1
|
The α- and β-Subunit Boundary at the Stem of the Mushroom-Like α
3
β
3
-Type Oxygenase Component of Rieske Non-Heme Iron Oxygenases Is the Rieske-Type Ferredoxin-Binding Site. Appl Environ Microbiol 2022; 88:e0083522. [PMID: 35862661 PMCID: PMC9361823 DOI: 10.1128/aem.00835-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cumene dioxygenase (CumDO) is an initial enzyme in the cumene degradation pathway of Pseudomonas fluorescens IP01 and is a Rieske non-heme iron oxygenase (RO) that comprises two electron transfer components (reductase [CumDO-R] and Rieske-type ferredoxin [CumDO-F]) and one catalytic component (α3β3-type oxygenase [CumDO-O]). Catalysis is triggered by electrons that are transferred from NAD(P)H to CumDO-O by CumDO-R and CumDO-F. To investigate the binding mode between CumDO-F and CumDO-O and to identify the key CumDO-O amino acid residues for binding, we simulated docking between the CumDO-O crystal structure and predicted model of CumDO-F and identified two potential binding sites: one is at the side-wise site and the other is at the top-wise site in mushroom-like CumDO-O. Then, we performed alanine mutagenesis of 16 surface amino acid residues at two potential binding sites. The results of reduction efficiency analyses using the purified components indicated that CumDO-F bound at the side-wise site of CumDO-O, and K117 of the α-subunit and R65 of the β-subunit were critical for the interaction. Moreover, these two positively charged residues are well conserved in α3β3-type oxygenase components of ROs whose electron donors are Rieske-type ferredoxins. Given that these residues were not conserved if the electron donors were different types of ferredoxins or reductases, the side-wise site of the mushroom-like structure is thought to be the common binding site between Rieske-type ferredoxin and α3β3-type oxygenase components in ROs. IMPORTANCE We clarified the critical amino acid residues of the oxygenase component (Oxy) of Rieske non-heme iron oxygenase (RO) for binding with Rieske-type ferredoxin (Fd). Our results showed that Rieske-type Fd-binding site is commonly located at the stem (side-wise site) of the mushroom-like α3β3 quaternary structure in many ROs. The resultant binding site was totally different from those reported at the top-wise site of the doughnut-like α3-type Oxy, although α3-type Oxys correspond to the cap (α3 subunit part) of the mushroom-like α3β3-type Oxys. Critical amino acid residues detected in this study were not conserved if the electron donors of Oxys were different types of Fds or reductases. Altogether, we can suggest that unique binding modes between Oxys and electron donors have evolved, depending on the nature of the electron donors, despite Oxy molecules having shared α3β3 quaternary structures.
Collapse
|
2
|
Song Z, Wei C, Li C, Gao X, Mao S, Lu F, Qin HM. Customized exogenous ferredoxin functions as an efficient electron carrier. BIORESOUR BIOPROCESS 2021; 8:109. [PMID: 38650207 PMCID: PMC10992505 DOI: 10.1186/s40643-021-00464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/28/2021] [Indexed: 11/10/2022] Open
Abstract
Ferredoxin (Fdx) is regarded as the main electron carrier in biological electron transfer and acts as an electron donor in metabolic pathways of many organisms. Here, we screened a self-sufficient P450-derived reductase PRF with promising production yield of 9OHAD (9α-hydroxy4-androstene-3,17-dione) from AD, and further proved the importance of [2Fe-2S] clusters of ferredoxin-oxidoreductase in transferring electrons in steroidal conversion. The results of truncated Fdx domain in all oxidoreductases and mutagenesis data elucidated the indispensable role of [2Fe-2S] clusters in the electron transfer process. By adding the independent plant-type Fdx to the reaction system, the AD (4-androstene-3,17-dione) conversion rate have been significantly improved. A novel efficient electron transfer pathway of PRF + Fdx + KshA (KshA, Rieske-type oxygenase of 3-ketosteroid-9-hydroxylase) in the reaction system rather than KshAB complex system was proposed based on analysis of protein-protein interactions and redox potential measurement. Adding free Fdx created a new conduit for electrons to travel from reductase to oxygenase. This electron transfer pathway provides new insight for the development of efficient exogenous Fdx as an electron carrier.
Collapse
Affiliation(s)
- Zhan Song
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
- National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Cancan Wei
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
- National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Chao Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
- National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Xin Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
- National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
- National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
- National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
- National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
3
|
Ashikawa Y, Fujimoto Z, Inoue K, Yamane H, Nojiri H. Crystal structure of the ferredoxin reductase component of carbazole 1,9a-dioxygenase from Janthinobacterium sp. J3. Acta Crystallogr D Struct Biol 2021; 77:921-932. [PMID: 34196618 PMCID: PMC8251347 DOI: 10.1107/s2059798321005040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Carbazole 1,9a-dioxygenase (CARDO), which consists of an oxygenase component and the electron-transport components ferredoxin (CARDO-F) and ferredoxin reductase (CARDO-R), is a Rieske nonheme iron oxygenase (RO). ROs are classified into five subclasses (IA, IB, IIA, IIB and III) based on their number of constituents and the nature of their redox centres. In this study, two types of crystal structure (type I and type II) were resolved of the class III CARDO-R from Janthinobacterium sp. J3 (CARDO-RJ3). Superimposition of the type I and type II structures revealed the absence of flavin adenine dinucleotide (FAD) in the type II structure along with significant conformational changes to the FAD-binding domain and the C-terminus, including movements to fill the space in which FAD had been located. Docking simulation of NADH into the FAD-bound form of CARDO-RJ3 suggested that shifts of the residues at the C-terminus caused the nicotinamide moiety to approach the N5 atom of FAD, which might facilitate electron transfer between the redox centres. Differences in domain arrangement were found compared with RO reductases from the ferredoxin-NADP reductase family, suggesting that these differences correspond to differences in the structures of their redox partners ferredoxin and terminal oxygenase. The results of docking simulations with the redox partner class III CARDO-F from Pseudomonas resinovorans CA10 suggested that complex formation suitable for efficient electron transfer is stabilized by electrostatic attraction and complementary shapes of the interacting regions.
Collapse
Affiliation(s)
- Yuji Ashikawa
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Zui Fujimoto
- Advanced Analysis Center, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Kengo Inoue
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Hisakazu Yamane
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideaki Nojiri
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
4
|
Kumari A, Singh D, Ramaswamy S, Ramanathan G. Structural and functional studies of ferredoxin and oxygenase components of 3-nitrotoluene dioxygenase from Diaphorobacter sp. strain DS2. PLoS One 2017; 12:e0176398. [PMID: 28448625 PMCID: PMC5407579 DOI: 10.1371/journal.pone.0176398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/10/2017] [Indexed: 11/23/2022] Open
Abstract
3-nitrotoluene dioxygenase (3NTDO) from Diaphorobacter sp. strain DS2 catalyses the conversion of 3-nitrotoluene (3NT) into a mixture of 3- and 4-methylcatechols with release of nitrite. We report here, X-ray crystal structures of oxygenase and ferredoxin components of 3NTDO at 2.9 Å and 2.4 Å, respectively. The residues responsible for nitrite release in 3NTDO were further probed by four single and two double mutations in the catalytic site of α-subunit of the dioxygenase. Modification of Val 350 to Phe, Ile 204 to Ala, and Asn258 to Val by site directed mutagenesis resulted in inactive enzymes revealing the importance of these residues in catalysis. Docking studies of meta nitrotoluene to the active site of 3NTDO suggested possible orientations of binding that favor the formation of 3-methylcatechol (3MC) over 4-methylcatechol energetically. The electron transfer pathway from ferredoxin subunit to the active site of the oxygenase subunit is also proposed.
Collapse
Affiliation(s)
- Archana Kumari
- Department of Chemistry, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh, India
| | - Deepak Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh, India
| | - S Ramaswamy
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Science, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Gurunath Ramanathan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
5
|
Electron Transport in a Dioxygenase-Ferredoxin Complex: Long Range Charge Coupling between the Rieske and Non-Heme Iron Center. PLoS One 2016; 11:e0162031. [PMID: 27656882 PMCID: PMC5033481 DOI: 10.1371/journal.pone.0162031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 08/16/2016] [Indexed: 11/19/2022] Open
Abstract
Dioxygenase (dOx) utilizes stereospecific oxidation on aromatic molecules; consequently, dOx has potential applications in bioremediation and stereospecific oxidation synthesis. The reactive components of dOx comprise a Rieske structure Cys2[2Fe-2S]His2 and a non-heme reactive oxygen center (ROC). Between the Rieske structure and the ROC, a universally conserved Asp residue appears to bridge the two structures forming a Rieske-Asp-ROC triad, where the Asp is known to be essential for electron transfer processes. The Rieske and ROC share hydrogen bonds with Asp through their His ligands; suggesting an ideal network for electron transfer via the carboxyl side chain of Asp. Associated with the dOx is an itinerant charge carrying protein Ferredoxin (Fdx). Depending on the specific cognate, Fdx may also possess either the Rieske structure or a related structure known as 4-Cys-[2Fe-2S] (4-Cys). In this study, we extensively explore, at different levels of theory, the behavior of the individual components (Rieske and ROC) and their interaction together via the Asp using a variety of density function methods, basis sets, and a method known as Generalized Ionic Fragment Approach (GIFA) that permits setting up spin configurations manually. We also report results on the 4-Cys structure for comparison. The individual optimized structures are compared with observed spectroscopic data from the Rieske, 4-Cys and ROC structures (where information is available). The separate pieces are then combined together into a large Rieske-Asp-ROC (donor/bridge/acceptor) complex to estimate the overall coupling between individual components, based on changes to the partial charges. The results suggest that the partial charges are significantly altered when Asp bridges the Rieske and the ROC; hence, long range coupling through hydrogen bonding effects via the intercalated Asp bridge can drastically affect the partial charge distributions compared to the individual isolated structures. The results are consistent with a proton coupled electron transfer mechanism.
Collapse
|
6
|
Hayashi S, Sano T, Suyama K, Itoh K. 2,4-Dichlorophenoxyacetic acid (2,4-D)- and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading gene cluster in the soybean root-nodulating bacterium Bradyrhizobium elkanii USDA94. Microbiol Res 2016; 188-189:62-71. [PMID: 27296963 DOI: 10.1016/j.micres.2016.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
Abstract
Herbicides 2,4-dichlorophenoxyacetic acid (2,4-D)- and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading Bradyrhizobium strains possess tfdAα and/or cadABC as degrading genes. It has been reported that root-nodulating bacteria belonging to Bradyrhizobium elkanii also have tfdAα and cadA like genes but lack the ability to degrade these herbicides and that the cadA genes in 2,4-D-degrading and non-degrading Bradyrhizobium are phylogenetically different. In this study, we identified cadRABCK in the genome of a type strain of soybean root-nodulating B. elkanii USDA94 and demonstrated that the strain could degrade the herbicides when cadABCK was forcibly expressed. cadABCK-cloned Escherichia coli also showed the degrading ability. Because co-spiked phenoxyacetic acid (PAA) could induce the degradation of 2,4-D in B. elkanii USDA94, the lack of degrading ability in this strain was supposed to be due to the low inducing potential of the herbicides for the degrading gene cluster. On the other hand, tfdAα from B. elkanii USDA94 showed little potential to degrade the herbicides, but it did for 4-chlorophenoxyacetic acid and PAA. The 2,4-D-degrading ability of the cad cluster and the inducing ability of PAA were confirmed by preparing cadA deletion mutant. This is the first study to demonstrate that the cad cluster in the typical root-nodulating bacterium indeed have the potential to degrade the herbicides, suggesting that degrading genes for anthropogenic compounds could be found in ordinary non-degrading bacteria.
Collapse
Affiliation(s)
- Shohei Hayashi
- Faculty of Life and Environmental Science, Shimane University 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Tomoki Sano
- Faculty of Life and Environmental Science, Shimane University 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Kousuke Suyama
- Faculty of Life and Environmental Science, Shimane University 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Kazuhito Itoh
- Faculty of Life and Environmental Science, Shimane University 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.
| |
Collapse
|
7
|
Ledesma-García L, Sánchez-Azqueta A, Medina M, Reyes-Ramírez F, Santero E. Redox proteins of hydroxylating bacterial dioxygenases establish a regulatory cascade that prevents gratuitous induction of tetralin biodegradation genes. Sci Rep 2016; 6:23848. [PMID: 27030382 PMCID: PMC4814904 DOI: 10.1038/srep23848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/09/2016] [Indexed: 11/21/2022] Open
Abstract
Bacterial dioxygenase systems are multicomponent enzymes that catalyze the initial degradation of many environmentally hazardous compounds. In Sphingopyxis granuli strain TFA tetralin dioxygenase hydroxylates tetralin, an organic contaminant. It consists of a ferredoxin reductase (ThnA4), a ferredoxin (ThnA3) and a oxygenase (ThnA1/ThnA2), forming a NAD(P)H–ThnA4–ThnA3–ThnA1/ThnA2 electron transport chain. ThnA3 has also a regulatory function since it prevents expression of tetralin degradation genes (thn) in the presence of non-metabolizable substrates of the catabolic pathway. This role is of physiological relevance since avoids gratuitous and wasteful production of catabolic enzymes. Our hypothesis for thn regulation implies that ThnA3 exerts its action by diverting electrons towards the regulator ThnY, an iron-sulfur flavoprotein that together with the transcriptional activator ThnR is necessary for thn gene expression. Here we analyze electron transfer among ThnA4, ThnA3 and ThnY by using stopped-flow spectrophotometry and determination of midpoint reduction potentials. Our results indicate that when accumulated in its reduced form ThnA3 is able to fully reduce ThnY. In addition, we have reproduced in vitro the regulatory circuit in the proposed physiological direction, NAD(P)H–ThnA4–ThnA3–ThnY. ThnA3 represents an unprecedented way of communication between a catabolic pathway and its regulatory system to prevent gratuitous induction.
Collapse
Affiliation(s)
- Laura Ledesma-García
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, and Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| | - Ana Sánchez-Azqueta
- Departamento de Bioquímica y Biología Molecular y Celular, and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Francisca Reyes-Ramírez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, and Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| | - Eduardo Santero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, and Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| |
Collapse
|
8
|
The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part III. {[Fe2S2](Cys)3(X)} (X=Asp, Arg, His) and {[Fe2S2](Cys)2(His)2} proteins. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Matsuzawa J, Aikawa H, Umeda T, Ashikawa Y, Suzuki-Minakuchi C, Kawano Y, Fujimoto Z, Okada K, Yamane H, Nojiri H. Crystallization and preliminary X-ray diffraction analyses of the redox-controlled complex of terminal oxygenase and ferredoxin components in the Rieske nonhaem iron oxygenase carbazole 1,9a-dioxygenase. Acta Crystallogr F Struct Biol Commun 2014; 70:1406-9. [PMID: 25286950 PMCID: PMC4188090 DOI: 10.1107/s2053230x14018779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/18/2014] [Indexed: 11/23/2022] Open
Abstract
The initial reaction in bacterial carbazole degradation is catalyzed by carbazole 1,9a-dioxygenase, which consists of terminal oxygenase (Oxy), ferredoxin (Fd) and ferredoxin reductase components. The electron-transfer complex between reduced Oxy and oxidized Fd was crystallized at 293 K using the hanging-drop vapour-diffusion method with PEG 3350 as the precipitant under anaerobic conditions. The crystal diffracted to a maximum resolution of 2.25 Å and belonged to space group P21, with unit-cell parameters a = 97.3, b = 81.6, c = 116.2 Å, α = γ = 90, β = 100.1°. The VM value is 2.85 Å(3) Da(-1), indicating a solvent content of 56.8%.
Collapse
Affiliation(s)
- Jun Matsuzawa
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroki Aikawa
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takashi Umeda
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuji Ashikawa
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chiho Suzuki-Minakuchi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoshiaki Kawano
- SR Life Science Instrumentation Unit, Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center, RIKEN Harima Branch, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Zui Fujimoto
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hisakazu Yamane
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-0003, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
10
|
Structural basis of the divergent oxygenation reactions catalyzed by the rieske nonheme iron oxygenase carbazole 1,9a-dioxygenase. Appl Environ Microbiol 2014; 80:2821-32. [PMID: 24584240 DOI: 10.1128/aem.04000-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Carbazole 1,9a-dioxygenase (CARDO), a Rieske nonheme iron oxygenase (RO), is a three-component system composed of a terminal oxygenase (Oxy), ferredoxin, and a ferredoxin reductase. Oxy has angular dioxygenation activity against carbazole. Previously, site-directed mutagenesis of the Oxy-encoding gene from Janthinobacterium sp. strain J3 generated the I262V, F275W, Q282N, and Q282Y Oxy derivatives, which showed oxygenation capabilities different from those of the wild-type enzyme. To understand the structural features resulting in the different oxidation reactions, we determined the crystal structures of the derivatives, both free and complexed with substrates. The I262V, F275W, and Q282Y derivatives catalyze the lateral dioxygenation of carbazole with higher yields than the wild type. A previous study determined the crystal structure of Oxy complexed with carbazole and revealed that the carbonyl oxygen of Gly178 hydrogen bonds with the imino nitrogen of carbazole. In these derivatives, the carbazole was rotated approximately 15, 25, and 25°, respectively, compared to the wild type, creating space for a water molecule, which hydrogen bonds with the carbonyl oxygen of Gly178 and the imino nitrogen of carbazole. In the crystal structure of the F275W derivative complexed with fluorene, C-9 of fluorene, which corresponds to the imino nitrogen of carbazole, was oriented close to the mutated residue Trp275, which is on the opposite side of the binding pocket from the carbonyl oxygen of Gly178. Our structural analyses demonstrate that the fine-tuning of hydrophobic residues on the surface of the substrate-binding pocket in ROs causes a slight shift in the substrate-binding position that, in turn, favors specific oxygenation reactions toward various substrates.
Collapse
|
11
|
Matsuzawa J, Umeda T, Aikawa H, Suzuki C, Fujimoto Z, Okada K, Yamane H, Nojiri H. Crystallization and preliminary X-ray diffraction studies of the reduced form of the terminal oxygenase component of the Rieske nonhaem iron oxygenase system carbazole 1,9a-dioxygenase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1284-7. [PMID: 24192370 PMCID: PMC3818054 DOI: 10.1107/s1744309113026754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 09/28/2013] [Indexed: 11/10/2022]
Abstract
The initial reaction of bacterial carbazole degradation is catalysed by carbazole 1,9a-dioxygenase, which consists of terminal oxygenase, ferredoxin and ferredoxin reductase components. The reduced form of the terminal oxygenase component was crystallized at 293 K by the hanging-drop vapour-diffusion method using PEG MME 550 as the precipitant under anaerobic conditions. The crystals diffracted to a resolution of 1.74 Å and belonged to space group P6(5), with unit-cell parameters a = b = 92.0, c = 243.6 Å. The asymmetric unit contained a trimer of terminal oxygenase molecules.
Collapse
Affiliation(s)
- Jun Matsuzawa
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takashi Umeda
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroki Aikawa
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chiho Suzuki
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Zui Fujimoto
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hisakazu Yamane
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-0003, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
12
|
Peng P, Yang H, Jia R, Li L. Biodegradation of dioxin by a newly isolated Rhodococcus sp. with the involvement of self-transmissible plasmids. Appl Microbiol Biotechnol 2012; 97:5585-95. [DOI: 10.1007/s00253-012-4363-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/07/2012] [Accepted: 08/09/2012] [Indexed: 10/27/2022]
|
13
|
Ashikawa Y, Fujimoto Z, Usami Y, Inoue K, Noguchi H, Yamane H, Nojiri H. Structural insight into the substrate- and dioxygen-binding manner in the catalytic cycle of rieske nonheme iron oxygenase system, carbazole 1,9a-dioxygenase. BMC STRUCTURAL BIOLOGY 2012; 12:15. [PMID: 22727022 PMCID: PMC3423008 DOI: 10.1186/1472-6807-12-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/24/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND Dihydroxylation of tandemly linked aromatic carbons in a cis-configuration, catalyzed by multicomponent oxygenase systems known as Rieske nonheme iron oxygenase systems (ROs), often constitute the initial step of aerobic degradation pathways for various aromatic compounds. Because such RO reactions inherently govern whether downstream degradation processes occur, novel oxygenation mechanisms involving oxygenase components of ROs (RO-Os) is of great interest. Despite substantial progress in structural and physicochemical analyses, no consensus exists on the chemical steps in the catalytic cycles of ROs. Thus, determining whether conformational changes at the active site of RO-O occur by substrate and/or oxygen binding is important. Carbazole 1,9a-dioxygenase (CARDO), a RO member consists of catalytic terminal oxygenase (CARDO-O), ferredoxin (CARDO-F), and ferredoxin reductase. We have succeeded in determining the crystal structures of oxidized CARDO-O, oxidized CARDO-F, and both oxidized and reduced forms of the CARDO-O: CARDO-F binary complex. RESULTS In the present study, we determined the crystal structures of the reduced carbazole (CAR)-bound, dioxygen-bound, and both CAR- and dioxygen-bound CARDO-O: CARDO-F binary complex structures at 1.95, 1.85, and 2.00 Å resolution. These structures revealed the conformational changes that occur in the catalytic cycle. Structural comparison between complex structures in each step of the catalytic mechanism provides several implications, such as the order of substrate and dioxygen bindings, the iron-dioxygen species likely being Fe(III)-(hydro)peroxo, and the creation of room for dioxygen binding and the promotion of dioxygen binding in desirable fashion by preceding substrate binding. CONCLUSIONS The RO catalytic mechanism is proposed as follows: When the Rieske cluster is reduced, substrate binding induces several conformational changes (e.g., movements of the nonheme iron and the ligand residue) that create room for oxygen binding. Dioxygen bound in a side-on fashion onto nonheme iron is activated by reduction to the peroxo state [Fe(III)-(hydro)peroxo]. This state may react directly with the bound substrate, or O-O bond cleavage may occur to generate Fe(V)-oxo-hydroxo species prior to the reaction. After producing a cis-dihydrodiol, the product is released by reducing the nonheme iron. This proposed scheme describes the catalytic cycle of ROs and provides important information for a better understanding of the mechanism.
Collapse
Affiliation(s)
- Yuji Ashikawa
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Structural and molecular genetic analyses of the bacterial carbazole degradation system. Biosci Biotechnol Biochem 2012; 76:1-18. [PMID: 22232235 DOI: 10.1271/bbb.110620] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbazole degradation by several bacterial strains, including Pseudomonas resinovorans CA10, has been investigated over the last two decades. As the initial reaction in degradation pathways, carbazole is commonly oxygenated at angular (C9a) and adjacent (C1) carbons as two hydroxyl groups in a cis configuration. This type of dioxygenation is termed "angular dioxygenation," and is catalyzed by carbazole 1,9a-dioxygenase (CARDO), consisting of terminal oxygenase, ferredoxin, and ferredoxin reductase components. The crystal structures of all components and the electron transfer complex between terminal oxygenase and ferredoxin indicate substrate recognition mechanisms suitable for angular dioxygenation and specific electron transfer among the three components. In contrast, the carbazole degradative car operon of CA10 is located on IncP-7 conjugative plasmid pCAR1. Together with conventional molecular genetic and biochemical investigations, recent genome sequencing and RNA mapping studies have clarified that transcriptional cross-regulation via nucleoid-associated proteins is established between pCAR1 and the host chromosome.
Collapse
|
15
|
Umeda T, Katsuki J, Ashikawa Y, Usami Y, Inoue K, Noguchi H, Fujimoto Z, Yamane H, Nojiri H. Crystallization and preliminary X-ray diffraction studies of a terminal oxygenase of carbazole 1,9a-dioxygenase from Novosphingobium sp. KA1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1480-3. [PMID: 21045300 PMCID: PMC3001653 DOI: 10.1107/s1744309110034949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 08/30/2010] [Indexed: 11/10/2022]
Abstract
Carbazole 1,9a-dioxygenase (CARDO) is the initial dioxygenase in the carbazole-degradation pathway of Novosphingobium sp. KA1. The CARDO from KA1 consists of a terminal oxygenase (Oxy), a putidaredoxin-type ferredoxin and a ferredoxin reductase. The Oxy from Novosphingobium sp. KA1 was crystallized at 277 K using the hanging-drop vapour-diffusion method with ammonium sulfate as the precipitant. Diffraction data were collected to a resolution of 2.1 Å. The crystals belonged to the monoclinic space group P2(1). Self-rotation function analysis suggested that the asymmetric unit contained two Oxy trimers; the Matthews coefficient and solvent content were calculated to be 5.9 Å(3) Da(-1) and 79.1%, respectively.
Collapse
Affiliation(s)
- Takashi Umeda
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Junichi Katsuki
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuji Ashikawa
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Molecular Signaling Research Team, Structural Physiology Research Group, RIKEN Harima Institute SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Yusuke Usami
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kengo Inoue
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Interdisciplinary Research Organization, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Haruko Noguchi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Professional Programme for Agricultural Bioinformatics, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Zui Fujimoto
- Protein Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Hisakazu Yamane
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Professional Programme for Agricultural Bioinformatics, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
16
|
Umeda T, Katsuki J, Ashikawa Y, Usami Y, Inoue K, Noguchi H, Fujimoto Z, Yamane H, Nojiri H. Crystallization and preliminary X-ray diffraction studies of a ferredoxin reductase component of carbazole 1,9a-dioxygenase from Novosphingobium sp. KA1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:712-4. [PMID: 20516607 PMCID: PMC2882777 DOI: 10.1107/s1744309110014491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 04/20/2010] [Indexed: 11/10/2022]
Abstract
Carbazole 1,9a-dioxygenase (CARDO) is the initial enzyme of the carbazole-degradation pathway. The CARDO of Novosphingobium sp. KA1 consists of a terminal oxygenase, a putidaredoxin-type ferredoxin and a ferredoxin-NADH oxidoreductase (Red) and is classified as a class IIA Rieske oxygenase. Red from KA1 was crystallized at 278 K by the hanging-drop vapour-diffusion method using PEG 4000. The crystal diffracted to 1.58 A resolution and belonged to space group P3(2), with unit-cell parameters a = b = 92.2, c = 78.6 A, alpha = gamma = 90, beta = 120 degrees . Preliminary analysis of the X-ray diffraction data revealed that the asymmetric unit contained two Red monomers. The crystal appeared to be a merohedral twin, with a twin fraction of 0.32 and twin law (-h, -k, l).
Collapse
Affiliation(s)
- Takashi Umeda
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Junichi Katsuki
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuji Ashikawa
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Molecular Signaling Research Team, Structural Physiology Research Group, RIKEN Harima Institute SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Yusuke Usami
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kengo Inoue
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Haruko Noguchi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Zui Fujimoto
- Protein Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Hisakazu Yamane
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Professional Programme for Agricultural Bioinformatics, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
17
|
Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH. A profile of ring-hydroxylating oxygenases that degrade aromatic pollutants. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 206:65-94. [PMID: 20652669 DOI: 10.1007/978-1-4419-6260-7_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Numerous aromatic compounds are pollutants to which exposure exists or is possible, and are of concern because they are mutagenic, carcinogenic, or display other toxic characteristics. Depending on the types of dioxygenation reactions of which microorganisms are capable, they utilize ring-hydroxylating oxygenases (RHOs) to initiate the degradation and detoxification of such aromatic compound pollutants. Gene families encoding for RHOs appear to be most common in bacteria. Oxygenases are important in degrading both natural and synthetic aromatic compounds and are particularly important for their role in degrading toxic pollutants; for this reason, it is useful for environmental scientists and others to understand more of their characteristics and capabilities. It is the purpose of this review to address RHOs and to describe much of their known character, starting with a review as to how RHOs are classified. A comprehensive phylogenetic analysis has revealed that all RHOs are, in some measure, related, presumably by divergent evolution from a common ancestor, and this is reflected in how they are classified. After we describe RHO classification schemes, we address the relationship between RHO structure and function. Structural differences affect substrate specificity and product formation. In the alpha subunit of the known terminal oxygenase of RHOs, there is a catalytic domain with a mononuclear iron center that serves as a substrate-binding site and a Rieske domain that retains a [2Fe-2S] cluster that acts as an entity of electron transfer for the mononuclear iron center. Oxygen activation and substrate dihydroxylation occurring at the catalytic domain are dependent on the binding of substrate at the active site and the redox state of the Rieske center. The electron transfer from NADH to the catalytic pocket of RHO and catalyzing mechanism of RHOs is depicted in our review and is based on the results of recent studies. Electron transfer involving the RHO system typically involves four steps: NADH-ferredoxin reductase receives two electrons from NADH; ferredoxin binds with NADH-ferredoxin reductase and accepts electron from it; the reduced ferredoxin dissociates from NADH-ferredoxin reductase and shuttles the electron to the Rieske domain of the terminal oxygenase; the Rieske cluster donates electrons to O2 through the mononuclear iron. On the basis of crystal structure studies, it has been proposed that the broad specificity of the RHOs results from the large size and specific topology of its hydrophobic substrate-binding pocket. Several amino acids that determine the substrate specificity and enantioselectivity of RHOs have been identified through sequence comparison and site-directed mutagenesis at the active site. Exploiting the crystal structure data and the available active site information, engineered RHO enzymes have been and can be designed to improve their capacity to degrade environmental pollutants. Such attempts to enhance degradation capabilities of RHOs have been made. Dioxygenases have been modified to improve the degradation capacities toward PCBs, PAHs, dioxins, and some other aromatic hydrocarbons. We hope that the results of this review and future research on enhancing RHOs will promote their expanded usage and effectiveness for successfully degrading environmental aromatic pollutants.
Collapse
Affiliation(s)
- Ri-He Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Specific Interactions between the Ferredoxin and Terminal Oxygenase Components of a Class IIB Rieske Nonheme Iron Oxygenase, Carbazole 1,9a-Dioxygenase. J Mol Biol 2009; 392:436-51. [DOI: 10.1016/j.jmb.2009.07.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 11/21/2022]
|
19
|
Friemann R, Lee K, Brown EN, Gibson DT, Eklund H, Ramaswamy S. Structures of the multicomponent Rieske non-heme iron toluene 2,3-dioxygenase enzyme system. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:24-33. [PMID: 19153463 PMCID: PMC2628974 DOI: 10.1107/s0907444908036524] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 11/06/2008] [Indexed: 11/14/2022]
Abstract
Bacterial Rieske non-heme iron oxygenases catalyze the initial hydroxylation of aromatic hydrocarbon substrates. The structures of all three components of one such system, the toluene 2,3-dioxygenase system, have now been determined. This system consists of a reductase, a ferredoxin and a terminal dioxygenase. The dioxygenase, which was cocrystallized with toluene, is a heterohexamer containing a catalytic and a structural subunit. The catalytic subunit contains a Rieske [2Fe-2S] cluster and mononuclear iron at the active site. This iron is not strongly bound and is easily removed during enzyme purification. The structures of the enzyme with and without mononuclear iron demonstrate that part of the structure is flexible in the absence of iron. The orientation of the toluene substrate in the active site is consistent with the regiospecificity of oxygen incorporation seen in the product formed. The ferredoxin is Rieske type and contains a [2Fe-2S] cluster close to the protein surface. The reductase belongs to the glutathione reductase family of flavoenzymes and consists of three domains: an FAD-binding domain, an NADH-binding domain and a C-terminal domain. A model for electron transfer from NADH via FAD in the reductase and the ferredoxin to the terminal active-site mononuclear iron of the dioxygenase is proposed.
Collapse
Affiliation(s)
- Rosmarie Friemann
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, 751 24 Uppsala, Sweden
| | - Kyoung Lee
- Department of Microbiology, Changwon National University, Changwon, Kyoungnam 641-773, Republic of Korea
- Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Eric N. Brown
- Department of Biochemistry, The University of Iowa, Iowa City, Iowa 52242, USA
| | - David T. Gibson
- Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Hans Eklund
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, 751 24 Uppsala, Sweden
| | - S. Ramaswamy
- Department of Biochemistry, The University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
20
|
Brown EN, Friemann R, Karlsson A, Parales JV, Couture MMJ, Eltis LD, Ramaswamy S. Determining Rieske cluster reduction potentials. J Biol Inorg Chem 2008; 13:1301-13. [PMID: 18719951 DOI: 10.1007/s00775-008-0413-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 07/29/2008] [Indexed: 11/28/2022]
Abstract
The Rieske iron-sulfur proteins have reduction potentials ranging from -150 to +400 mV. This enormous range of potentials was first proposed to be due to differing solvent exposure or even protein structure. However, the increasing number of available crystal structures for Rieske iron-sulfur proteins has shown this not to be the case. Colbert and colleagues proposed in 2000 that differences in the electrostatic environment, and not structural differences, of a Rieske proteins are responsible for the wide range of reduction potentials observed. Using computational simulation methods and the newly determined structure of Pseudomonas sp. NCIB 9816-4 naphthalene dioxygenase Rieske ferredoxin (NDO-F9816-4), we have developed a model to predict the reduction potential of Rieske proteins given only their crystal structure. The reduction potential of NDO-F9816-4, determined using a highly oriented pyrolytic graphite electrode, was -150+/-2 mV versus the standard hydrogen electrode. The predicted reduction potentials correlate well with experimentally determined potentials. Given this model, the effect of protein mutations can be evaluated. Our results suggest that the reduction potential of new proteins can be estimated with good confidence from 3D structures of proteins. The structure of NDO-F9816-4 is the most basic Rieske ferredoxin structure determined to date. Thus, the contributions of additional structural motifs and their effects on reduction potential can be compared with respect to this base structure.
Collapse
Affiliation(s)
- Eric N Brown
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Levin EJ, Elsen NL, Seder KD, McCoy JG, Fox BG, Phillips GN. X-ray structure of a soluble Rieske-type ferredoxin from Mus musculus. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2008; 64:933-40. [PMID: 18703841 PMCID: PMC2631127 DOI: 10.1107/s0907444908021653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 07/11/2008] [Indexed: 11/25/2022]
Abstract
The X-ray crystal structure of a soluble Rieske ferredoxin from M. musculus was solved at 2.07 Å resolution, revealing an iron–sulfur cluster-binding domain with similar architecture to the Rieske-type domains of bacterial aromatic dioxygenases. The ferredoxin was also shown to be capable of accepting electrons from both eukaryotic and prokaryotic oxidoreductases. The 2.07 Å resolution X-ray crystal structure of a soluble Rieske-type ferredoxin from Mus musculus encoded by the gene Mm.266515 is reported. Although they are present as covalent domains in eukaryotic membrane oxidase complexes, soluble Rieske-type ferredoxins have not previously been observed in eukaryotes. The overall structure of the mouse Rieske-type ferredoxin is typical of this class of iron–sulfur proteins and consists of a larger partial β-barrel domain and a smaller domain containing Cys57, His59, Cys80 and His83 that binds the [2Fe–2S] cluster. The S atoms of the cluster are hydrogen-bonded by six backbone amide N atoms in a pattern typical of membrane-bound high-potential eukaryotic respiratory Rieske ferredoxins. However, phylogenetic analysis suggested that the mouse Rieske-type ferredoxin was more closely related to bacterial Rieske-type ferredoxins. Correspondingly, the structure revealed an extended loop most similar to that seen in Rieske-type ferredoxin subunits of bacterial aromatic dioxygenases, including the positioning of an aromatic side chain (Tyr85) between this loop and the [2Fe–2S] cluster. The mouse Rieske-type ferredoxin was shown to be capable of accepting electrons from both eukaryotic and prokaryotic oxidoreductases, although it was unable to serve as an electron donor for a bacterial monooxygenase complex. The human homolog of mouse Rieske-type ferredoxin was also cloned and purified. It behaved identically to mouse Rieske-type ferredoxin in all biochemical characterizations but did not crystallize. Based on its high sequence identity, the structure of the human homolog is likely to be modeled well by the mouse Rieske-type ferredoxin structure.
Collapse
Affiliation(s)
- Elena J Levin
- Department of Biochemistry, University of Wisconsin, Madison, USA
| | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Inoue K, Ashikawa Y, Usami Y, Noguchi H, Fujimoto Z, Yamane H, Nojiri H. Crystallization and preliminary crystallographic analysis of the ferredoxin component of carbazole 1,9a-dioxygenase from Nocardioides aromaticivorans IC177. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:855-7. [PMID: 17909288 PMCID: PMC2339720 DOI: 10.1107/s1744309107041437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 08/22/2007] [Indexed: 11/10/2022]
Abstract
Carbazole 1,9a-dioxygenase (CARDO) catalyzes the dihydroxylation of carbazole by angular position (C9a) carbon bonding to the imino nitrogen and its adjacent C1 carbon. CARDO consists of a terminal oxygenase component and two electron-transfer components: ferredoxin and ferredoxin reductase. The ferredoxin component of carbazole 1,9a-dioxygenase from Nocardioides aromaticivorans IC177 was crystallized at 293 K using the hanging-drop vapour-diffusion method with ammonium sulfate as the precipitant. The crystals, which were improved by macroseeding, diffract to 2.0 A resolution and belong to space group P4(1)2(1)2.
Collapse
Affiliation(s)
- Kengo Inoue
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuji Ashikawa
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yusuke Usami
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Haruko Noguchi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Professional Programme for Agricultural Bioinformatics, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Zui Fujimoto
- Protein Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Hisakazu Yamane
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Professional Programme for Agricultural Bioinformatics, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Correspondence e-mail:
| |
Collapse
|
24
|
Ashikawa Y, Uchimura H, Fujimoto Z, Inoue K, Noguchi H, Yamane H, Nojiri H. Crystallization and preliminary X-ray diffraction studies of the ferredoxin reductase component in the Rieske nonhaem iron oxygenase system carbazole 1,9a-dioxygenase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:499-502. [PMID: 17554172 PMCID: PMC2335075 DOI: 10.1107/s174430910702163x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 05/02/2007] [Indexed: 11/10/2022]
Abstract
Carbazole 1,9a-dioxygenase (CARDO), which consists of an oxygenase component (CARDO-O) and the electron-transport components ferredoxin (CARDO-F) and ferredoxin reductase (CARDO-R), catalyzes dihydroxylation at the C1 and C9a positions of carbazole. CARDO-R was crystallized at 277 K using the hanging-drop vapour-diffusion method with the precipitant PEG 8000. Two crystal types (types I and II) were obtained. The type I crystal diffracted to a maximum resolution of 2.80 A and belonged to space group P4(2)2(1)2, with unit-cell parameters a = b = 158.7, c = 81.4 A. The type II crystal was obtained in drops from which type I crystals had been removed; it diffracted to 2.60 A resolution and belonged to the same space group, with unit-cell parameters a = b = 161.8, c = 79.5 A.
Collapse
Affiliation(s)
- Yuji Ashikawa
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiromasa Uchimura
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Zui Fujimoto
- Protein Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Kengo Inoue
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Haruko Noguchi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Professional Programme for Agricultural Bioinformatics, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hisakazu Yamane
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Professional Programme for Agricultural Bioinformatics, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Correspondence e-mail:
| |
Collapse
|
25
|
Structural investigations of the ferredoxin and terminal oxygenase components of the biphenyl 2,3-dioxygenase from Sphingobium yanoikuyae B1. BMC STRUCTURAL BIOLOGY 2007; 7:10. [PMID: 17349044 PMCID: PMC1847435 DOI: 10.1186/1472-6807-7-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 03/09/2007] [Indexed: 11/10/2022]
Abstract
Background The initial step involved in oxidative hydroxylation of monoaromatic and polyaromatic compounds by the microorganism Sphingobium yanoikuyae strain B1 (B1), previously known as Sphingomonas yanoikuyae strain B1 and Beijerinckia sp. strain B1, is performed by a set of multiple terminal Rieske non-heme iron oxygenases. These enzymes share a single electron donor system consisting of a reductase and a ferredoxin (BPDO-FB1). One of the terminal Rieske oxygenases, biphenyl 2,3-dioxygenase (BPDO-OB1), is responsible for B1's ability to dihydroxylate large aromatic compounds, such as chrysene and benzo[a]pyrene. Results In this study, crystal structures of BPDO-OB1 in both native and biphenyl bound forms are described. Sequence and structural comparisons to other Rieske oxygenases show this enzyme to be most similar, with 43.5 % sequence identity, to naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. While structurally similar to naphthalene 1,2-dioxygenase, the active site entrance is significantly larger than the entrance for naphthalene 1,2-dioxygenase. Differences in active site residues also allow the binding of large aromatic substrates. There are no major structural changes observed upon binding of the substrate. BPDO-FB1 has large sequence identity to other bacterial Rieske ferredoxins whose structures are known and demonstrates a high structural homology; however, differences in side chain composition and conformation around the Rieske cluster binding site are noted. Conclusion This is the first structure of a Rieske oxygenase that oxidizes substrates with five aromatic rings to be reported. This ability to catalyze the oxidation of larger substrates is a result of both a larger entrance to the active site as well as the ability of the active site to accommodate larger substrates. While the biphenyl ferredoxin is structurally similar to other Rieske ferredoxins, there are distinct changes in the amino acids near the iron-sulfur cluster. Because this ferredoxin is used by multiple oxygenases present in the B1 organism, this ferredoxin-oxygenase system provides the structural platform to dissect the balance between promiscuity and selectivity in protein-protein electron transport systems.
Collapse
|
26
|
Ashikawa Y, Fujimoto Z, Noguchi H, Habe H, Omori T, Yamane H, Nojiri H. Electron Transfer Complex Formation between Oxygenase and Ferredoxin Components in Rieske Nonheme Iron Oxygenase System. Structure 2006; 14:1779-89. [PMID: 17161368 DOI: 10.1016/j.str.2006.10.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 10/06/2006] [Accepted: 10/10/2006] [Indexed: 11/22/2022]
Abstract
Carbazole 1,9a-dioxygenase (CARDO), a member of the Rieske nonheme iron oxygenase system (ROS), consists of a terminal oxygenase (CARDO-O) and electron transfer components (ferredoxin [CARDO-F] and ferredoxin reductase [CARDO-R]). We determined the crystal structures of the nonreduced, reduced, and substrate-bound binary complexes of CARDO-O with its electron donor, CARDO-F, at 1.9, 1.8, and 2.0 A resolutions, respectively. These structures provide the first structure-based interpretation of intercomponent electron transfer between two Rieske [2Fe-2S] clusters of ferredoxin and oxygenase in ROS. Three molecules of CARDO-F bind to the subunit boundary of one CARDO-O trimeric molecule, and specific binding created by electrostatic and hydrophobic interactions with conformational changes suitably aligns the two Rieske clusters for electron transfer. Additionally, conformational changes upon binding carbazole resulted in the closure of a lid over the substrate-binding pocket, thereby seemingly trapping carbazole at the substrate-binding site.
Collapse
Affiliation(s)
- Yuji Ashikawa
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Inoue K, Ashikawa Y, Usami Y, Noguchi H, Fujimoto Z, Yamane H, Nojiri H. Crystallization and preliminary X-ray diffraction studies of the terminal oxygenase component of carbazole 1,9a-dioxygenase from Nocardioides aromaticivorans IC177. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:1212-4. [PMID: 17142899 PMCID: PMC2225353 DOI: 10.1107/s1744309106044939] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 10/27/2006] [Indexed: 11/10/2022]
Abstract
Carbazole 1,9a-dioxygenase (CARDO) catalyzes the dihydroxylation of carbazole by angular-position (C9a) carbon bonding to the imino nitrogen and its adjacent C1 carbon. CARDO consists of a terminal oxygenase component and two electron-transfer components: ferredoxin and ferredoxin reductase. The terminal oxygenase component (43.9 kDa) of carbazole 1,9a-dioxygenase from Nocardioides aromaticivorans IC177 was crystallized at 293 K using the hanging-drop vapour-diffusion method with PEG 8000 as the precipitant. The crystals diffract to 2.3 A resolution and belong to space group C2.
Collapse
Affiliation(s)
- Kengo Inoue
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuji Ashikawa
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yusuke Usami
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Haruko Noguchi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Professional Programme for Agricultural Bioinformatics, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Zui Fujimoto
- Department of Biochemistry, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Hisakazu Yamane
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Professional Programme for Agricultural Bioinformatics, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Correspondence e-mail:
| |
Collapse
|
28
|
Keenan BG, Wood TK. Orthric Rieske dioxygenases for degrading mixtures of 2,4-dinitrotoluene/naphthalene and 2-amino-4,6-dinitrotoluene/4-amino-2,6-dinitrotoluene. Appl Microbiol Biotechnol 2006; 73:827-38. [PMID: 16933133 DOI: 10.1007/s00253-006-0538-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 06/06/2006] [Accepted: 06/08/2006] [Indexed: 11/28/2022]
Abstract
Pollutants are frequently found as mixtures yet it is difficult to engineer enzymes with broad substrate ranges on aromatics. Inspired by the archetypal nitroarene dioxygenase, which shares its electron transport with a salicylate monooxygenase, we have created an innovative and general approach to expand the substrate range of dioxygenase enzymes in a single cell. We have developed here a series of novel, hybrid dioxygenase enzymes that function with a single ferredoxin reductase and ferredoxin that are used to transport two electrons from nicotinamide adenine dinucleotide to the two independent terminal oxygenases. Each independent alpha-oxygenase may then be used simultaneously to create orthric enzymes that degrade mixtures of environmental pollutants. Specifically, we created a hybrid dioxygenase system consisting of naphthalene dioxygenase/dinitrotoluene dioxygenase to simultaneously degrade 2,4-dinitrotoluene and naphthalene (neither enzyme alone had significant activity on both compounds) and dinitrotoluene dioxygenase/nitrobenzene dioxygenase to simultaneously degrade the frequently encountered 2,4,6-trinitrotoluene reduction products 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene.
Collapse
Affiliation(s)
- Brendan G Keenan
- Artie McFerrin Department of Chemical Engineering, Texas A and M University, College Station, TX 77843-3122, USA
| | | |
Collapse
|
29
|
Inoue K, Habe H, Yamane H, Nojiri H. Characterization of novel carbazole catabolism genes from gram-positive carbazole degrader Nocardioides aromaticivorans IC177. Appl Environ Microbiol 2006; 72:3321-9. [PMID: 16672473 PMCID: PMC1472339 DOI: 10.1128/aem.72.5.3321-3329.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 02/28/2006] [Indexed: 11/20/2022] Open
Abstract
Nocardioides aromaticivorans IC177 is a gram-positive carbazole degrader. The genes encoding carbazole degradation (car genes) were cloned into a cosmid clone and sequenced partially to reveal 19 open reading frames. The car genes were clustered into the carAaCBaBbAcAd and carDFE gene clusters, encoding the enzymes responsible for the degradation of carbazole to anthranilate and 2-hydroxypenta-2,4-dienoate and of 2-hydroxypenta-2,4-dienoate to pyruvic acid and acetyl coenzyme A, respectively. The conserved amino acid motifs proposed to bind the Rieske-type [2Fe-2S] cluster and mononuclear iron, the Rieske-type [2Fe-2S] cluster, and flavin adenine dinucleotide were found in the deduced amino acid sequences of carAa, carAc, and carAd, respectively, which showed similarities with CarAa from Sphingomonas sp. strain KA1 (49% identity), CarAc from Pseudomonas resinovorans CA10 (31% identity), and AhdA4 from Sphingomonas sp. strain P2 (37% identity), respectively. Escherichia coli cells expressing CarAaAcAd exhibited major carbazole 1,9a-dioxygenase (CARDO) activity. These data showed that the IC177 CARDO is classified into class IIB, while gram-negative CARDOs are classified into class III or IIA, indicating that the respective CARDOs have diverse types of electron transfer components and high similarities of the terminal oxygenase. Reverse transcription-PCR (RT-PCR) experiments showed that the carAaCBaBbAcAd and carDFE gene clusters are operonic. The results of quantitative RT-PCR experiments indicated that transcription of both operons is induced by carbazole or its metabolite, whereas anthranilate is not an inducer. Biotransformation analysis showed that the IC177 CARDO exhibits significant activities for naphthalene, carbazole, and dibenzo-p-dioxin but less activity for dibenzofuran and biphenyl.
Collapse
Affiliation(s)
- Kengo Inoue
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
30
|
Ferraro DJ, Gakhar L, Ramaswamy S. Rieske business: structure-function of Rieske non-heme oxygenases. Biochem Biophys Res Commun 2005; 338:175-90. [PMID: 16168954 DOI: 10.1016/j.bbrc.2005.08.222] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2005] [Accepted: 08/30/2005] [Indexed: 11/20/2022]
Abstract
Rieske non-heme iron oxygenases (RO) catalyze stereo- and regiospecific reactions. Recently, an explosion of structural information on this class of enzymes has occurred in the literature. ROs are two/three component systems: a reductase component that obtains electrons from NAD(P)H, often a Rieske ferredoxin component that shuttles the electrons and an oxygenase component that performs catalysis. The oxygenase component structures have all shown to be of the alpha3 or alpha3beta3 types. The transfer of electrons happens from the Rieske center to the mononuclear iron of the neighboring subunit via a conserved aspartate, which is shown to be involved in gating electron transport. Molecular oxygen has been shown to bind side-on in naphthalene dioxygenase and a concerted mechanism of oxygen activation and hydroxylation of the ring has been proposed. The orientation of binding of the substrate to the enzyme is hypothesized to control the substrate selectivity and regio-specificity of product formation.
Collapse
Affiliation(s)
- Daniel J Ferraro
- Department of Biochemistry, University of Iowa Roy J. and Lucille A. Carver College of Medicine, 51 Newton Road, 4-403 BSB, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
31
|
Nojiri H, Ashikawa Y, Noguchi H, Nam JW, Urata M, Fujimoto Z, Uchimura H, Terada T, Nakamura S, Shimizu K, Yoshida T, Habe H, Omori T. Structure of the Terminal Oxygenase Component of Angular Dioxygenase, Carbazole 1,9a-Dioxygenase. J Mol Biol 2005; 351:355-70. [PMID: 16005887 DOI: 10.1016/j.jmb.2005.05.059] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 05/24/2005] [Accepted: 05/25/2005] [Indexed: 10/25/2022]
Abstract
Carbazole 1,9a-dioxygenase (CARDO) catalyzes the dihydroxylation of carbazole by angular position (C9a) carbon bonding to the imino nitrogen and its adjacent C1 carbon. This reaction is an initial degradation reaction of the carbazole degradation pathway by various bacterial strains. Only a limited number of Rieske non-heme iron oxygenase systems (ROSs) can catalyze this novel reaction, termed angular dioxygenation. Angular dioxygenation is also involved in the degradation pathways of carbazole-related compounds, dioxin, and CARDO can catalyze the angular dioxygenation for dioxin. CARDO consists of a terminal oxygenase component (CARDO-O), and the electron transport components, ferredoxin (CARDO-F) and ferredoxin reductase (CARDO-R). CARDO-O has a homotrimeric structure, and governs the substrate specificity of CARDO. Here, we have determined the crystal structure of CARDO-O of Janthinobacterium sp. strain J3 at a resolution of 1.95A. The alpha3 trimeric overall structure of the CARDO-O molecule roughly corresponds to the alpha3 partial structures of other terminal oxygenase components of ROSs that have the alpha3beta3 configuration. The CARDO-O structure is a first example of the terminal oxygenase components of ROSs that have the alpha3 configuration, and revealed the presence of the specific loops that interact with a neighboring subunit, which is proposed to be indispensable for stable alpha3 interactions without structural beta subunits. The shape of the substrate-binding pocket of CARDO-O is markedly different from those of other oxygenase components involved in naphthalene and biphenyl degradation pathways. Docking simulations suggested that carbazole binds to the substrate-binding pocket in a manner suitable for catalysis of angular dioxygenation.
Collapse
Affiliation(s)
- Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ashikawa Y, Fujimoto Z, Noguchi H, Habe H, Omori T, Yamane H, Nojiri H. Crystallization and preliminary X-ray diffraction analysis of the electron-transfer complex between the terminal oxygenase component and ferredoxin in the Rieske non-haem iron oxygenase system carbazole 1,9a-dioxygenase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:577-80. [PMID: 16511100 PMCID: PMC1952320 DOI: 10.1107/s1744309105014557] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 05/06/2005] [Indexed: 11/10/2022]
Abstract
Carbazole 1,9a-dioxygenase, which consists of an oxygenase component (CARDO-O) and the electron-transport components ferredoxin (CARDO-F) and ferredoxin reductase (CARDO-R), catalyzes dihydroxylation at the C1 and C9a positions of carbazole. The electron-transport complex between CARDO-O and CARDO-F crystallizes at 293 K using hanging-drop vapour diffusion with the precipitant PEG MME 2000 (type I crystals) or PEG 3350 (type II). Blossom-shaped crystals form from a pile of triangular plate-shaped crystals. The type I crystal diffracts to a maximum resolution of 1.90 A and belongs to space group P2(1), with unit-cell parameters a = 97.1, b = 89.8, c = 104.9 A, alpha = gamma = 90, beta = 103.8 degrees. Diffraction data for the type I crystal gave an overall Rmerge of 8.0% and a completeness of 100%. Its VM value is 2.63 A3 Da(-1), indicating a solvent content of 53.2%.
Collapse
Affiliation(s)
- Yuji Ashikawa
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Zui Fujimoto
- Department of Biochemistry, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Haruko Noguchi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroshi Habe
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshio Omori
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hisakazu Yamane
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Correspondence e-mail:
| |
Collapse
|