Japan
| | - Donald B DeFranco
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lori A Birder
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Giorgi S, Nikolaeva-Koleva M, Alarcón-Alarcón D, Butrón L, González-Rodríguez S. Is TRPA1 Burning Down TRPV1 as Druggable Target for the Treatment of Chronic Pain? Int J Mol Sci 2019; 20:ijms20122906. [PMID: 31197115 PMCID: PMC6627658 DOI: 10.3390/ijms20122906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
Over the last decades, a great array of molecular mediators have been identified as potential targets for the treatment of chronic pain. Among these mediators, transient receptor potential (TRP) channel superfamily members have been thoroughly studied. Namely, the nonselective cationic channel, transient receptor potential ankyrin subtype 1 (TRPA1), has been described as a chemical nocisensor involved in noxious cold and mechanical sensation and as rivalling TRPV1, which traditionally has been considered as the most important TRP channel involved in nociceptive transduction. However, few TRPA1-related drugs have succeeded in clinical trials. In the present review, we attempt to discuss the latest data on the topic and future directions for pharmacological intervention.
Collapse
Affiliation(s)
- Simona Giorgi
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Magdalena Nikolaeva-Koleva
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
- AntalGenics, SL. Ed. Quorum III, Parque Científico Universidad Miguel Hernández, Avda de la Universidad s/n, 03202 Elche, Spain.
| | - David Alarcón-Alarcón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Laura Butrón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Sara González-Rodríguez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| |
Collapse
|
21
|
Farmer T, Johnston M, Milica A, Hindley R, Emara A. Chronic Prostatitis/Chronic Pelvic Pain Syndrome: a Literature Review of NIH III Prostatitis. CURRENT BLADDER DYSFUNCTION REPORTS 2019. [DOI: 10.1007/s11884-019-00508-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Ni J, Mizoguchi S, Bernardi K, Suzuki T, Kurobe M, Takaoka E, Wang Z, DeFranco DB, Tyagi P, Gu B, Yoshimura N. Long-lasting bladder overactivity and bladder afferent hyperexcitability in rats with chemically-induced prostatic inflammation. Prostate 2019; 79:872-879. [PMID: 30900300 PMCID: PMC7327236 DOI: 10.1002/pros.23794] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/22/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is one of the major causes of lower urinary tract symptoms (LUTS), including storage LUTS such as urinary frequency and urgency. Recently, a growing number of clinical studies indicate that prostatic inflammation could be an important pathophysiological mechanism inducing storage LUTS in patients with BPH. Here we aimed to investigate whether nonbacterial prostatic inflammation in a rat model induced by intraprostatic formalin injection can lead to long-lasting bladder overactivity and changes in bladder afferent neuron excitability. METHODS Male Sprague-Dawley rats were divided into four groups (n = 12 each): normal control group, 1-week prostatic inflammation group, 4-week inflammation group, and 8-week inflammation group. Prostatic inflammation was induced by formalin (10%; 50 µL per lobe) injection into bilateral ventral lobes of the prostate. Voiding behavior was evaluated in metabolic cages for each group. Ventral lobes of the prostate and the bladder were then removed for hematoxylin and eosin (HE) staining to evaluate inflammation levels. Continuous cystometrograms (CMG) were recorded to measure intercontraction intervals (ICI) and voided volume per micturition. Whole-cell patch clamp recordings were performed on dissociated bladder afferent neurons labeled by fluorogold injected into the bladder wall, to examine the electrophysiological properties. RESULTS Results of metabolic cage measurements showed that formalin-treated rats exhibited significantly (P < 0.05) increases in micturition episodes/12 hours and decrease in voided volume per micturition at every time point post injection. Continuous CMG illustrated the significant ( P < 0.05) higher number of nonvoiding contractions per void and shorter ICI in formalin-treated rats compared with control rats. HE staining showed significant prostatic inflammation, which declined gradually, in prostate tissues of formalin-induced rats. In patch clamp recordings, capsaicin-sensitive bladder afferent neurons from rats with prostatic inflammation had significantly ( P < 0.05) lower thresholds for spike activation and a "multiple" firing pattern compared with control rats at every time point post injection. CONCLUSIONS Formalin-induced prostatic inflammation can lead to long-lasting bladder overactivity in association with bladder afferent neuron hyperexcitability. This long-lasting model could be a useful tool for the study of inflammation-related aspects of male LUTS pathophysiology.
Collapse
Affiliation(s)
- Jianshu Ni
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital
| | - Shinsuke Mizoguchi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Kyrie Bernardi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Takahisa Suzuki
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Masahiro Kurobe
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Eiichiro Takaoka
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Donald B. DeFranco
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Baojun Gu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Corresponding author: Naoki Yoshimura, MD, PhD., Department of Urology, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA, TEL (412)-692-4137, FAX (412)-692-4380,
| |
Collapse
|
23
|
Funahashi Y, Takahashi R, Mizoguchi S, Suzuki T, Takaoka E, Ni J, Wang Z, DeFranco DB, de Groat WC, Tyagi P, Yoshimura N. Bladder overactivity and afferent hyperexcitability induced by prostate-to-bladder cross-sensitization in rats with prostatic inflammation. J Physiol 2019; 597:2063-2078. [PMID: 30666643 DOI: 10.1113/jp277452] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/09/2019] [Indexed: 12/26/2022] Open
Abstract
KEY POINTS There is clinical evidence showing that prostatic inflammation contributes to overactive bladder symptoms in male patients; however, little is known about the underlying mechanisms In this study, we investigated the mechanism that prostatic inflammation causes detrusor overactivity by using a rat model of chemically induced prostatic inflammation. We observed a significant number of dorsal root ganglion neurons with dichotomized afferents innervating both prostate and bladder. We also found that prostatic inflammation induces bladder overactivity and urothelial NGF overexpression in the bladder, both dependent on activation of the pelvic nerve, as well as changes in ion channel expression and hyperexcitability of bladder afferent neurons. These results indicate that the prostate-to-bladder cross-sensitization through primary afferent pathways in the pelvic nerve, which contain dichotomized afferents, could be an important mechanism contributing to bladder overactivity and afferent hyperexcitability induced by prostatic inflammation. ABSTRACT Prostatic inflammation is reportedly an important factor inducing lower urinary tract symptoms (LUTS) including urinary frequency, urgency and incontinence in patients with benign prostatic hyperplasia (BPH). However, the underlying mechanisms inducing bladder dysfunction after prostatic inflammation are not well clarified. We therefore investigated the effects of prostatic inflammation on bladder activity and afferent function using a rat model of non-bacterial prostatic inflammation. We demonstrated that bladder overactivity, evident as decreased voided volume and shorter intercontraction intervals in cystometry, was observed in rats with prostatic inflammation versus controls. Tissue inflammation, evident as increased myeloperoxidase activity, and IL-1α, IL-1β, and IL-6 levels inside the prostate, but not in the bladder, following intraprostatic formalin injection induced an increase in NGF expression in the bladder urothelium, which depended on activation of the pelvic nerve. A significant proportion (18-19%) of dorsal root ganglion neurons were double labelled by dye tracers injected into either bladder or prostate. In rats with prostatic inflammation, TRPV1, TRPA1 and P2X2 increased, and Kv1.4, a potassium channel α-subunit that can form A-type potassium (KA ) channels, decreased at mRNA levels in bladder afferent and double-labelled neurons vs. non-labelled neurons, and slow KA current density decreased in association with hyperexcitability of these neurons. Collectively, non-bacterial inflammation localized in the prostate induces bladder overactivity and enhances bladder afferent function. Thus, prostate-to-bladder afferent cross-sensitization through primary afferents in the pelvic nerve, which contain dichotomized afferents, could underlie storage LUTS in symptomatic BPH with prostatic inflammation.
Collapse
Affiliation(s)
- Yasuhito Funahashi
- Departments of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,Department of Urology, Nagoya University Graduate School of Medicine, Aichi, 466-8550, Japan
| | - Ryosuke Takahashi
- Departments of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,Department of Urology, Kyusyu University Graduate School of Medicine, Fukuoka, 812-8582, Japan
| | - Shinsuke Mizoguchi
- Departments of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Takahisa Suzuki
- Departments of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Eiichiro Takaoka
- Departments of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jianshu Ni
- Departments of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Zhou Wang
- Departments of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Donald B DeFranco
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - William C de Groat
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Pradeep Tyagi
- Departments of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Naoki Yoshimura
- Departments of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| |
Collapse
|
24
|
Meng LQ, Yang FY, Wang MS, Shi BK, Chen DX, Chen D, Zhou Q, He QB, Ma LX, Cheng WL, Xing NZ. Quercetin protects against chronic prostatitis in rat model through NF-κB and MAPK signaling pathways. Prostate 2018; 78:790-800. [PMID: 29654614 DOI: 10.1002/pros.23536] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/27/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) is a common disease of urology, of which the pathogenesis and therapy remain to be further elucidated. Quercetin has been reported to improve the symptoms of CP/CPPS patients. We aimed to verify the therapeutic effect of quercetin on CP/CPPS and identify the mechanism responsible for it. METHODS A novel CP/CPPS model induced with Complete Freund Adjuvant in Sprague Dawley rats was established and the prostates and blood specimens were harvested for further measurement after oral administration of quercetin for 4 weeks. RESULTS Increased prostate index and infiltration of lymphocytes, up-regulated expression of IL-1β, IL-2, IL-6, IL-17A, MCP1, and TNFα, decreased T-SOD, CAT, GSH-PX, and increased MDA, enhanced phosphorylation of NF-κB, P38, ERK1/2, and SAPK/JNK were detected in CP/CPPS rat model. Quercetin was identified to ameliorate the histo-pathologic changes, decrease the expression of pro-inflammatory cytokines IL-1β, IL-2, IL-6, IL-17A, MCP1, and TNFα, improve anti-oxidant capacity, and suppress the phosphorylation of NF-κB and MAPKs. CONCLUSIONS Quercetin has specific protective effect on CP/CPPS, which is mediated by anti-inflammation, anti-oxidation, and at least partly through NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Ling-Quan Meng
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Fei-Ya Yang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Ming-Shuai Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Ben-Kang Shi
- Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - De-Xi Chen
- Beijing You'an Hospital, Capital Medical University, Beijing, P.R. China
- Beijing Institute of Hepatology, Beijing, P.R. China
| | - Dong Chen
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Qiang Zhou
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, P.R. China
| | - Qing-Bao He
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Lin-Xiang Ma
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Wen-Long Cheng
- Department of Urology, Beijing Ditan Hospital, Capital Medical University, Beijing, P.R. China
| | - Nian-Zeng Xing
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
25
|
N-Butanol and Aqueous Fractions of Red Maca Methanolic Extract Exerts Opposite Effects on Androgen and Oestrogens Receptors (Alpha and Beta) in Rats with Testosterone-Induced Benign Prostatic Hyperplasia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9124240. [PMID: 29375645 PMCID: PMC5742461 DOI: 10.1155/2017/9124240] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022]
Abstract
Benign Prostatic Hyperplasia (BPH) affects, worldwide, 50% of 60-year-old men. The Peruvian plant red maca (Lepidium meyenii) inhibits BPH in rodents. This study aimed to determine the effects of methanolic red maca extract and its n-butanol and aqueous fractions on expression of androgen and oestrogen receptors in rats with testosterone enanthate-induced BPH. Thirty-six rats in six groups were studied. Control group received 2 mL of vehicle orally and 0.1 mL of propylene glycol intramuscularly. The second group received vehicle orally and testosterone enanthate (TE) (25 mg/0.1 mL) intramuscularly in days 1 and 7. The other four groups were BPH-induced with TE and received, during 21 days, 3.78 mg/mL of finasteride, 18.3 mg/mL methanol extract of red maca, 2 mg/mL of n-butanol fraction, or 16.3 mg/mL of aqueous fraction from red maca. Treatments with red maca extract and its n-butanol but not aqueous fraction reduced prostate weight similar to finasteride. All maca treated groups restored the expression of ERβ, but only the aqueous fraction increased androgen receptors and ERα. In conclusion, butanol fraction of red maca reduced prostate size in BPH by restoring expression of ERβ without affecting androgen receptors and ERα. This effect was not observed with aqueous fraction of methanolic extract of red maca.
Collapse
|
26
|
Li X, Peng B, Zhu X, Wang P, Xiong Y, Liu H, Sun K, Wang H, Ou L, Wu Z, Liu X, He H, Mo S, Peng X, Tian Y, Zhang R, Yang L. Changes in related circular RNAs following ERβ knockdown and the relationship to rBMSC osteogenesis. Biochem Biophys Res Commun 2017; 493:100-107. [PMID: 28919414 DOI: 10.1016/j.bbrc.2017.09.068] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 01/08/2023]
Abstract
Recently, several studies have indicated that circular RNAs (circRNAs) play significant roles in various disease; however, little is known about the chronology of estrogen receptor beta (ERβ) deficiency and altered circRNA expression, or their relationship with osteogenesis. Herein, we show through western-blot and quantitative real-time PCR assays, that when ERβ is silenced, the expression of osteogenesis-related proteins and mRNAs were down-regulated. We then performed RNA-Seq to analyze differential circRNA expression between the control and ERβ knockdown group. This analysis revealed that, 146 circRNAs were differentially expressed by fold-change≥2.0, p ≤ 0.05, and, among this group, 68 circRNAs were down-regulated, while 78 were up-regulated. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and PANTHER pathway analyses were performed to predict the function of these differentially expressed circRNAs. Finally, co-expressed targets gene, and circRNA-microRNA network were constructed for predicted miRNA sponges. This research suggested that ERβ may through 2:27713879|27755789/2:240822115|240867796-miR-328-5p-mRNA axis to regulate osteogenic differentiation.
Collapse
Affiliation(s)
- Xiaoyun Li
- College of Pharmacy Jinan University, China
| | - Bojia Peng
- College of Pharmacy Jinan University, China
| | - Xiaofeng Zhu
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Jinan University, China
| | | | | | | | - Kehuan Sun
- College of Traditional Chinese Medicine, China
| | - Haixia Wang
- College of Traditional Chinese Medicine, China
| | - Ling Ou
- College of Pharmacy Jinan University, China
| | - Zhidi Wu
- College of Pharmacy Jinan University, China
| | | | - Haibin He
- College of Pharmacy Jinan University, China
| | - Shu Mo
- College of Traditional Chinese Medicine, China
| | | | - Ya Tian
- College of Pharmacy Jinan University, China
| | | | - Li Yang
- College of Pharmacy Jinan University, China.
| |
Collapse
|
27
|
Hidalgo-Lanussa O, Ávila-Rodriguez M, Baez-Jurado E, Zamudio J, Echeverria V, Garcia-Segura LM, Barreto GE. Tibolone Reduces Oxidative Damage and Inflammation in Microglia Stimulated with Palmitic Acid through Mechanisms Involving Estrogen Receptor Beta. Mol Neurobiol 2017; 55:5462-5477. [DOI: 10.1007/s12035-017-0777-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/15/2017] [Indexed: 12/12/2022]
|