1
|
Kato M, Sato H, Naito Y, Yamamoto A, Kawanishi H, Nakano Y, Nishikimi T, Kobayashi M, Kondo A, Hirabayashi H, Katsuno S, Sakamoto F, Kimura T, Yamamoto S, Araki H, Tochigi K, Ito F, Hatsuse H, Sassa N, Hirakawa A, Akamatsu S, Tsuzuki T. Prospective observational study on the relationships between genetic alterations and survival in Japanese patients with metastatic castration-sensitive prostate cancer: the impact of IDC-P. Int J Clin Oncol 2025; 30:789-796. [PMID: 39937427 PMCID: PMC11947062 DOI: 10.1007/s10147-025-02707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Intraductal Carcinoma of the Prostate (IDC-P) is a significant prognostic indicator for prostate cancer, which demonstrates significant associations with homologous recombination repair gene mutations (HRRm) and alterations in tumor suppressor genes. However, no study in Japan has investigated the association between IDC-P and genetic mutations in men with metastatic castration-sensitive prostate cancer (mCSPC). METHODS This prospective observational study enrolled 102 de novo mCSPC (LATITUDE high-risk) patients diagnosed between 2018 and 2021, with subsequent monitoring of survival outcomes. A single genitourinary pathologist evaluated all needle biopsy slides. Genetic analyses were performed using the Myriad myChoice HRD plus™. These genetic analyses covered 108 genetic loci, including 15 HRRm genes, with a success rate of 91%. RESULTS Genetic alterations were observed in 79 patients (77.5%), with 20 exhibiting HRRm (19.6%). Common genetic alterations included FOXA1 (29.4%) and TP53 (17.6%) mutations; BRCA (9.8%) mutations were the most frequent HRRm (BRCA1:2 cases, BRCA2:8 cases, including 6 biallelic). IDC-P-positive patients demonstrated a significantly higher frequency of genetic aberrations (82.6% vs. 50%, p = 0.0082). Patients with biallelic BRCA2, TP53, and PTEN mutations exhibited significantly poorer cancer-specific survival. Multivariate analysis identified lactate dehydrogenase (LDH) (HR 1.005, p = 0.035), TP53 mutations (HR 5.196, p < 0.001), biallelic BRCA2 mutations (HR 10.686, p = 0.005), and IDC-P as independent predictors of poor cancer-specific survival. No cancer-related deaths occurred in IDC-P-negative cases. CONCLUSION Our study emphasizes the significant association between IDC-P and an elevated incidence of genetic alterations in Japanese mCSPC patients, emphasizing the need for early genetic testing to guide therapeutic decision-making.
Collapse
Affiliation(s)
- Masashi Kato
- Department of Urology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, 3-35 Michishita-Cho, Nakamura-Ku, Nagoya, 453-8511, Japan.
| | - Hiroyuki Sato
- Division of Biostatistics and Data Science, Clinical Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yushi Naito
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akiyuki Yamamoto
- Department of Urology, Toyohashi Municipal Hospital, Toyohashi, Japan
| | | | - Yojiro Nakano
- Department of Urology, Tosei General Hospital, Seto, Japan
| | - Toshinori Nishikimi
- Department of Urology, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Japan
| | | | - Atsuya Kondo
- Department of Urology, Kariya Toyota General Hospital, Kariya, Japan
| | - Hiroki Hirabayashi
- Department of Urology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, 3-35 Michishita-Cho, Nakamura-Ku, Nagoya, 453-8511, Japan
| | - Satoshi Katsuno
- Department of Urology, Okazaki City Hospital, Okazaki, Japan
| | | | - Tohru Kimura
- Department of Urology, Japan Community Healthcare Organization Chukyo Hospital, Nagoya, Japan
| | | | | | - Kosuke Tochigi
- Department of Urology, Yokkaichi Municipal Hospital, Yokkaichi, Japan
| | - Fumihiro Ito
- Department of Urology, Gifu Prefectural Tajimi Hospital, Tajimi, Japan
| | - Hatsuro Hatsuse
- Department of Urology, Ichinomiya Municipal Hospital, Ichinomiya, Japan
| | - Naoto Sassa
- Department of Urology, Aichi Medical University, Nagakute, Japan
| | - Akihiro Hirakawa
- Division of Biostatistics and Data Science, Clinical Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shusuke Akamatsu
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| |
Collapse
|
2
|
Ding CKC, Greenland NY, Sirohi D, Lotan TL. Molecular Landscape of Aggressive Histologic Subtypes of Localized Prostate Cancer. Surg Pathol Clin 2025; 18:1-12. [PMID: 39890297 DOI: 10.1016/j.path.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Despite incredible progress in describing the molecular underpinnings of prostate cancer over the last decades, pathologic examination remains indispensable for predicting aggressive behavior in the localized setting. Beyond pathologic grade, specific histologic findings have emerged as critical prognostic or predictive indicators. Here, the authors review molecular correlates of aggressive histologic subtypes of prostate cancer in the localized setting, demonstrating that many of the signature molecular alterations found in metastatic disease-such as tumor suppressor gene loss and DNA repair defects-are enriched in primary disease with adverse histologic features, presaging aggressive behavior, and presenting opportunities for earlier germline screening or targeted therapies.
Collapse
Affiliation(s)
- Chien-Kuang C Ding
- Department of Pathology, University of California, San Francisco (UCSF), 1825 4th Street, M2370, San Francisco, CA 94158, USA
| | - Nancy Y Greenland
- Department of Pathology, University of California, San Francisco (UCSF), 1825 4th Street, M2370, San Francisco, CA 94158, USA
| | - Deepika Sirohi
- Department of Pathology, University of California, San Francisco (UCSF), 1825 4th Street, M2370, San Francisco, CA 94158, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Wei X, Zhao J, Nie L, Shi Y, Zhao F, Shen Y, Chen J, Sun G, Zhang X, Liang J, Hu X, Shen P, Chen N, Zeng H, Liu Z. Assessing the predictive value of intraductal carcinoma of the prostate (IDC-P) in determining abiraterone efficacy for metastatic hormone-sensitive prostate cancer (mHSPC) patients. Prostate 2025; 85:130-139. [PMID: 39465570 DOI: 10.1002/pros.24809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND This study explored the value of intraductal carcinoma of the prostate (IDC-P) in predicting the efficacy of abiraterone treatment in metastatic hormone-sensitive prostate cancer (mHSPC) patients. METHODS A retrospective study of 925 patients who underwent prostate biopsies to detect IDC-P was conducted, with participants divided into two cohorts. The first cohort of 165 mHSPC patients receiving abiraterone treatment was analyzed to compare therapeutic effectiveness between IDC-P positive and negative cases. Utilizing propensity score matching (PSM) to reduce bias, outcomes such as PSA response, progression-free survival (PSA-PFS), radiographic progression-free survival (rPFS), and overall survival were assessed. Additionally, the second cohort of 760 mHSPC patients compared the efficacy of abiraterone with conventional hormone therapy, focusing on differences between IDC-P positive and negative individuals. RESULTS After PSM, our first cohort included 108 patients with similar baseline characteristics. Among them, 50% (54/108) were diagnosed with IDC-P, with 22.2% (12/54) having IDC-P pattern 1 and 77.8% (42/54) with IDC-P pattern 2. While no notable difference was seen in PSA responses between IDC-P positive and negative patients, IDC-P presence linked to worse clinical outcomes (PSA-PFS: 18.6 months vs. not reached [NR], p = 0.009; rPFS: 23.6 months vs. NR, p = 0.020). Further analysis showed comparable outcomes for IDC-P pattern 1 but significantly worse prognosis for IDC-P pattern 2 (PSA-PFS: 18.6 months vs. NR, p = 0.002; rPFS: 22.4 months vs. NR, p = 0.010). Subgroup analysis revealed IDC-P pattern 2 consistently predicted poorer outcomes across patient subgroups. Remarkably, both IDC-P positive and negative patients gained more from androgen deprivation therapy with abiraterone than conventional treatment, with IDC-P negative patients showing a more significant survival advantage, supported by better hazard ratios (0.47 and 0.66). CONCLUSION This study found that IDC-P, especially pattern 2, predicts poor prognosis in mHSPC patients on abiraterone therapy. Also, abiraterone's advantage over hormone therapy is reduced in cases with IDC-P compared to those without.
Collapse
Affiliation(s)
- Xinyuan Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinge Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Nie
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yifu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Fengnian Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Shen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Junru Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Guangxi Sun
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xingming Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Hu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Pengfei Shen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ni Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenhua Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Siech C, Wenzel M, Grosshans N, Cano Garcia C, Humke C, Koll FJ, Tian Z, Karakiewicz PI, Kluth LA, Chun FKH, Hoeh B, Mandel P. The Association Between Lymphovascular or Perineural Invasion in Radical Prostatectomy Specimen and Biochemical Recurrence. Cancers (Basel) 2024; 16:3648. [PMID: 39518086 PMCID: PMC11545596 DOI: 10.3390/cancers16213648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE The aim of this study was to test for the association between lymphovascular invasion or perineural invasion in radical prostatectomy (RP) specimens and biochemical recurrence (BCR). METHODS Relying on a tertiary-care database, we identified prostate cancer patients treated with RP between January 2014 and June 2023. Of these, the majority underwent robotic-assisted RP (81%). Kaplan-Meier survival analyses and Cox regression models addressed BCR according to either lymphovascular invasion or perineural invasion in RP specimens. Additionally, the linear trend test assessed the association between the Gleason Grade Group or pathologic tumor stage and lymphovascular or perineural invasion. RESULTS Of 822 patients, 78 (9%) exhibited lymphovascular invasion and 633 (77%) exhibited perineural invasion in RP specimens. In survival analyses, the five-year BCR-free survival rates were 62% in patients with lymphovascular invasion vs. 70% in patients without lymphovascular invasion (p = 0.04) and 64% in patients with perineural invasion vs. 82% in patients without perineural invasion (p = 0.01). In univariable Cox regression models, lymphovascular invasion (hazard ratio 1.58, 95% confidence interval 1.01-2.47; p = 0.045) and perineural invasion (hazard ratio 1.77, 95% confidence interval 1.13-2.77; p = 0.013) were both associated with a higher BCR rate. After accounting for age at surgery, PSA value, pathologic tumor stage, Gleason Grade Group, lymph node invasion, positive surgical margin, surgical approach, and adjuvant radiation therapy, lymphovascular (p = 0.740) or perineural invasion (p = 0.341) were not significantly associated with a higher BCR since the Gleason Grade Group and pathologic tumor stage highly correlated with lymphovascular as well as perineural invasion. CONCLUSIONS In univariable models, lymphovascular or perineural invasion is associated with BCR. After adjustment for standard pathologic tumor characteristics, lymphovascular or perineural invasion is not an independent predictor for BCR.
Collapse
Affiliation(s)
- Carolin Siech
- Goethe University Frankfurt, University Hospital, Department of Urology, 60590 Frankfurt am Main, Germany
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, QC H2X 3E4, Canada
| | - Mike Wenzel
- Goethe University Frankfurt, University Hospital, Department of Urology, 60590 Frankfurt am Main, Germany
| | - Nico Grosshans
- Goethe University Frankfurt, University Hospital, Department of Urology, 60590 Frankfurt am Main, Germany
| | - Cristina Cano Garcia
- Goethe University Frankfurt, University Hospital, Department of Urology, 60590 Frankfurt am Main, Germany
| | - Clara Humke
- Goethe University Frankfurt, University Hospital, Department of Urology, 60590 Frankfurt am Main, Germany
| | - Florestan Johannes Koll
- Goethe University Frankfurt, University Hospital, Department of Urology, 60590 Frankfurt am Main, Germany
| | - Zhe Tian
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, QC H2X 3E4, Canada
| | - Pierre I. Karakiewicz
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, QC H2X 3E4, Canada
| | - Luis A. Kluth
- Goethe University Frankfurt, University Hospital, Department of Urology, 60590 Frankfurt am Main, Germany
| | - Felix K. H. Chun
- Goethe University Frankfurt, University Hospital, Department of Urology, 60590 Frankfurt am Main, Germany
| | - Benedikt Hoeh
- Goethe University Frankfurt, University Hospital, Department of Urology, 60590 Frankfurt am Main, Germany
| | - Philipp Mandel
- Goethe University Frankfurt, University Hospital, Department of Urology, 60590 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Abu Hijlih R, Sharaf B, Salah S, Bani Hani H, Nielsen SM, Heald B, Esplin ED, Ghanem R, Alzibdeh A, Al-Batsh T, Al-Masri Y, Abdel-Razeq H. Patterns and Frequency of Pathogenic Germline Variants Among Prostate Cancer Patients Utilizing Multi-Gene Panel Genetic Testing. World J Oncol 2024; 15:801-808. [PMID: 39328335 PMCID: PMC11424115 DOI: 10.14740/wjon1896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/21/2024] [Indexed: 09/28/2024] Open
Abstract
Background Germline genetic testing (GGT) has significant implications in the management of patients with prostate cancer (PCa). Herein, we report on patterns and frequency of pathogenic/likely pathogenic germline variants (P/LPGVs) among newly diagnosed Arab patients with PCa. Methods Patients meeting the National Comprehensive Cancer Network (NCCN) eligibility criteria for GGT were offered a 19-gene PCa panel or an expanded 84-gene multi-cancer panel. Results During the study period, 231 patients were enrolled; 107 (46.3%) had metastatic disease at diagnosis. In total, 17 P/LPGVs were detected in 17 patients (7.4%). Among the 113 (48.9%) patients who underwent GGT with the 19-gene panel, eight (7.1%) had P/LPGVs, compared to nine (7.6%) of the 118 (51.1%) who did GGT through the expanded 84-gene panel (P = 0.88). Variant of uncertain significance (VUS) rate was higher (n = 73, 61.9%) among the group who underwent expanded 84-gene panel testing compared to those who underwent the 19-gene PCa panel (n = 35, 30.9%) (P = 0.001). P/LPGVs in DNA damage repair (DDR) genes, most frequently BRCA2, CHEK2 and TP53, were the most common P/LPGVs findings. Conclusion This study is the first to characterize the germline genetic profile of an Arab population with PCa. All detected P/LPGVs were potentially actionable, with most variants able to be detected with a PCa-specific panel.
Collapse
Affiliation(s)
- Ramiz Abu Hijlih
- Department of Radiation Oncology, King Hussein Cancer Center, Amman, Jordan
| | - Baha Sharaf
- Department of Internal Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Samer Salah
- Department of Internal Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Hira Bani Hani
- Department of Internal Medicine, King Hussein Cancer Center, Amman, Jordan
| | | | | | | | - Rami Ghanem
- Department of Surgery, King Hussein Cancer Center, Amman, Jordan
| | - Abdulla Alzibdeh
- Department of Radiation Oncology, King Hussein Cancer Center, Amman, Jordan
| | - Tamer Al-Batsh
- Department of Internal Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Yosra Al-Masri
- Department of Internal Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Hikmat Abdel-Razeq
- Department of Internal Medicine, King Hussein Cancer Center, Amman, Jordan
- School of Medicine, the University of Jordan, Amman, Jordan
| |
Collapse
|
6
|
Guida A, Mosillo C, Mammone G, Caserta C, Sirgiovanni G, Conteduca V, Bracarda S. The 5-WS of targeting DNA-damage repair (DDR) pathways in prostate cancer. Cancer Treat Rev 2024; 128:102766. [PMID: 38763054 DOI: 10.1016/j.ctrv.2024.102766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
DNA-damage repair (DDR) pathways alterations, a growing area of interest in oncology, are detected in about 20% of patient with prostate cancer and are associated with improved sensitivity to poly(ADP ribose) polymerases (PARP) inhibitors. In May 2020, the Food and Drug Administration (FDA) approved two PARP inhibitors (olaparib and rucaparib) for prostate cancer treatment. Moreover, germline aberrations in DDR pathways genes have also been related to familial or hereditary prostate cancer, requiring tailored health-care programs. These emerging scenarios are rapidly changing diagnostic, prognostic and therapeutic approaches in prostate cancer management. The aim of this review is to highlight the five W-points of DDR pathways in prostate cancer: why targeting DDR pathways in prostate cancer; what we should test for genomic profiling in prostate cancer; "where" testing genetic assessment in prostate cancer (germline or somatic, solid or liquid biopsy); when genetic testing is appropriate in prostate cancer; who could get benefit from PARP inhibitors; how improve patients outcome with combinations strategies.
Collapse
|
7
|
Sivaganesh V, Ta TM, Peethambaran B. Pentagalloyl Glucose (PGG) Exhibits Anti-Cancer Activity against Aggressive Prostate Cancer by Modulating the ROR1 Mediated AKT-GSK3β Pathway. Int J Mol Sci 2024; 25:7003. [PMID: 39000112 PMCID: PMC11241829 DOI: 10.3390/ijms25137003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Androgen-receptor-negative, androgen-independent (ARneg-AI) prostate cancer aggressively proliferates and metastasizes, which makes treatment difficult. Hence, it is necessary to continue exploring cancer-associated markers, such as oncofetal Receptor Tyrosine Kinase like Orphan Receptor 1 (ROR1), which may serve as a form of targeted prostate cancer therapy. In this study, we identify that Penta-O-galloyl-β-D-glucose (PGG), a plant-derived gallotannin small molecule inhibitor, modulates ROR1-mediated oncogenic signaling and mitigates prostate cancer phenotypes. Results indicate that ROR1 protein levels were elevated in the highly aggressive ARneg-AI PC3 cancer cell line. PGG was selectively cytotoxic to PC3 cells and induced apoptosis of PC3 (IC50 of 31.64 µM) in comparison to normal prostate epithelial RWPE-1 cells (IC50 of 74.55 µM). PGG was found to suppress ROR1 and downstream oncogenic pathways in PC3 cells. These molecular phenomena were corroborated by reduced migration, invasion, and cell cycle progression of PC3 cells. PGG minimally and moderately affected RWPE-1 and ARneg-AI DU145, respectively, which may be due to these cells having lower levels of ROR1 expression in comparison to PC3 cells. Additionally, PGG acted synergistically with the standard chemotherapeutic agent docetaxel to lower the IC50 of both compounds about five-fold (combination index = 0.402) in PC3 cells. These results suggest that ROR1 is a key oncogenic driver and a promising target in aggressive prostate cancers that lack a targetable androgen receptor. Furthermore, PGG may be a selective and potent anti-cancer agent capable of treating ROR1-expressing prostate cancers.
Collapse
Affiliation(s)
- Vignesh Sivaganesh
- Department of Biology, Saint Joseph’s University, 600 S 43rd St, Philadelphia, PA 19104, USA; (V.S.); (T.M.T.)
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Ave, Philadelphia, PA 19131, USA
| | - Tram M. Ta
- Department of Biology, Saint Joseph’s University, 600 S 43rd St, Philadelphia, PA 19104, USA; (V.S.); (T.M.T.)
| | - Bela Peethambaran
- Department of Biology, Saint Joseph’s University, 600 S 43rd St, Philadelphia, PA 19104, USA; (V.S.); (T.M.T.)
| |
Collapse
|
8
|
Vlaming M, Ausems MGEM, Schijven G, van Oort IM, Kets CM, Komdeur FL, van der Kolk LE, Oldenburg RA, Sijmons RH, Kiemeney LALM, Bleiker EMA. Men with metastatic prostate cancer carrying a pathogenic germline variant in breast cancer genes: disclosure of genetic test results to relatives. Fam Cancer 2024; 23:165-175. [PMID: 38722431 PMCID: PMC11153271 DOI: 10.1007/s10689-024-00377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/14/2024] [Indexed: 06/06/2024]
Abstract
Some patients with metastatic prostate cancer carry a pathogenic germline variant (PV) in a gene, that is mainly associated with an increased risk of breast cancer in women. If they test positive for such a PV, prostate cancer patients are encouraged to disclose the genetic test result to relatives who are at risk in case the carrier status changes the relatives' medical care. Our study aimed to investigate how men who learned they carry a PV in BRCA1, BRCA2, PALB2, CHEK2 or ATM disclosed their carrier status to at-risk relatives and to assess the possible psychological burden for the carrier and their perception of the burden for relatives. In total, 23 men with metastatic prostate cancer carrying a PV completed the IRI questionnaire about family communication; 14 also participated in a semi-structured interview. Patients felt highly confident in discussing the genetic test result with relatives. The diagnosis of prostate cancer was experienced as a burden, whereas being informed about genetic testing results did in most cases not add to this burden. Two patients encountered negative experiences with family communication, as they considered the genetic test result to be more urgent than their relatives. This mixed-methods study shows that metastatic prostate cancer patients with a PV in genes mainly associated with increased risk of breast cancer feel well-equipped to communicate about this predisposition in their families. Carriers felt motivated to disclose their genetic test result to relatives. Most of them indicated that the disclosure was not experienced as a psychological burden.
Collapse
Affiliation(s)
- Michiel Vlaming
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Heidelberglaan 100, CX Utrecht, 3584, The Netherlands
| | - Margreet G E M Ausems
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Heidelberglaan 100, CX Utrecht, 3584, The Netherlands
| | - Gina Schijven
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Heidelberglaan 100, CX Utrecht, 3584, The Netherlands
| | - Inge M van Oort
- Department of Urology, Radboud University Medical Center, Geert Grooteplein Zuid 10, GA Nijmegen, 6525, The Netherlands
| | - C Marleen Kets
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein Zuid 10, GA Nijmegen, 6525, The Netherlands
| | - Fenne L Komdeur
- Department of Human Genetics, Amsterdam University Medical Centers, Meibergdreef 9, AZ Amsterdam, 1105, The Netherlands
| | - Lizet E van der Kolk
- Department of Clinical Genetics, the Netherlands Cancer Institute, Plesmanlaan 121, CX Amsterdam, 1066, The Netherlands
| | - Rogier A Oldenburg
- Department of Clinical Genetics, Erasmus Medical Center, Dr. Molewaterplein 40, GD Rotterdam, 3015, The Netherlands
| | - Rolf H Sijmons
- Department of Genetics, University Medical Center Groningen, Hanzeplein 1, GZ Groningen, 9713, The Netherlands
| | - Lambertus A L M Kiemeney
- Department of Urology, Radboud University Medical Center, Geert Grooteplein Zuid 10, GA Nijmegen, 6525, The Netherlands
- Department for Health Evidence, Radboud University Medical Center, Geert Grooteplein Zuid 10, GA Nijmegen, 6525, The Netherlands
| | - Eveline M A Bleiker
- Department of Clinical Genetics, the Netherlands Cancer Institute, Plesmanlaan 121, CX Amsterdam, 1066, The Netherlands.
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Plesmanlaan 121, CX Amsterdam, 1066, The Netherlands.
- Department of Clinical Genetics, Leiden University Medical Center, Albinusdreef 2, ZA Leiden, 2333, The Netherlands.
| |
Collapse
|
9
|
Fenton SE, VanderWeeler DJ, Rebbeck TR, Chen DL. Advancing Prostate Cancer Care: Treatment Approaches to Precision Medicine, Biomarker Innovations, and Equitable Access. Am Soc Clin Oncol Educ Book 2024; 44:e433138. [PMID: 38781539 DOI: 10.1200/edbk_433138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Genetic testing and molecular imaging have great promise in the accurate diagnosis and treatment of #prostate #cancer, but only if they can be developed and implemented to achieve equitable benefit for all men.
Collapse
Affiliation(s)
- Sarah E Fenton
- Northwestern University Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - David J VanderWeeler
- Northwestern University Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - Timothy R Rebbeck
- Dana-Farber Cancer Institute and Harvard TH Chan School of Public Health, Boston, MA
| | - Delphine L Chen
- University of Washington and Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
10
|
Fan Y, Liu Z, Chen Y, He Z. Homologous Recombination Repair Gene Mutations in Prostate Cancer: Prevalence and Clinical Value. Adv Ther 2024; 41:2196-2216. [PMID: 38767824 PMCID: PMC11133173 DOI: 10.1007/s12325-024-02844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/12/2024] [Indexed: 05/22/2024]
Abstract
Despite advances in our understanding of the molecular landscape of prostate cancer and the development of novel biomarker-driven therapies, the prognosis of patients with metastatic prostate cancer that is resistant to conventional hormonal therapy remains poor. Data suggest that a significant proportion of patients with metastatic castration-resistant prostate cancer (mCRPC) have mutations in homologous recombination repair (HRR) genes and may benefit from poly(ADP-ribose) polymerase (PARP) inhibitors. However, the adoption of HRR gene mutation testing in prostate cancer remains low, meaning there is a missed opportunity to identify patients who may benefit from targeted therapy with PARP inhibition, with or without novel hormonal agents. Here, we review the current knowledge regarding the clinical significance of HRR gene mutations in prostate cancer and discuss the efficacy of PARP inhibition in patients with mCRPC. This comprehensive overview aims to increase the clinical implementation of HRR gene mutation testing and inform future efforts in personalized treatment of prostate cancer.
Collapse
Affiliation(s)
- Yu Fan
- Department of Urology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, China
| | - Zhenhua Liu
- Global Medical Affairs, MSD China, Shanghai, China
| | - Yuke Chen
- Department of Urology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, China
| | - Zhisong He
- Department of Urology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, China.
| |
Collapse
|
11
|
Compérat E, Kläger J, Rioux-Leclercq N, Oszwald A, Wasinger G. Cribriform versus Intraductal: How to Determine the Difference. Cancers (Basel) 2024; 16:2002. [PMID: 38893122 PMCID: PMC11171388 DOI: 10.3390/cancers16112002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Over the years, our understanding of cribriform and intraductal prostate cancer (PCa) has evolved significantly, leading to substantial changes in their classification and clinical management. This review discusses the histopathological disparities between intraductal and cribriform PCa from a diagnostic perspective, aiming to aid pathologists in achieving accurate diagnoses. Furthermore, it discusses the ongoing debate surrounding the different recommendations between ISUP and GUPS, which pose challenges for practicing pathologists and complicates consensus among them. Recent studies have shown promising results in integrating these pathological features into clinical decision-making tools, improving predictions of PCa recurrence, cancer spread, and mortality. Future research efforts should focus on further unraveling the biological backgrounds of these entities and their implications for clinical management to ultimately improve PCa patient outcomes.
Collapse
Affiliation(s)
- Eva Compérat
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes Kläger
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - André Oszwald
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gabriel Wasinger
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
12
|
Shi Y, Wang H, Golijanin B, Amin A, Lee J, Sikov M, Hyams E, Pareek G, Carneiro BA, Mega AE, Lagos GG, Wang L, Wang Z, Cheng L. Ductal, intraductal, and cribriform carcinoma of the prostate: Molecular characteristics and clinical management. Urol Oncol 2024; 42:144-154. [PMID: 38485644 DOI: 10.1016/j.urolonc.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 04/15/2024]
Abstract
Prostatic acinar adenocarcinoma accounts for approximately 95% of prostate cancer (CaP) cases. The remaining 5% of histologic subtypes of CaP are known to be more aggressive and have recently garnered substantial attention. These histologic subtypes - namely, prostatic ductal adenocarcinoma (PDA), intraductal carcinoma of the prostate (IDC-P), and cribriform carcinoma of the prostate (CC-P) - typically exhibit distinct growth characteristics, genomic features, and unique oncologic outcomes. For example, PTEN mutations, which cause uncontrolled cell growth, are frequently present in IDC-P and CC-P. Germline mutations in homologous DNA recombination repair (HRR) genes (e.g., BRCA1, BRCA2, ATM, PALB2, and CHEK2) are discovered in 40% of patients with IDC-P, while only 9% of patients without ductal involvement had a germline mutation. CC-P is associated with deletions in common tumor suppressor genes, including PTEN, TP53, NKX3-1, MAP3K7, RB1, and CHD1. Evidence suggests abiraterone may be superior to docetaxel as a first-line treatment for patients with IDC-P. To address these and other critical pathological attributes, this review examines the molecular pathology, genetics, treatments, and oncologic outcomes associated with CC-P, PDA, and IDC-P with the objective of creating a comprehensive resource with a centralized repository of information on PDA, IDC-P, and CC-P.
Collapse
Affiliation(s)
- Yibo Shi
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Hanzhang Wang
- Department of Pathology and Laboratory Medicine, UConn Health, Farmington, CT
| | - Borivoj Golijanin
- Department of Surgery (Urology), Warren Alpert Medical School of Brown University, Minimally Invasive Urology Institute, Providence, RI, USA
| | - Ali Amin
- Department of Pathology and Laboratory Medicine, Department of Surgery (Urology), Brown University Warren Alpert Medical School, Lifespan Health, and the Legorreta Cancer Center at Brown University, Providence, RI, USA
| | - Joanne Lee
- Department of Pathology and Laboratory Medicine, Department of Surgery (Urology), Brown University Warren Alpert Medical School, Lifespan Health, and the Legorreta Cancer Center at Brown University, Providence, RI, USA
| | - Mark Sikov
- Department of Internal Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence RI
| | - Elias Hyams
- Department of Surgery (Urology), Warren Alpert Medical School of Brown University, Minimally Invasive Urology Institute, Providence, RI, USA
| | - Gyan Pareek
- Department of Surgery (Urology), Warren Alpert Medical School of Brown University, Minimally Invasive Urology Institute, Providence, RI, USA
| | - Benedito A Carneiro
- Division of Hematology and Oncology, The Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, RI
| | - Anthony E Mega
- Division of Hematology and Oncology, The Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, RI
| | - Galina G Lagos
- Division of Hematology and Oncology, The Legorreta Cancer Center at Brown University, Lifespan Cancer Institute, Providence, RI
| | - Lisha Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Zhiping Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Department of Surgery (Urology), Brown University Warren Alpert Medical School, Lifespan Health, and the Legorreta Cancer Center at Brown University, Providence, RI, USA.
| |
Collapse
|
13
|
Muthusamy S, Smith SC. Contemporary Diagnostic Reporting for Prostatic Adenocarcinoma: Morphologic Aspects, Molecular Correlates, and Management Perspectives. Adv Anat Pathol 2024; 31:188-201. [PMID: 38525660 DOI: 10.1097/pap.0000000000000444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The diagnosis and reporting of prostatic adenocarcinoma have evolved from the classic framework promulgated by Dr Donald Gleason in the 1960s into a complex and nuanced system of grading and reporting that nonetheless retains the essence of his remarkable observations. The criteria for the "Gleason patterns" originally proposed have been continually refined by consensuses in the field, and Gleason scores have been stratified into a patient-friendly set of prognostically validated and widely adopted Grade Groups. One product of this successful grading approach has been the opportunity for pathologists to report diagnoses that signal carefully personalized management, placing the surgical pathologist's interpretation at the center of patient care. At one end of the continuum of disease aggressiveness, personalized diagnostic care means to sub-stratify patients with more indolent disease for active surveillance, while at the other end of the continuum, reporting histologic markers signaling aggression allows sub-stratification of clinically significant disease. Whether contemporary reporting parameters represent deeper nuances of more established ones (eg, new criteria and/or quantitation of Gleason patterns 4 and 5) or represent additional features reported alongside grade (intraductal carcinoma, cribriform patterns of carcinoma), assessment and grading have become more complex and demanding. Herein, we explore these newer reporting parameters, highlighting the state of knowledge regarding morphologic, molecular, and management aspects. Emphasis is made on the increasing value and stakes of histopathologists' interpretations and reporting into current clinical risk stratification and treatment guidelines.
Collapse
Affiliation(s)
| | - Steven Christopher Smith
- Department of Pathology, VCU School of Medicine, Richmond, VA
- Department of Surgery, Division of Urology, VCU School of Medicine, Richmond, VA
- Richmond Veterans Affairs Medical Center, Richmond, VA
- Massey Comprehensive Cancer Center, VCU Health, Richmond, VA
| |
Collapse
|
14
|
Akhoundova D, Francica P, Rottenberg S, Rubin MA. DNA Damage Response and Mismatch Repair Gene Defects in Advanced and Metastatic Prostate Cancer. Adv Anat Pathol 2024; 31:61-69. [PMID: 38008971 PMCID: PMC10846598 DOI: 10.1097/pap.0000000000000422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Alterations in DNA damage response (DDR) and related genes are present in up to 25% of advanced prostate cancers (PCa). Most frequently altered genes are involved in the homologous recombination repair, the Fanconi anemia, and the mismatch repair pathways, and their deficiencies lead to a highly heterogeneous spectrum of DDR-deficient phenotypes. More than half of these alterations concern non- BRCA DDR genes. From a therapeutic perspective, poly-ADP-ribose polymerase inhibitors have demonstrated robust clinical efficacy in tumors with BRCA2 and BRCA1 alterations. Mismatch repair-deficient PCa, and a subset of CDK12-deficient PCa, are vulnerable to immune checkpoint inhibitors. Emerging data point to the efficacy of ATR inhibitors in PCa with ATM deficiencies. Still, therapeutic implications are insufficiently clarified for most of the non- BRCA DDR alterations, and no successful targeted treatment options have been established.
Collapse
Affiliation(s)
- Dilara Akhoundova
- Department for BioMedical Research
- Department of Medical Oncology
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Paola Francica
- Department for BioMedical Research
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Sven Rottenberg
- Department for BioMedical Research
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Mark A. Rubin
- Department for BioMedical Research
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Mahlow J, Barry M, Albertson DJ, Jo YJ, Balatico M, Seasor T, Gebrael G, Kumar SA, Sayegh N, Tripathi N, Agarwal N, Swami U, Sirohi D. Histologic patterns in prostatic adenocarcinoma are not predictive of mutations in the homologous recombination repair pathway. Hum Pathol 2024; 144:28-33. [PMID: 38278448 DOI: 10.1016/j.humpath.2024.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Somatic or germline homologous recombination repair (HRR) pathway gene mutations are commonly detected in prostate cancer, especially in advanced disease, and are associated with response to poly (ADP-ribose) polymerase (PARP) inhibitors. In this study, we evaluated whether histological patterns are predictive of HRR pathway gene mutations. The study population comprised 130 patients with advanced prostate carcinoma who underwent comprehensive genomic profiling (CGP) of tumor tissue at a CLIA-certified laboratory. HRR genes in the study included BRCA1, BRCA2, ATM, BARD1, BRIP, CHEK2, MRE11A, NBN, PALB2, RAD51C, RAD51D, EMSY, ATR, CHEK1, and FAM175A. Overall, 38 patients had mutations in BRCA1/2, 36 in other HRR genes, and 56 were negative for HRR mutations. All cases were re-reviewed and quantified by two genitourinary pathologists blinded to mutational status for the following histological patterns of prostate carcinoma: cribriform, ductal, intraductal carcinoma (IDC), small cell carcinoma, signet ring-like pattern, and lobular carcinoma-like pattern. Discordances were resolved by consensus review. Histologic patterns were analyzed for any correlation with mutations in HRR pathway genes (grouped as BRCA1/2 mutated or non-BRCA1/2 mutated) compared to tumors without mutations in HRR genes by Chi-square testing. Patterns with >20 % and >30 % of tumor volume were additionally evaluated for correlation with mutational status. We found no significant association between HRR pathway mutations and cribriform pattern, IDC, ductal carcinoma, small cell carcinoma, signet ring-like pattern, or lobular carcinoma-like patterns. Tumors with >20 % or >30 % histologic patterns by volume also demonstrated no significant association with mutational status. This study suggests that histopathologic examination alone is insufficient to distinguish prostate cancer with germline or somatic mutations in HRR pathway genes, highlighting the continuing importance of ancillary molecular diagnostics in guiding therapy selection for prostate cancer patients who may benefit from PARP inhibitors.
Collapse
Affiliation(s)
- Jon Mahlow
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT, USA
| | - Marc Barry
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT, USA
| | - Daniel J Albertson
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT, USA
| | - Yeon Jung Jo
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael Balatico
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT, USA
| | - Tori Seasor
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT, USA
| | - Georges Gebrael
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Shruti A Kumar
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Nicolas Sayegh
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Nishita Tripathi
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Umang Swami
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| | - Deepika Sirohi
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT, USA.
| |
Collapse
|
16
|
Zhao J, Xu N, Zhu S, Nie L, Zhang M, Zheng L, Cai D, Sun X, Chen J, Dai J, Ni Y, Wang Z, Zhang X, Liang J, Chen Y, Hu X, Pan X, Yin X, Liu H, Zhao F, Zhang B, Chen H, Miao J, Qin C, Zhao X, Yao J, Liu Z, Liao B, Wei Q, Li X, Liu J, Gao AC, Huang H, Shen P, Chen N, Zeng H, Sun G. Genomic and Evolutionary Characterization of Concurrent Intraductal Carcinoma and Adenocarcinoma of the Prostate. Cancer Res 2024; 84:154-167. [PMID: 37847513 DOI: 10.1158/0008-5472.can-23-1176] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/31/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Intraductal carcinoma of the prostate (IDC-P) is a lethal prostate cancer subtype that generally coexists with invasive high-grade prostate acinar adenocarcinoma (PAC) but exhibits distinct biological features compared with concomitant adenocarcinoma. In this study, we performed whole-exome, RNA, and DNA-methylation sequencing of IDC-P, concurrent invasive high-grade PAC lesions, and adjacent normal prostate tissues isolated from 22 radical prostatectomy specimens. Three evolutionary patterns of concurrent IDC-P and PAC were identified: early divergent, late divergent, and clonally distant. In contrast to those with a late divergent evolutionary pattern, tumors with clonally distant and early divergent evolutionary patterns showed higher genomic, epigenomic, transcriptional, and pathologic heterogeneity between IDC-P and PAC. Compared with coexisting PAC, IDC-P displayed increased expression of adverse prognosis-associated genes. Survival analysis based on an independent cohort of 505 patients with metastatic prostate cancer revealed that IDC-P carriers with lower risk International Society of Urological Pathology (ISUP) grade 1-4 adenocarcinoma displayed a castration-resistant free survival as poor as those with the highest risk ISUP grade 5 tumors that lacked concurrent IDC-P. Furthermore, IDC-P exhibited robust cell-cycle progression and androgen receptor activities, characterized by an enrichment of cellular proliferation-associated master regulators and genes involved in intratumoral androgen biosynthesis. Overall, this study provides a molecular groundwork for the aggressive behavior of IDC-P and could help identify potential strategies to improve treatment of IDC-P. SIGNIFICANCE The genomic, transcriptomic, and epigenomic characterization of concurrent intraductal carcinoma and adenocarcinoma of the prostate deepens the biological understanding of this lethal disease and provides a genetic basis for developing targeted therapies.
Collapse
Affiliation(s)
- Jinge Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Nanwei Xu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Sha Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Ling Nie
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Mengni Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Linmao Zheng
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Diming Cai
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaomeng Sun
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Junru Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jindong Dai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yuchao Ni
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Zhipeng Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xingming Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yuntian Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xu Hu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiuyi Pan
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoxue Yin
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Haoyang Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Fengnian Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Bei Zhang
- 3D Medicines Inc., Shanghai, P.R. China
| | - Hao Chen
- 3D Medicines Inc., Shanghai, P.R. China
| | | | - Cong Qin
- 3D Medicines Inc., Shanghai, P.R. China
| | | | - Jin Yao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Zhenhua Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Banghua Liao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiang Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jiyan Liu
- Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Allen C Gao
- Department of Urology, University of California Davis, Davis, California
| | - Haojie Huang
- Departments of Biochemistry and Molecular Biology and Urology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Pengfei Shen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Ni Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Guangxi Sun
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
17
|
Naito Y, Kato M, Nagayama J, Sano Y, Matsuo K, Inoue S, Sano T, Ishida S, Matsukawa Y, Tsuzuki T, Akamatsu S. Recent insights on the clinical, pathological, and molecular features of intraductal carcinoma of the prostate. Int J Urol 2024; 31:7-16. [PMID: 37728330 DOI: 10.1111/iju.15299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
Intraductal carcinoma of the prostate, a unique histopathologic entity that is often observed (especially in advanced prostate cancer), is characterized by the proliferation of malignant cells within normal acini or ducts surrounded by a basement membrane. Intraductal carcinoma of the prostate is almost invariably associated with an adjacent high-grade carcinoma and is occasionally observed as an isolated subtype. Intraductal carcinoma of the prostate has been demonstrated to be an independent poor prognostic factor for all stages of cancer, whether localized, de novo metastatic, or castration-resistant. It also has a characteristic genetic profile, including high genomic instability. Recognizing and differentiating it from other pathologies is therefore important in patient management, and morphological diagnostic criteria for intraductal carcinoma of the prostate have been established. This review summarizes and outlines the clinical and pathological features, differential diagnosis, molecular aspects, and management of intraductal carcinoma of the prostate, as described in previous studies. We also present a discussion and future perspectives regarding intraductal carcinoma of the prostate.
Collapse
Affiliation(s)
- Yushi Naito
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masashi Kato
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Jun Nagayama
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuta Sano
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazuna Matsuo
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Satoshi Inoue
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomoyasu Sano
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shohei Ishida
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshihisa Matsukawa
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Aichi, Japan
| | - Shusuke Akamatsu
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
18
|
Zhu S, Xu N, Zeng H. Molecular complexity of intraductal carcinoma of the prostate. Cancer Med 2024; 13:e6939. [PMID: 38379333 PMCID: PMC10879723 DOI: 10.1002/cam4.6939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 02/22/2024] Open
Abstract
Intraductal carcinoma of the prostate (IDC-P) is an aggressive subtype of prostate cancer characterized by the growth of tumor cells within the prostate ducts. It is often found alongside invasive carcinoma and is associated with poor prognosis. Understanding the molecular mechanisms driving IDC-P is crucial for improved diagnosis, prognosis, and treatment strategies. This review summarizes the molecular characteristics of IDC-P and their prognostic indications, comparing them to conventional prostate acinar adenocarcinoma, to gain insights into its unique behavior and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Sha Zhu
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Nanwei Xu
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
19
|
Bernhardt M, Kristiansen G. Molecular Alterations in Intraductal Carcinoma of the Prostate. Cancers (Basel) 2023; 15:5512. [PMID: 38067216 PMCID: PMC10705183 DOI: 10.3390/cancers15235512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 02/02/2025] Open
Abstract
Intraductal carcinoma of the prostate is most commonly associated with high-grade invasive prostate cancer. However, isolated IDC-P without adjacent cancer or high-grade cancer is also well known. Common genetic alterations present in IDC-P with adjacent high-grade prostate cancer are those described in high-grade tumors, such as PTEN loss (69-84%). In addition, the rate of LOH involving TP53 and RB1 is significantly higher. IDC-P is common in the TCGA molecular subset of SPOP mutant cancers, and the presence of SPOP mutations are more likely in IDC-P bearing tumors. IDC-P without adjacent high-grade cancers are by far less common. They are less likely to have PTEN loss (47%) and rarely harbor an ERG fusion (7%). Molecular alterations that may predispose a person to the development of IDC-P include the loss of BRCA2 and PTEN as well as mutations in SPOP. However, the causative nature of these genetic alterations is yet to be validated.
Collapse
Affiliation(s)
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany;
| |
Collapse
|
20
|
Zhang H, Yang X, Xie J, Cheng X, Chen J, Shen M, Ding W, Wang S, Zhang Z, Wang C, Zhao M. Clinicopathological and molecular analysis of microsatellite instability in prostate cancer: a multi-institutional study in China. Front Oncol 2023; 13:1277233. [PMID: 37901334 PMCID: PMC10613026 DOI: 10.3389/fonc.2023.1277233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Background Microsatellite instability (MSI), or mismatch repair-deficiency (dMMR), is rare in prostate cancers (PCas). The histological and molecular features of PCas with MSI/dMMR are incompletely described. Thus, we sought to identify the characteristics of PCas with MSI/dMMR. Methods and results We analyzed 1,141 primary treatment-naive PCas by MMR-related protein immunohistochemistry (MLH1, PMS2, MSH2, and MSH6). We identified eight cases exhibiting MSI/dMMR (0.7%, 8/1141). Of these, six tumors had both MSH2 and MSH6 protein loss, one had both MLH1 and PMS2 protein loss, and one had only MSH6 loss. Histologically, MSI/dMMR-PCas frequently demonstrated high histological grade (Grade Group 4 or 5), ductal/intraductal histology (6/8 cases), pleomorphic giant-cell features (4/8 cases), and conspicuous tumor lymphocytic infiltration (8/8 cases). Polymerase chain reaction-based analysis of seven MSI/dMMR tumors revealed two MSI-H tumors with loss of both MSH2 and MSH6 proteins. Subsequently, the seven cases underwent next-generation sequencing (NGS) analysis with a highly validated targeted panel; four were MSI. All cases had a high tumor mutation burden (median: 45.3 mutations/Mb). Overall, the MSI/dMMR-PCas showed a high frequency of DNA damage-repair pathway gene changes, including five with pathogenic somatic or germline MMR gene mutations. Activating mutations in the MAPK pathway, PI3K pathway, and WNT/β-catenin pathway were common. TMPRSS2::ERG rearrangement was identified in one case (1/7, 14.3%). Conclusions Several pathological features are associated with MSI/dMMR in PCas. Identification of these features may help to select patients for genetic screening. As MSI/dMMR-PCas are enriched for actionable mutations, patients should be offered NGS to guide standard-of-care treatment.
Collapse
Affiliation(s)
- Huizhi Zhang
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Xiaoqun Yang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jialing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Cheng
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Jiayi Chen
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Miaomiao Shen
- Department of Pathology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Wenyi Ding
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Suying Wang
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Zhe Zhang
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming Zhao
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| |
Collapse
|
21
|
Rendon RA, Selvarajah S, Wyatt AW, Kolinsky M, Schrader KA, Fleshner NE, Kinnaird A, Merrimen J, Niazi T, Saad F, Shayegan B, Wood L, Chi KN. 2023 Canadian Urological Association guideline: Genetic testing in prostate cancer. Can Urol Assoc J 2023; 17:314-325. [PMID: 37851913 PMCID: PMC10581723 DOI: 10.5489/cuaj.8588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Affiliation(s)
| | - Shamini Selvarajah
- Department of Clinical Laboratory Genetics, UHN Laboratory Medicine Program, University of Toronto, Toronto, ON, Canada
| | - Alexander W. Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Michael Kolinsky
- Division of Medical Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Neil E. Fleshner
- Division of Urology, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Adam Kinnaird
- Divison of Urology, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | | | - Tamim Niazi
- Division of Radiation Oncology, Department of Oncology, McGill University, Montreal, QC, Canada
| | - Fred Saad
- Division of Urology, Department of Surgery, Université de Montréal, Montreal, QC, Canada
| | - Bobby Shayegan
- Division of Urology, Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Lori Wood
- Division of Medical Oncology, Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada
| | | |
Collapse
|
22
|
Hanson H, Astiazaran-Symonds E, Amendola LM, Balmaña J, Foulkes WD, James P, Klugman S, Ngeow J, Schmutzler R, Voian N, Wick MJ, Pal T, Tischkowitz M, Stewart DR. Management of individuals with germline pathogenic/likely pathogenic variants in CHEK2: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2023; 25:100870. [PMID: 37490054 PMCID: PMC10623578 DOI: 10.1016/j.gim.2023.100870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 07/26/2023] Open
Abstract
PURPOSE Although the role of CHEK2 germline pathogenic variants in cancer predisposition is well known, resources for managing CHEK2 heterozygotes in clinical practice are limited. METHODS An international workgroup developed guidance on clinical management of CHEK2 heterozygotes informed by peer-reviewed publications from PubMed. RESULTS Although CHEK2 is considered a moderate penetrance gene, cancer risks may be considered as a continuous variable, which are influenced by family history and other modifiers. Consequently, early cancer detection and prevention for CHEK2 heterozygotes should be guided by personalized risk estimates. Such estimates may result in both downgrading lifetime breast cancer risks to those similar to the general population or upgrading lifetime risk to a level at which CHEK2 heterozygotes are offered high-risk breast surveillance according to country-specific guidelines. Risk-reducing mastectomy should be guided by personalized risk estimates and shared decision making. Colorectal and prostate cancer surveillance should be considered based on assessment of family history. For CHEK2 heterozygotes who develop cancer, no specific targeted medical treatment is recommended at this time. CONCLUSION Systematic prospective data collection is needed to establish the spectrum of CHEK2-associated cancer risks and to determine yet-unanswered questions, such as the outcomes of surveillance, response to cancer treatment, and survival after cancer diagnosis.
Collapse
Affiliation(s)
- Helen Hanson
- Southwest Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Esteban Astiazaran-Symonds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD; Department of Medicine, College of Medicine-Tucson, University of Arizona, Tucson, AZ
| | | | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Medical Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - William D Foulkes
- Departments of Human Genetics, Oncology and Medicine, McGill University, Montréal, QC, Canada
| | - Paul James
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia; Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Susan Klugman
- Division of Reproductive & Medical Genetics, Department of Obstetrics & Gynecology and Women's Health, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Joanne Ngeow
- Genomic Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Rita Schmutzler
- Center of Integrated Oncology (CIO), University of Cologne, Cologne, Germany; Center for Hereditary Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
| | - Nicoleta Voian
- Providence Genetic Risk Clinic, Providence Cancer Institute, Portland, OR
| | - Myra J Wick
- Departments of Obstetrics and Gynecology and Clinical Genomics, Mayo Clinic, Rochester, MN
| | - Tuya Pal
- Department of Medicine, Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| |
Collapse
|
23
|
Grypari IM, Tzelepi V, Gyftopoulos K. DNA Damage Repair Pathways in Prostate Cancer: A Narrative Review of Molecular Mechanisms, Emerging Biomarkers and Therapeutic Targets in Precision Oncology. Int J Mol Sci 2023; 24:11418. [PMID: 37511177 PMCID: PMC10380086 DOI: 10.3390/ijms241411418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer (PCa) has a distinct molecular signature, including characteristic chromosomal translocations, gene deletions and defective DNA damage repair mechanisms. One crucial pathway involved is homologous recombination deficiency (HRD) and it is found in almost 20% of metastatic castrate-resistant PCa (mCRPC). Inherited/germline mutations are associated with a hereditary predisposition to early PCa development and aggressive behavior. BRCA2, ATM and CHECK2 are the most frequently HRD-mutated genes. BRCA2-mutated tumors have unfavorable clinical and pathological characteristics, such as intraductal carcinoma. PARP inhibitors, due to the induction of synthetic lethality, have been therapeutically approved for mCRPC with HRD alterations. Mutations are detected in metastatic tissue, while a liquid biopsy is utilized during follow-up, recognizing acquired resistance mechanisms. The mismatch repair (MMR) pathway is another DNA repair mechanism implicated in carcinogenesis, although only 5% of metastatic PCa is affected. It is associated with aggressive disease. PD-1 inhibitors have been used in MMR-deficient tumors; thus, the MMR status should be tested in all metastatic PCa cases. A surrogate marker of defective DNA repair mechanisms is the tumor mutational burden. PDL-1 expression and intratumoral lymphocytes have ambivalent predictive value. Few experimental molecules have been so far proposed as potential biomarkers. Future research may further elucidate the role of DNA damage pathways in PCa, revealing new therapeutic targets and predictive biomarkers.
Collapse
Affiliation(s)
- Ioanna-Maria Grypari
- Cytology Department, Aretaieion University Hospital, National Kapodistrian University of Athens, 11528 Athens, Greece
| | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Kostis Gyftopoulos
- Department of Anatomy, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
24
|
Liu Y, Jin B, Shen C, Gao X, Qi X, Ma M, Li H, Hao H, Tang Q, Yang K, Mi Y, Guan J, Feng X, He Z, Li H, Yu W. Somatic and germline aberrations in homologous recombination repair genes in Chinese prostate cancer patients. Front Oncol 2023; 13:1086517. [PMID: 37064136 PMCID: PMC10091863 DOI: 10.3389/fonc.2023.1086517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
Simple summarySomatic and germline aberrations in homologous recombinant repair (HHR) genes are associated with increased incidence and poor prognosis for prostate cancer. Through next-generation sequencing of prostate cancer patients across all clinical states from north China, here the authors identified a somatic mutational rate of 3% and a germline mutational rate of 3.9% for HRR genes using 200 tumor tissues and 714 blood specimens. Thus, mutational rates in HRR genes were lower compared with previous studies.BackgroundHomologous recombination repair deficiency is associated with higher risk and poorer prognosis for prostate cancer. However, the landscapes of somatic and germline mutations in these genes remain poorly defined in Chinese patients, especially for those with localized disease and those from north part of China. In this study, we explore the genomic profiles of these patients.MethodsWe performed next-generation sequencing with 200 tumor tissues and 714 blood samples from prostate cancer patients at Peking University First Hospital, using a 32 gene panel including 19 homologous recombination repair genes.ResultsTP53, PTEN, KRAS were the most common somatic aberrations; BRCA2, NBN, ATM were the most common germline aberrations. In terms of HRR genes, 3% (6/200) patients harbored somatic aberrations, and 3.8% (28/714) patients harbored germline aberrations. 98.0% (196/200) somatic-tested and 72.7% (519/714) germline tested patients underwent prostatectomy, of which 28.6% and 42.0% had Gleason scores ≥8 respectively. Gleason scores at either biopsy or prostatectomy were predictive for somatic aberrations in general and in TP53; while age of onset <60 years old, PSA at diagnosis, and Gleason scores at biopsy were clinical factors associated with positive germline aberrations in BRCA2/ATM.ConclusionsOur results showed a distinct genomic profile in homologous recombination repair genes for patients with prostate cancer across all clinical states from north China. Clinicians may consider to expand the prostate cancer patients receiving genetic tests to include more individuals due to the weak guiding role by the clinical factors currently available.
Collapse
Affiliation(s)
- Yixiao Liu
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Bo Jin
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Cheng Shen
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Xianshu Gao
- Department of Radiation Therapy, Peking University First Hospital, Beijing, China
| | - Xin Qi
- Department of Radiation Therapy, Peking University First Hospital, Beijing, China
| | - Mingwei Ma
- Department of Radiation Therapy, Peking University First Hospital, Beijing, China
| | - Hongzhen Li
- Department of Radiation Therapy, Peking University First Hospital, Beijing, China
| | - Han Hao
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Qi Tang
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Kaiwei Yang
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Yue Mi
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Jie Guan
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Xuero Feng
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - Zhisong He
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Haixia Li
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
- *Correspondence: Wei Yu, ; Haixia Li,
| | - Wei Yu
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- National Urological Cancer Center, Beijing, China
- *Correspondence: Wei Yu, ; Haixia Li,
| |
Collapse
|
25
|
Naito Y, Kato M, Kawanishi H, Yamamoto A, Sakamoto F, Hirabayashi H, Kobayashi M, Matsukawa Y, Kimura T, Araki H, Nishikimi T, Kondo A, Yoshino Y, Hashimoto Y, Nakano Y, Tsuzuki T. Clinical utility of intraductal carcinoma of the prostate in treatment selection for metastatic hormone-sensitive prostate cancer. Prostate 2023; 83:307-315. [PMID: 36420892 DOI: 10.1002/pros.24462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/25/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND In recent years, the usefulness of androgen receptor axis-targeted agents (ARATs) such as abiraterone, enzalutamide, and apalutamide for the upfront treatment of metastatic hormone-sensitive prostate cancer (mHSPC) has been demonstrated. However, it remains unclear which patients would truly benefit from these treatments. Furthermore, intraductal carcinoma of the prostate (IDC-P) is a known poor prognostic factor in patients with prostate cancer. We investigated the association between the presence of IDC-P and response to therapy in patients with mHSPC. METHODS This retrospective analysis included 318 patients with mHSPC who received treatment at Nagoya University and its 12 affiliated institutions between 2014 and 2021. Their biopsy specimens were evaluated for the presence of IDC-P. The patients were classified according to their first-line treatment into the ARAT (n = 100, receiving a combination of androgen-deprivation therapy [ADT] and ARAT) or conventional therapy (n = 218, receiving ADT with or without standard antiandrogen agents) group. We compared the overall survival (OS) and second progression-free survival (PFS2) between the ARAT and conventional groups according to the presence of IDC-P to evaluate whether presence of IDC-P predicts the response to each treatment. PFS2 was defined as the period from mHSPC diagnosis to disease progression on second-line treatment or death. Propensity score matching with one-to-one nearest-neighbor matching was used to minimize the potential effects of selection bias and confounding factors. The clinicopathological variables of the patients were well-balanced after propensity score matching. RESULTS Most patients in the ARAT (79%) and conventional therapy (71%) groups were ICD-P positive. In the propensity score-matched cohort, the OS and PFS2 of IDC-P-positive patients were significantly longer in the ARAT group than in the conventional group (OS: hazard ratio [HR], 0.36; p = 0.047; PFS2: HR, 0.30; p < 0.001). In contrast, no difference in OS and PFS2 was observed between the ARAT and conventional groups in IDC-P-negative patients (OS: HR, 1.09; p = 0.920; PFS2: HR, 0.40; p = 0.264). CONCLUSIONS The findings highlight a high prevalence of IDC-P among patients with mHSPC and suggest that IDC-P positivity may be a reliable indicator that ARAT should be implemented as first-line treatment.
Collapse
Affiliation(s)
- Yushi Naito
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Kato
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideji Kawanishi
- Department of Urology, Aichi Medical University Hospital, Nagakute, Japan
| | - Akiyuki Yamamoto
- Department of Urology, Toyohashi Municipal Hospital, Toyohashi, Japan
| | | | - Hiroki Hirabayashi
- Department of Urology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Japan
| | | | - Yoshihisa Matsukawa
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tohru Kimura
- Department of Urology, Japan Community Healthcare Organization Chukyo Hospital, Nagoya, Japan
| | | | - Toshinori Nishikimi
- Department of Urology, Japanese Red Cross Nagoya Daini Hospital, Nagoya, Japan
| | - Atsuya Kondo
- Department of Urology, Kariya Toyota General Hospital, Kariya, Japan
| | - Yasushi Yoshino
- Department of Urology, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | | | - Yojiro Nakano
- Department of Urology, Tosei General Hospital, Seto, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| |
Collapse
|
26
|
Catalano M, Generali D, Gatti M, Riboli B, Paganini L, Nesi G, Roviello G. DNA repair deficiency as circulating biomarker in prostate cancer. Front Oncol 2023; 13:1115241. [PMID: 36793600 PMCID: PMC9922904 DOI: 10.3389/fonc.2023.1115241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
Deleterious aberrations in DNA repair genes are actionable in approximately 25% of metastatic castration-resistant prostate cancers (mCRPC) patients. Homology recombination repair (HRR) is the DNA damage repair (DDR) mechanism most frequently altered in prostate cancer; of note BRCA2 is the most frequently altered DDR gene in this tumor. Poly ADP-ribose polymerase inhibitors showed antitumor activity with a improvement in overall survival in mCRPC carrying somatic and/or germline alterations of HHR. Germline mutations are tested on peripheral blood samples using DNA extracted from peripheral blood leukocytes, while the somatic alterations are assessed by extracting DNA from a tumor tissue sample. However, each of these genetic tests have some limitations: the somatic tests are related to the sample availability and tumor heterogeneity, while the germline testing are mainly related to the inability to detect somatic HRR mutations. Therefore, the liquid biopsy, a non-invasive and easily repeatable test compared to tissue test, could identified somatic mutation detected on the circulating tumor DNA (ctDNA) extracted from a plasma. This approach should better represent the heterogeneity of the tumor compared to the primary biopsy and maybe helpful in monitoring the onset of potential mutations involved in treatment resistance. Furthermore, ctDNA may inform about timing and potential cooperation of multiple driver genes aberration guiding the treatment options in patients with mCRPC. However, the clinical use of ctDNA test in prostate cancer compared to blood and tissue testing are currently very limited. In this review, we summarize the current therapeutic indications in prostate cancer patients with DDR deficiency, the recommendation for germline and somatic-genomic testing in advanced PC and the advantages of the use liquid biopsy in clinical routine for mCRPC.
Collapse
Affiliation(s)
- Martina Catalano
- School of Human Health Sciences, University of Florence, Florence, Italy
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital Trieste, Trieste, Italy
| | - Marta Gatti
- Servizio di Citogenetica e Genetica - Azienda Socio-Sanitaria Territoriale (ASST) di Cremona, Cremona, Italy
| | - Barbara Riboli
- Servizio di Citogenetica e Genetica - Azienda Socio-Sanitaria Territoriale (ASST) di Cremona, Cremona, Italy
| | - Leda Paganini
- Servizio di Citogenetica e Genetica - Azienda Socio-Sanitaria Territoriale (ASST) di Cremona, Cremona, Italy
| | - Gabriella Nesi
- Department of Health Sciences, University of Florence, Florence, Italy
| | | |
Collapse
|
27
|
Prostate cancer risk, screening and management in patients with germline BRCA1/2 mutations. Nat Rev Urol 2023; 20:205-216. [PMID: 36600087 DOI: 10.1038/s41585-022-00680-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 01/05/2023]
Abstract
Mutations in the BRCA1 and BRCA2 tumour suppressor genes are associated with prostate cancer risk; however, optimal screening protocols for individuals with these mutations have been a subject of debate. Several prospective studies of prostate cancer incidence and screening among BRCA1/2 mutation carriers have indicated at least a twofold to fourfold increase in prostate cancer risk among carriers of BRCA2 mutations compared with the general population. Moreover, BRCA2 mutations are associated with more aggressive, high-grade disease characteristics at diagnosis, more aggressive clinical behaviour and greater prostate cancer-specific mortality. The risk for BRCA1 mutations seems to be attenuated compared with BRCA2. Prostate-specific antigen (PSA) measurement or prostate magnetic resonance imaging (MRI) alone is an imperfect indicator of clinically significant prostate cancer; therefore, BRCA1/2 mutation carriers might benefit from refined risk stratification strategies. However, the long-term impact of prostate cancer screening is unknown, and the optimal management of BRCA1/2 carriers with prostate cancer has not been defined. Whether timely localized therapy can improve overall survival in the screened population is uncertain. Long-term results of prospective studies are awaited to confirm the optimal screening strategies and benefits of prostate cancer screening among BRCA1/2 mutation carriers, and whether these approaches ultimately have a positive impact on survival and quality of life in these patients.
Collapse
|
28
|
Vlaming M, Bleiker EMA, van Oort IM, Kiemeney LALM, Ausems MGEM. Mainstream germline genetic testing in men with metastatic prostate cancer: design and protocol for a multicenter observational study. BMC Cancer 2022; 22:1365. [PMID: 36581909 PMCID: PMC9801568 DOI: 10.1186/s12885-022-10429-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In international guidelines, germline genetic testing is recommended for patients with metastatic prostate cancer. Before undergoing germline genetic testing, these patients should receive pre-test counseling. In the standard genetic care pathway, pre-test counseling is provided by a healthcare professional of a genetics department. Because the number of patients with metastatic prostate cancer is large, the capacity in the genetics departments might be insufficient. Therefore, we aim to implement so-called mainstream genetic testing in the Netherlands for patients with metastatic prostate cancer. In a mainstream genetic testing pathway, non-genetic healthcare professionals discuss and order germline genetic testing. In our DISCOVER study, we will assess the experiences among patients and non-genetic healthcare professionals with this new pathway. METHODS A multicenter prospective observational cohort study will be conducted in 15 hospitals, in different regions of the Netherlands. We developed an online training module on genetics in prostate cancer and the counseling of patients. After completion of this module, non-genetic healthcare professionals will provide pre-test counseling and order germline genetic testing in metastatic prostate cancer patients. Both non-genetic healthcare professionals and patients receive three questionnaires. We will determine the experience with mainstream genetic testing, based on satisfaction and acceptability. Patients with a pathogenic germline variant will also be interviewed. We will determine the efficacy of the mainstreaming pathway, based on time investment for non-genetic healthcare professionals and the prevalence of pathogenic germline variants. DISCUSSION This study is intended to be one of the largest studies on mainstream genetic testing in prostate cancer. The results of this study can improve the mainstream genetic testing pathway in patients with prostate cancer. TRIAL REGISTRATION The study is registered in the WHO's International Clinical Trials Registry Platform (ICTRP) under number NL9617.
Collapse
Affiliation(s)
- Michiel Vlaming
- Division Laboratories, Pharmacy and Biomedical Genetics, dept. of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands
| | - Eveline M A Bleiker
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
- Family Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Inge M van Oort
- Department of Urology, Radboud university medical center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| | - Lambertus A L M Kiemeney
- Department of Urology, Radboud university medical center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
- Department for Health Evidence, Radboud university medical center, Geert Grooteplein Zuid 21, 6525, EZ, Nijmegen, The Netherlands
| | - Margreet G E M Ausems
- Division Laboratories, Pharmacy and Biomedical Genetics, dept. of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands.
| |
Collapse
|
29
|
Prevalence of mismatch repair genes mutations and clinical activity of PD-1 therapy in Chinese prostate cancer patients. Cancer Immunol Immunother 2022; 72:1541-1551. [DOI: 10.1007/s00262-022-03347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
|
30
|
Characteristics of BRCA2 Mutated Prostate Cancer at Presentation. Int J Mol Sci 2022; 23:ijms232113426. [PMID: 36362213 PMCID: PMC9659116 DOI: 10.3390/ijms232113426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Genetic alterations of DNA repair genes, particularly BRCA2 in patients with prostate cancer, are associated with aggressive behavior of the disease. It has reached consensus that somatic and germline tests are necessary when treating advanced prostate cancer patients. Yet, it is unclear whether the mutations are associated with any presenting clinical features. We assessed the incidences and characteristics of BRCA2 mutated cancers by targeted sequencing in 126 sets of advanced prostate cancer tissue sequencing data. At the time of diagnosis, cT3/4, N1 and M1 stages were 107 (85%), 54 (43%) and 35 (28%) samples, respectively. BRCA2 alterations of clinical significance by AMP/ASCO/CAP criteria were found in 19 of 126 samples (15.1%). The BRCA2 mutated cancer did not differ in the distributions of TNM stage, Gleason grade group or histological subtype compared to BRCA2 wild-type cancers. Yet, they had higher tumor mutation burden, and higher frequency of ATM and BRCA1 mutations (44% vs. 10%, p = 0.002 and 21% vs. 4%, p = 0.018, respectively). Of the metastatic subgroup (M1, n = 34), mean PSA was significantly lower in BRCA2 mutated cancers than wild-type (p = 0.018). In the non-metastatic subgroup (M0, n = 64), PSA was not significantly different (p = 0.425). A similar trend was noted in multiple metastatic prostate cancer public datasets. We conclude that BRCA2 mutated metastatic prostate cancers may present in an advanced stage with relatively low PSA.
Collapse
|
31
|
Kulkarni A, Wafik M. Genomics makes prostate cancer personal. TRENDS IN UROLOGY & MEN'S HEALTH 2022. [DOI: 10.1002/tre.883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Zhang D, Xu X, Wei Y, Chen X, Li G, Lu Z, Zhang X, Ren X, Wang S, Qin C. Prognostic Role of DNA Damage Response Genes Mutations and their Association With the Sensitivity of Olaparib in Prostate Cancer Patients. Cancer Control 2022; 29:10732748221129451. [PMID: 36283420 PMCID: PMC9608002 DOI: 10.1177/10732748221129451] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective Evidence shows that gene mutation is a significant proportion of genetic factors associated with prostate cancer. The DNA damage response (DDR) is a signal cascade network that aims to maintain genomic integrity in cells. This comprehensive study was performed to determine the link between different DNA damage response gene mutations and prostate cancer. Materials and methods A systematic literature search was performed using PubMed, Web of Science, and Embase. Papers published up to February 1, 2022 were retrieved. The DDR gene mutations associated with prostate cancer were identified by referring to relevant research and review articles. Data of prostate cancer patients from multiple PCa cohorts were obtained from cBioPortal. The OR or HR and 95% CIs were calculated using both fixed-effects models (FEMs) and random-effects models (REMs). Results Seventy-four studies were included in this research, and the frequency of 13 DDR genes was examined. Through the analysis of 33 articles that focused on the risk estimates of DDR genes between normal people and PCa patients, DDR genes were found to be more common in prostate cancer patients (OR = 3.6293 95% CI [2.4992; 5.2705]). Also, patients in the mutated group had a worse OS and DFS outcome than those in the unmutated group (P < .05). Of the 13 DDR genes, the frequency of 9 DDR genes in prostate cancer was less than 1%, and despite differences in race, BRCA2 was the potential gene with the highest frequency (REM Frequency = .0400, 95% CI .0324 - .0541). The findings suggest that mutations in genes such as ATR, BLM, and MLH1 in PCa patients may increase the sensitivity of Olaparib, a PARP inhibitor. Conclusion These results demonstrate that mutation in any DDR pathway results in a poor prognosis for PCa patients. Furthermore, mutations in ATR, BLM, and MLH1 or the expression of POLR2L, PMS1, FANCE, and other genes significantly influence Olaparib sensitivity, which may be underlying therapeutic targets in the future.
Collapse
Affiliation(s)
- Dong Zhang
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xinchi Xu
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuang Wei
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xinglin Chen
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Guangyao Li
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhongwen Lu
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xu Zhang
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaohan Ren
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shangqian Wang
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China,Chao Qin, The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China. ; Shangqian Wang, The State Key Lab of Reproductive; Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Chao Qin
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China,Chao Qin, The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China. ; Shangqian Wang, The State Key Lab of Reproductive; Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
33
|
Yang M, Zhu X, Shen Y, He Q, Qin Y, Shao Y, Yuan L, Ye H. GPX2 predicts recurrence-free survival and triggers the Wnt/β-catenin/EMT pathway in prostate cancer. PeerJ 2022; 10:e14263. [PMID: 36312753 PMCID: PMC9615941 DOI: 10.7717/peerj.14263] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023] Open
Abstract
Objective This study aimed to establish a prognostic model related to prostate cancer (PCa) recurrence-free survival (RFS) and identify biomarkers. Methods The RFS prognostic model and key genes associated with PCa were established using Least Absolute Shrinkage and Selection Operator (LASSO) and Cox regression from the Cancer Genome Atlas (TCGA)-PRAD and the Gene Expression Omnibus (GEO) GSE46602 datasets. The weighted gene co-expression network (WGCNA) was used to analyze the obtained key modules and genes, and gene set enrichment analysis (GSEA) was performed. The phenotype and mechanism were verified in vitro. Results A total of 18 genes were obtained by LASSO regression, and an RFS model was established and verified (TCGA, AUC: 0.774; GSE70768, AUC: 0.759). Three key genes were obtained using multivariate Cox regression. WGCNA analysis obtained the blue module closely related to the Gleason score (cor = -0.22, P = 3.3e - 05) and the unique gene glutathione peroxidase 2 (GPX2). Immunohistochemical analysis showed that the expression of GPX2 was significantly higher in patients with PCa than in patients with benign prostatic hyperplasia (P < 0.05), but there was no significant correlation with the Gleason score (GSE46602 and GSE6919 verified), which was also verified in the GSE46602 and GSE6919 datasets. The GSEA results showed that GPX2 expression was mainly related to the epithelial-mesenchymal transition (EMT) and Wnt pathways. Additionally, GPX2 expression significantly correlated with eight kinds of immune cells. In human PCa cell lines LNCaP and 22RV1, si-GPX2 inhibited proliferation and invasion, and induced apoptosis when compared with si-NC. The protein expression of Wnt3a, glycogen synthase kinase 3β (GSK3β), phosphorylated (p)-GSK3β, β-catenin, p-β-catenin, c-myc, cyclin D1, and vimentin decreased; the expression of E-cadherin increased; and the results for over-GPX2 were opposite to those for over-NC. The protein expression of GPX2 decreased, and β-catenin was unchanged in the si-GPX2+ SKL2001 group compared with the si-NC group. Conclusion We successfully constructed the PCa RFS prognostic model, obtained RFS-related biomarker GPX2, and found that GPX2 regulated PCa progression and triggered Wnt/β-catenin/EMT pathway molecular changes.
Collapse
Affiliation(s)
- Ming Yang
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xudong Zhu
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Shen
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi He
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Qin
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiqun Shao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Yuan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hesong Ye
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
34
|
Kench JG, Amin MB, Berney DM, Compérat EM, Cree IA, Gill AJ, Hartmann A, Menon S, Moch H, Netto GJ, Raspollini MR, Rubin MA, Tan PH, Tsuzuki T, Turjalic S, van der Kwast TH, Zhou M, Srigley JR. WHO Classification of Tumours fifth edition: evolving issues in the classification, diagnosis, and prognostication of prostate cancer. Histopathology 2022; 81:447-458. [PMID: 35758185 PMCID: PMC9542779 DOI: 10.1111/his.14711] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
Abstract
The fifth edition of the WHO Classification of Tumours of the Urinary and Male Genital Systems encompasses several updates to the classification and diagnosis of prostatic carcinoma as well as incorporating advancements in the assessment of its prognosis, including recent grading modifications. Some of the salient aspects include: (1) recognition that prostatic intraepithelial neoplasia (PIN)-like carcinoma is not synonymous with a pattern of ductal carcinoma, but better classified as a subtype of acinar adenocarcinoma; (2) a specific section on treatment-related neuroendocrine prostatic carcinoma in view of the tight correlation between androgen deprivation therapy and the development of prostatic carcinoma with neuroendocrine morphology, and the emerging data on lineage plasticity; (3) a terminology change of basal cell carcinoma to "adenoid cystic (basal cell) cell carcinoma" given the presence of an underlying MYB::NFIB gene fusion in many cases; (4) discussion of the current issues in the grading of acinar adenocarcinoma and the prognostic significance of cribriform growth patterns; and (5) more detailed coverage of intraductal carcinoma of prostate (IDC-P) reflecting our increased knowledge of this entity, while recommending the descriptive term atypical intraductal proliferation (AIP) for lesions falling short of IDC-P but containing more atypia than typically seen in high-grade prostatic intraepithelial neoplasia (HGPIN). Lesions previously regarded as cribriform patterns of HGPIN are now included in the AIP category. This review discusses these developments, summarising the existing literature, as well as the emerging morphological and molecular data that underpins the classification and prognostication of prostatic carcinoma.
Collapse
Affiliation(s)
- James G Kench
- Department of Tissue Pathology and Diagnostic OncologyRoyal Prince Alfred Hospital, NSW Health PathologyCamperdownNew South WalesAustralia
- The University of SydneyCamperdownNew South WalesAustralia
| | - Mahul B Amin
- The University of Tennessee Health Science CenterMemphisTNUSA
| | - Daniel M Berney
- Department of Cellular Pathology, Bartshealth NHS TrustRoyal London HospitalLondonUK
| | - Eva M Compérat
- Department of PathologyUniversity of ViennaViennaAustria
| | - Ian A Cree
- International Agency for Research on CancerLyonFrance
| | - Anthony J Gill
- The University of SydneyCamperdownNew South WalesAustralia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Pacific HighwaySt LeonardsNew South WalesAustralia
| | - Arndt Hartmann
- Institute of PathologyUniversity Hospital Erlangen, Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
| | - Santosh Menon
- Department of PathologyTata Memorial Centre, Homi Bhabha National InstituteMumbaiIndia
| | - Holger Moch
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - George J Netto
- Heersink School of MedicineThe University of Alabama at BirminghamBirminghamALUSA
| | - Maria R Raspollini
- Histopathology and Molecular DiagnosticsUniversity Hospital CareggiFlorenceItaly
| | - Mark A Rubin
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Puay Hoon Tan
- Division of Pathology, Singapore General HospitalSingaporeSingapore
| | - Toyonori Tsuzuki
- Department of Surgical PathologyAichi Medical University HospitalNagakuteJapan
| | - Samra Turjalic
- Skin and Renal UnitsRoyal Marsden NHS Foundation TrustLondonUK
- Cancer Dynamics LaboratoryThe Francis Crick InstituteLondonUK
| | - Theo H van der Kwast
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| | - Ming Zhou
- Pathology and Laboratory MedicineTufts Medical CenterBostonMAUSA
| | - John R Srigley
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
35
|
Abstract
BACKGROUND An important fraction (>/~10%) of men with high-risk, localized prostate cancer and metastatic prostate cancer carry germline (heritable) pathogenic and likely pathogenic variants (also known as mutations) in DNA repair genes. These can represent known or suspected autosomal dominant cancer predisposition syndromes. Growing evidence suggests that pathogenic variants in key genes involved in homologous recombination and mismatch DNA repair are important in prostate cancer initiation and/or the development of metastases. AIMS Here we provide a comprehensive review regarding individual genes and available literature regarding risks for developing prostate cancer, and discuss current national guidelines for germline genetic testing in the prostate cancer population and treatment implications. RESULTS The association with prostate cancer risk and treatment implications is best understood for those with germline mutations of BRCA2, with emerging data supporting associations with ATM, CHEK2, BRCA1, HOXB13, MSH2, MSH6, PALB2, TP53 and NBN. Treatment implications in the metastatic castration resistant prostate cancer setting include rucaparib and olaparib, and pembrolizumab with potential clinical trial opportunities in earlier disease settings. DISCUSSION The data summarized in this review has led to the expansion of national guidelines for germline genetic testing in prostate cancer. We review these guidelines, and discuss the importance of cascade genetic testing of relatives, diverse populations with attention to inclusion, as well as prostate cancer screening updates and clinical trial opportunities for men who carry genetic risk factors for prostate cancer.
Collapse
Affiliation(s)
- Hiba Khan
- Department of Medicine, Division of Oncology, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Heather H. Cheng
- Department of Medicine, Division of Oncology, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
36
|
Homologous recombination deficiency (HRD) score in aggressive prostatic adenocarcinoma with or without intraductal carcinoma of the prostate (IDC-P). BMC Med 2022; 20:237. [PMID: 35864546 PMCID: PMC9306093 DOI: 10.1186/s12916-022-02430-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/07/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Intraductal carcinoma of the prostate (IDC-P) is a subtype of prostate cancer featured by poor prognosis. Previous studies suggested IDC-P could have a potentially unstable genome. Homologous recombination deficiency (HRD) score is a result-oriented method to describe the genomic instability status. This study investigates the association of HRD scores with IDC-P and other clinicopathological factors and the prognostic implication of HRD scores in an aggressive prostate cancer cohort. METHODS This study involved 123 PCa patients, including high-risk localized (M0) and de novo metastatic (M1) diseases. HRD score is calculated based on over 10,000 single-nucleotide polymorphisms distributed across the human genome. We explored the association between HRD scores and clinicopathological characteristics, genomic alterations, and patients' prognoses using rank-sum tests, chi-square tests, Kaplan-Meier curves, and Cox proportional hazards method. RESULTS The median HRD score of this cohort is 21.0, with 65 (52.8%) patients showing HRD score≥21. Tumors with IDC-P displayed higher HRD scores than adenocarcinoma (P=0.002); other high HRD score-related factors included M1 (P =0.008) and high ISUP grades (4-5) (P=0.001). MYC mutations were associated with high HRD scores (P<0.001) in the total cohort. TP53 mutations (P=0.010) and HRR pathway mutations (P=0.028) corresponded to high HRD scores in IDC-P positive and non-IDC-P patients, respectively, but not vice versa. HRD scores higher than 21 indicated significantly worse survival in the total cohort. CONCLUSIONS M1, high Gleason score, and IDC-P pathology represent higher HRD scores in PCa. Tumors with IDC-P might have different driven mechanisms for high HRD scores than non-IDC-P. HRD score displayed prognostic value in this aggressive prostate cancer cohort.
Collapse
|
37
|
Paduano F, Colao E, Fabiani F, Rocca V, Dinatolo F, Dattola A, D’Antona L, Amato R, Trapasso F, Baudi F, Perrotti N, Iuliano R. Germline Testing in a Cohort of Patients at High Risk of Hereditary Cancer Predisposition Syndromes: First Two-Year Results from South Italy. Genes (Basel) 2022; 13:1286. [PMID: 35886069 PMCID: PMC9319682 DOI: 10.3390/genes13071286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
Germline pathogenic variants (PVs) in oncogenes and tumour suppressor genes are responsible for 5 to 10% of all diagnosed cancers, which are commonly known as hereditary cancer predisposition syndromes (HCPS). A total of 104 individuals at high risk of HCPS were selected by genetic counselling for genetic testing in the past 2 years. Most of them were subjects having a personal and family history of breast cancer (BC) selected according to current established criteria. Genes analysis involved in HCPS was assessed by next-generation sequencing (NGS) using a custom cancer panel with high- and moderate-risk susceptibility genes. Germline PVs were identified in 17 of 104 individuals (16.3%) analysed, while variants of uncertain significance (VUS) were identified in 21/104 (20.2%) cases. Concerning the germline PVs distribution among the 13 BC individuals with positive findings, 8/13 (61.5%) were in the BRCA1/2 genes, whereas 5/13 (38.4%) were in other high- or moderate-risk genes including PALB2, TP53, ATM and CHEK2. NGS genetic testing showed that 6/13 (46.1%) of the PVs observed in BC patients were detected in triple-negative BC. Interestingly, the likelihood of carrying the PVs in the moderate-to-high-risk genes calculated by the cancer risk model BOADICEA was significantly higher in pathogenic variant carriers than in negative subjects. Collectively, this study shows that multigene panel testing can offer an effective diagnostic approach for patients at high risk of hereditary cancers.
Collapse
Affiliation(s)
- Francesco Paduano
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Stem Cells and Medical Genetics Units, Tecnologica Research Institute and Marrelli Health, 88900 Crotone, Italy
| | - Emma Colao
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Fernanda Fabiani
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Valentina Rocca
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Experimental and Clinical Medicine, Campus S. Venuta, University Magna Graecia of Catanzaro, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Francesca Dinatolo
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Adele Dattola
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Lucia D’Antona
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rosario Amato
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesco Trapasso
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Experimental and Clinical Medicine, Campus S. Venuta, University Magna Graecia of Catanzaro, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Francesco Baudi
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Nicola Perrotti
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rodolfo Iuliano
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
38
|
Chiu PKF, Lee EKC, Chan MTY, Chan WHC, Cheung MH, Lam MHC, Ma ESK, Poon DMC. Genetic Testing and Its Clinical Application in Prostate Cancer Management: Consensus Statements from the Hong Kong Urological Association and Hong Kong Society of Uro-Oncology. Front Oncol 2022; 12:962958. [PMID: 35924163 PMCID: PMC9339641 DOI: 10.3389/fonc.2022.962958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Background In recent years, indications for genetic testing in prostate cancer (PC) have expanded from patients with a family history of prostate and/or related cancers to those with advanced castration-resistant disease, and even to early PC patients for determination of the appropriateness of active surveillance. The current consensus aims to provide guidance to urologists, oncologists and pathologists working with Asian PC patients on who and what to test for in selected populations. Methods A joint consensus panel from the Hong Kong Urological Association and Hong Kong Society of Uro-Oncology was convened over a series of 5 physical and virtual meetings. A background literature search on genetic testing in PC was performed in PubMed, ClinicalKey, EBSCOHost, Ovid and ProQuest, and three working subgroups were formed to review and present the relevant evidence. Meeting agendas adopted a modified Delphi approach to ensure that discussions proceed in a structured, iterative and balanced manner, which was followed by an anonymous voting on candidate statements. Of 5 available answer options, a consensus statement was accepted if ≥ 75% of the panelists chose “Accept Completely” (Option A) or “Accept with Some Reservation” (Option B). Results The consensus was structured into three parts: indications for testing, testing methods, and therapeutic implications. A list of 35 candidate statements were developed, of which 31 were accepted. The statements addressed questions on the application of PC genetic testing data and guidelines to Asian patients, including patient selection for germline testing, selection of gene panel and tissue sample, provision of genetic counseling, and use of novel systemic treatments in metastatic castration-resistant PC patients. Conclusion This consensus provides guidance to urologists, oncologists and pathologists working with Asian patients on indications for genetic testing, testing methods and technical considerations, and associated therapeutic implications.
Collapse
Affiliation(s)
- Peter K. F. Chiu
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Eric K. C. Lee
- Department of Clinical Oncology, Tuen Mun Hospital, Hong Kong SAR, China
| | - Marco T. Y. Chan
- Division of Urology, Department of Surgery, Tuen Mun Hospital, Hong Kong SAR, China
| | - Wilson H. C. Chan
- Division of Urology, Department of Surgery, United Christian Hospital, Hong Kong SAR, China
| | - M. H. Cheung
- Division of Urology, Department of Surgery, Tseung Kwan O Hospital, Hong Kong SAR, China
| | - Martin H. C. Lam
- Department of Oncology, United Christian Hospital, Hong Kong SAR, China
| | - Edmond S. K. Ma
- Department of Pathology, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China
| | - Darren M. C. Poon
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Comprehensive Oncology Centre, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China
- *Correspondence: Darren M. C. Poon,
| |
Collapse
|
39
|
Destouni M, Lazaris AC, Tzelepi V. Cribriform Patterned Lesions in the Prostate Gland with Emphasis on Differential Diagnosis and Clinical Significance. Cancers (Basel) 2022; 14:cancers14133041. [PMID: 35804812 PMCID: PMC9264941 DOI: 10.3390/cancers14133041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary A cribriform structure is defined as a continuous proliferation of cells with intermingled lumina. Various entities may have a cribriform morphology within the prostate gland, ranging from normal, to benign, to borderline and even to malignant lesions. This review summarizes the morphologic features of entities that have a cribriform morphology within the prostate gland, with an emphasis on their differential diagnosis, molecular profile and clinical significance. The basic aim is to assist the pathologist with challenging and controversial cases and inform the clinician on the clinical implications of cribriform morphology. Abstract Cribriform glandular formations are characterized by a continuous proliferation of cells with intermingled lumina and can constitute a major or minor part of physiologic (normal central zone glands), benign (clear cell cribriform hyperplasia and basal cell hyperplasia), premalignant (high-grade prostatic intraepithelial neoplasia), borderline (atypical intraductal cribriform proliferation) or clearly malignant (intraductal, acinar, ductal and basal cell carcinoma) lesions. Each displays a different clinical course and variability in clinical management and prognosis. The aim of this review is to summarize the current knowledge regarding the morphological features, differential diagnosis, molecular profile and clinical significance of the cribriform-patterned entities of the prostate gland. Areas of controversy regarding their management, i.e., the grading of Intaductal Carcinoma, will also be discussed. Understanding the distinct nature of each cribriform lesion leads to the correct diagnosis and ensures accuracy in clinical decision-making, prognosis prediction and personalized risk stratification of patients.
Collapse
Affiliation(s)
- Maria Destouni
- Department of Cytopathology, Hippokrateion General Hospital of Athens, 11527 Athens, Greece;
| | - Andreas C. Lazaris
- First Department of Pathology, School of Medicine, The National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence:
| |
Collapse
|
40
|
Gordetsky JB, Schaffer K, Hurley PJ. Current conundrums with cribriform prostate cancer. Histopathology 2022; 80:1038-1040. [PMID: 35592932 DOI: 10.1111/his.14665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Jennifer B Gordetsky
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kerry Schaffer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Paula J Hurley
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| |
Collapse
|
41
|
Brady L, Newcomb LF, Zhu K, Zheng Y, Boyer H, Sarkar ND, McKenney JK, Brooks JD, Carroll PR, Dash A, Ellis WJ, Filson CP, Gleave ME, Liss MA, Martin F, Morgan TM, Thompson IM, Wagner AA, Pritchard CC, Lin DW, Nelson PS. Germline mutations in penetrant cancer predisposition genes are rare in men with prostate cancer selecting active surveillance. Cancer Med 2022; 11:4332-4340. [PMID: 35467778 DOI: 10.1002/cam4.4778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/08/2022] [Accepted: 02/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pathogenic germline mutations in several rare penetrant cancer predisposition genes are associated with an increased risk of aggressive prostate cancer (PC). Our objectives were to determine the prevalence of pathogenic germline mutations in men with low-risk PC on active surveillance, and assess whether pathogenic germline mutations associate with grade reclassification or adverse pathology, recurrence, or metastases, in men treated after initial surveillance. METHODS Men prospectively enrolled in the Canary Prostate Active Surveillance Study (PASS) were retrospectively sampled for the study. Germline DNA was sequenced utilizing a hereditary cancer gene panel. Mutations were classified according to the American College of Clinical Genetics and Genomics' guidelines. The association of pathogenic germline mutations with grade reclassification and adverse characteristics was evaluated by weighted Cox proportional hazards modeling and conditional logistic regression, respectively. RESULTS Overall, 29 of 437 (6.6%) study participants harbored a pathogenic germline mutation of which 19 occurred in a gene involved in DNA repair (4.3%). Eight participants (1.8%) had pathogenic germline mutations in three genes associated with aggressive PC: ATM, BRCA1, and BRCA2. The presence of pathogenic germline mutations in DNA repair genes did not associate with adverse characteristics (univariate analysis HR = 0.87, 95% CI: 0.36-2.06, p = 0.7). The carrier rates of pathogenic germline mutations in ATM, BRCA1, and BRCA2did not differ in men with or without grade reclassification (1.9% vs. 1.8%). CONCLUSION The frequency of pathogenic germline mutations in penetrant cancer predisposition genes is extremely low in men with PC undergoing active surveillance and pathogenic germline mutations had no apparent association with grade reclassification or adverse characteristics.
Collapse
Affiliation(s)
- Lauren Brady
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Lisa F Newcomb
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA.,Department of Urology, University of Washington, Seattle, Washington, USA
| | - Kehao Zhu
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Yingye Zheng
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Hilary Boyer
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA.,Department of Urology, University of Washington, Seattle, Washington, USA
| | - Navonil De Sarkar
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jesse K McKenney
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - James D Brooks
- Department of Urology, Stanford University, Stanford, California, USA
| | - Peter R Carroll
- Department of Urology, University of California, San Francisco, California, USA
| | - Atreya Dash
- VA Puget Sound Health Care Systems, Seattle, WA, USA
| | - William J Ellis
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Christopher P Filson
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia, USA.,Winship Cancer Institute, Emory Healthcare, Atlanta, Georgia, USA
| | - Martin E Gleave
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael A Liss
- Department of Urology, University of Texas Health Sciences Center, San Antonio, Texas, USA
| | - Frances Martin
- Department of Urology, Eastern Virginia Medical School, Virginia Beach, Virginia, USA
| | - Todd M Morgan
- Department of Urology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ian M Thompson
- CHRISTUS Medical Center Hospital, San Antonio, Texas, USA
| | - Andrew A Wagner
- Division of Urology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Colin C Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Daniel W Lin
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA.,Department of Urology, University of Washington, Seattle, Washington, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA.,Department of Urology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
42
|
Papachristodoulou A, Abate-Shen C. Precision intervention for prostate cancer: Re-evaluating who is at risk. Cancer Lett 2022; 538:215709. [DOI: 10.1016/j.canlet.2022.215709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023]
|
43
|
Pantazopoulos H, Diop MK, Grosset AA, Rouleau-Gagné F, Al-Saleh A, Boblea T, Trudel D. Intraductal Carcinoma of the Prostate as a Cause of Prostate Cancer Metastasis: A Molecular Portrait. Cancers (Basel) 2022; 14:820. [PMID: 35159086 PMCID: PMC8834356 DOI: 10.3390/cancers14030820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
Intraductal carcinoma of the prostate (IDC-P) is one of the most aggressive types of prostate cancer (PCa). IDC-P is identified in approximately 20% of PCa patients and is associated with recurrence, metastasis, and PCa-specific death. The main feature of this histological variant is the colonization of benign glands by PCa cells. Although IDC-P is a well-recognized independent parameter for metastasis, mechanisms by which IDC-P cells can spread and colonize other tissues are not fully known. In this review, we discuss the molecular portraits of IDC-P determined by immunohistochemistry and genomic approaches and highlight the areas in which more research is needed.
Collapse
Affiliation(s)
- Helen Pantazopoulos
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Mame-Kany Diop
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Andrée-Anne Grosset
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Frédérique Rouleau-Gagné
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Afnan Al-Saleh
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Teodora Boblea
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
| | - Dominique Trudel
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
- Department of Pathology, Centre Hospitalier de l’Université de Montréal (CHUM), 1051 Sanguinet, Montreal, QC H2X 0C1, Canada
| |
Collapse
|
44
|
Surintrspanont J, Zhou M. Prostate Pathology: What is New in the 2022 WHO Classification of Urinary and Male Genital Tumors? Pathologica 2022; 115:41-56. [PMID: 36645399 DOI: 10.32074/1591-951x-822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 01/17/2023] Open
Abstract
In 2022, after a six-year interval, the International Agency for Research on Cancer (IARC) has published the 5th edition of the WHO Classification of Urinary and Male Genital Tumors, which provides a comprehensive update on tumor classification of the genitourinary system. This review article focuses on prostate carcinoma and underscores changes in the prostate chapter as well as those made across the entire series of the 5th edition of WHO Blue Books. Although no major alterations were made to this chapter, some of the most notable updates include restructure of contents and introduction of a new format; standardization of mitotic counts, genomic nomenclatures, and units of length; refined definition for the terms "variant", "subtype", and "histologic pattern"; reclassification of prostatic intraepithelial neoplasia (PIN)-like adenocarcinoma as a subtype of prostatic acinar adenocarcinoma; and recognition of treatment-related neuroendocrine prostatic carcinoma as a distinct tumor type. Evolving and unsettled issues related to grading of intraductal carcinoma of the prostate and reporting of tertiary Gleason pattern, the definition and prognostic significance of cribriform growth pattern, and molecular pathology of prostate cancer will also be covered in this review.
Collapse
Affiliation(s)
- Jerasit Surintrspanont
- Department of Pathology, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand.,Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA
| | - Ming Zhou
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
45
|
Hidden clues in prostate cancer - Lessons learned from clinical and pre-clinical approaches on diagnosis and risk stratification. Cancer Lett 2022; 524:182-192. [PMID: 34687792 DOI: 10.1016/j.canlet.2021.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/17/2021] [Accepted: 10/13/2021] [Indexed: 12/18/2022]
Abstract
The heterogeneity of prostate cancer is evident at clinical, morphological and molecular levels. To aid clinical decision making, a three-tiered system for risk stratification is used to designate low-, intermediate-, and high-risk of disease progression. Intermediate-risk prostate cancers are the most frequently diagnosed, and even with common diagnostic features, can exhibit vastly different clinical progression. Thus, improved risk stratification methods are needed to better predict patient outcomes. Here, we provide an overview of the improvements in diagnosis/prognosis arising from advances in pathology reporting of prostate cancer, which can improve risk stratification, especially for patients with intermediate-risk disease. This review discusses updates to pathology reporting of morphological growth patterns, and proposes the utility of integrating prognostic biomarkers or innovative imaging techniques to enhance clinical decision-making. To complement clinical studies, experimental approaches using patient-derived tumors have highlighted important cellular and morphological features associated with aggressive disease that may impact treatment response. The intersection of urology, pathology and scientific disciplines is required to work towards a common goal of understanding disease pathogenesis, improving the stratification of patients with intermediate-risk disease and subsequently defining optimal treatment strategies using precision-based approaches.
Collapse
|
46
|
Szymaniak BM, Facchini LA, Kelsten MF, Cheng HH, Morgans AK. Operationalizing Genetic Testing in the Care of Patients with Prostate Cancer. Urol Oncol 2022. [DOI: 10.1007/978-3-030-89891-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
47
|
Genomic Features and Clinical Implications of Intraductal Carcinoma of the Prostate. Int J Mol Sci 2021; 22:ijms222313125. [PMID: 34884926 PMCID: PMC8658449 DOI: 10.3390/ijms222313125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 01/29/2023] Open
Abstract
Intraductal carcinoma of the prostate (IDC-P) is a rare and unique form of aggressive prostate carcinoma, which is characterized by an expansile proliferation of malignant prostatic epithelial cells within prostatic ducts or acini and the preservation of basal cell layers around the involved glands. The vast majority of IDC-P tumors result from adjacent high-grade invasive cancer via the retrograde spreading of tumor cells into normal prostatic ducts or acini. A subset of IDC-P tumors is rarely derived from the de novo intraductal proliferation of premalignant cells. The presence of IDC-P in biopsy or surgical specimens is significantly associated with aggressive pathologic features, such as high Gleason grade, large tumor volume, and advanced tumor stage, and with poor clinical courses, including earlier biochemical recurrence, distant metastasis, and worse survival outcomes. These architectural and behavioral features of IDC-P may be driven by specific molecular properties. Notably, IDC-P possesses distinct genomic profiles, including higher rates of TMPRSS2–ERG gene fusions and PTEN loss, increased percentage of genomic instability, and higher prevalence of germline BRCA2 mutations. Considering that IDC-P tumors are usually resistant to conventional therapies for prostate cancer, further studies should be performed to develop optimal therapeutic strategies based on distinct genomic features, such as treatment with immune checkpoint blockades or poly (adenosine diphosphate–ribose) polymerase inhibitors for patients harboring increased genomic instability or BRCA2 mutations, as well as genetic counseling with genetic testing. Patient-derived xenografts and tumor organoid models can be the promising in vitro platforms for investigating the molecular features of IDC-P tumor.
Collapse
|
48
|
Neoadjuvant hormonal therapy before radical prostatectomy in high-risk prostate cancer. Nat Rev Urol 2021; 18:739-762. [PMID: 34526701 DOI: 10.1038/s41585-021-00514-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
Patients with high-risk prostate cancer treated with curative intent are at an increased risk of biochemical recurrence, metastatic progression and cancer-related death compared with patients treated for low-risk or intermediate-risk disease. Thus, these patients often need multimodal therapy to achieve complete disease control. Over the past two decades, multiple studies on the use of neoadjuvant treatment have been performed using conventional androgen deprivation therapy, which comprises luteinizing hormone-releasing hormone agonists or antagonists and/or first-line anti-androgens. However, despite results from these studies demonstrating a reduction in positive surgical margins and tumour volume, no benefit has been observed in hard oncological end points, such as cancer-related death. The introduction of potent androgen receptor signalling inhibitors (ARSIs), such as abiraterone, apalutamide, enzalutamide and darolutamide, has led to a renewed interest in using neoadjuvant hormonal treatment in high-risk prostate cancer. The addition of ARSIs to androgen deprivation therapy has demonstrated substantial survival benefits in the metastatic castration-resistant, non-metastatic castration-resistant and metastatic hormone-sensitive settings. Intuitively, a similar survival effect can be expected when applying ARSIs as a neoadjuvant strategy in high-risk prostate cancer. Most studies on neoadjuvant ARSIs use a pathological end point as a surrogate for long-term oncological outcome. However, no consensus yet exists regarding the ideal definition of pathological response following neoadjuvant hormonal therapy and pathologists might encounter difficulties in determining pathological response in hormonally treated prostate specimens. The neoadjuvant setting also provides opportunities to gain insight into resistance mechanisms against neoadjuvant hormonal therapy and, consequently, to guide personalized therapy.
Collapse
|
49
|
Giri VN, Walker A, Gross L, Trabulsi EJ, Lallas CD, Kelly WK, Gomella LG, Fischer C, Loeb S. Helix: A Digital Tool to Address Provider Needs for Prostate Cancer Genetic Testing in Clinical Practice. Clin Genitourin Cancer 2021; 20:e104-e113. [PMID: 35012874 DOI: 10.1016/j.clgc.2021.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/21/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Prostate cancer (PCA) germline testing (GT) is now standard-of-care for men with advanced PCA. Thousands of men may consider GT due to clinical and family history (FH) features. Identifying and consenting men for GT can be complex. Here we identified barriers and facilitators of GT across a spectrum of providers which informed the development of Helix - an educational and clinical/FH collection tool to facilitate GT in practice. MATERIALS AND METHODS A 12-question survey assessing knowledge of genetics PCA risk and FH was administered December 2017 to March 2018 in the Philadelphia area and at the Mid-Atlantic AUA meeting (March 2018). Responses were analyzed using descriptive statistics. Semi-structured interviews were conducted with medical oncologists, radiation oncologists, and urologists across practice settings from March-October 2020 as part of a larger study based on the Tailored Implementation in Chronic Diseases framework. Helix was then developed followed by user testing. RESULTS Fifty-six providers (50% urologists) responded to the survey. Multiple FH and genetic knowledge gaps were identified: only 66% collected maternal FH and 43% correctly identified BRCA2 and association to aggressive PCA. Genetic counseling gaps included low rates of discussing genetic discrimination laws (45%). Provider interviews (n = 14) identified barriers to FH intake including access to details and time needed. In user testing (n = 10), providers found Helix helpful for FH collection. All providers found Helix easy to use, suggesting expanded clinical use. CONCLUSION Helix addressed multiple GT knowledge and practice gaps across a spectrum of providers. This tool will become publicly available soon to facilitate PCA GT in clinical practice.
Collapse
Affiliation(s)
- Veda N Giri
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA; Cancer Risk Assessment and Clinical Cancer Genetics Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA; Department of Urology, Thomas Jefferson University, Philadelphia, PA.
| | | | - Laura Gross
- Cancer Risk Assessment and Clinical Cancer Genetics Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | | - Costas D Lallas
- Department of Urology, Thomas Jefferson University, Philadelphia, PA
| | - William K Kelly
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Leonard G Gomella
- Department of Urology, Thomas Jefferson University, Philadelphia, PA
| | - Corey Fischer
- Jefferson Digital Innovation and Consumer Experience, Thomas Jefferson University, Philadelphia, PA
| | - Stacy Loeb
- NYU-Langone Health, New York, NY; Manhattan Veterans Affairs Hospital, New York, NY
| |
Collapse
|
50
|
Shah S, Rachmat R, Enyioma S, Ghose A, Revythis A, Boussios S. BRCA Mutations in Prostate Cancer: Assessment, Implications and Treatment Considerations. Int J Mol Sci 2021; 22:12628. [PMID: 34884434 PMCID: PMC8657599 DOI: 10.3390/ijms222312628] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer ranks fifth in cancer-related mortality in men worldwide. DNA damage is implicated in cancer and DNA damage response (DDR) pathways are in place against this to maintain genomic stability. Impaired DDR pathways play a role in prostate carcinogenesis and germline or somatic mutations in DDR genes have been found in both primary and metastatic prostate cancer. Among these, BRCA mutations have been found to be especially clinically relevant with a role for germline or somatic testing. Prostate cancer with DDR defects may be sensitive to poly(ADP-ribose) polymerase (PARP) inhibitors which target proteins in a process called PARylation. Initially they were used to target BRCA-mutated tumor cells in a process of synthetic lethality. However, recent studies have found potential for PARP inhibitors in a variety of other genetic settings. In this review, we explore the mechanisms of DNA repair, potential for genomic analysis of prostate cancer and therapeutics of PARP inhibitors along with their safety profile.
Collapse
Affiliation(s)
- Sidrah Shah
- Department of Palliative Care, Guy’s and St Thomas’ Hospital, Great Maze Pond, London SE1 9RT, UK;
| | - Rachelle Rachmat
- Department of Radiology, Guy’s and St Thomas’ Hospital, Great Maze Pond, London SE1 9RT, UK;
| | - Synthia Enyioma
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (S.E.); (A.R.)
| | - Aruni Ghose
- Department of Medical Oncology, Barts Cancer Centre, St. Bartholomew’s Hospital, Barts Health NHS Trust, W Smithfield, London EC1A 7BE, UK;
- Faculty of Life Sciences & Medicine, King’s College London, London WC2R 2LS, UK
| | - Antonios Revythis
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (S.E.); (A.R.)
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (S.E.); (A.R.)
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
| |
Collapse
|