1
|
Zang Y, Wang H, Hao D, Kang Y, Zhang J, Li X, Zhang L, Yang Z, Zhang S. p38α Kinase Auto-Activation through Its Conformational Transition Induced by Tyr323 Phosphorylation. J Chem Inf Model 2022; 62:6639-6648. [PMID: 36394912 DOI: 10.1021/acs.jcim.2c00236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
p38α is a key serine/threonine kinase that can enable atypical auto-activation through Zap70 phosphorylation and initiate T cell receptor signaling. The auto-activation plays an important role in autoimmune diseases. Although the classical activation mechanism of p38α has been studied in-depth, the atypical activation mechanism of Y323 phosphorylation-induced p38α auto-activation remains largely unexplained, especially the regulatory effects of phosphorylation on different sites (Y323 vs T180). From the X-ray experimental data, we identified the inactive and active states of p38α using principal component analysis. To understand the auto-activation process and the internal driving mechanism, a computational paradigm that couples the targeted molecular dynamics simulations, the String Method, and the umbrella sampling strategy were employed to generate the conformational landscape of p38α, including p38α T180-Y323, p38α T180-pY323, and p38α pT180-pY323 systems (pT180/pY323: phosphorylated T180/Y323). We explored that pY323 could change the conformational distribution and promote the conformational transition of p38α from the inactive state to the active state. Auto-activation of p38α is regulated by pY323 through destabilization of the hydrophobic core structure and aided by R173. This study will further explain the conformational transition of p38α induced by Y323 phosphorylation and provide insights into the universal molecular auto-activation mechanism of the p38 subfamily at the atomic level.
Collapse
Affiliation(s)
- Yongjian Zang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - He Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Dongxiao Hao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Ying Kang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Jianwen Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| |
Collapse
|
2
|
Thomas T, Roux B. TYROSINE KINASES: COMPLEX MOLECULAR SYSTEMS CHALLENGING COMPUTATIONAL METHODOLOGIES. THE EUROPEAN PHYSICAL JOURNAL. B 2021; 94:203. [PMID: 36524055 PMCID: PMC9749240 DOI: 10.1140/epjb/s10051-021-00207-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/14/2021] [Indexed: 05/28/2023]
Abstract
Classical molecular dynamics (MD) simulations based on atomic models play an increasingly important role in a wide range of applications in physics, biology, and chemistry. Nonetheless, generating genuine knowledge about biological systems using MD simulations remains challenging. Protein tyrosine kinases are important cellular signaling enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Due to the large conformational changes and long timescales involved in their function, these kinases present particularly challenging problems to modern computational and theoretical frameworks aimed at elucidating the dynamics of complex biomolecular systems. Markov state models have achieved limited success in tackling the broader conformational ensemble and biased methods are often employed to examine specific long timescale events. Recent advances in machine learning continue to push the limitations of current methodologies and provide notable improvements when integrated with the existing frameworks. A broad perspective is drawn from a critical review of recent studies.
Collapse
|
3
|
A Phosphorylation-Induced Switch in the Nuclear Localization Sequence of the Intrinsically Disordered NUPR1 Hampers Binding to Importin. Biomolecules 2020; 10:biom10091313. [PMID: 32933064 PMCID: PMC7565984 DOI: 10.3390/biom10091313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022] Open
Abstract
Several carrier proteins are involved in protein transport from the cytoplasm to the nucleus in eukaryotic cells. One of those is importin α, of which there are several human isoforms; among them, importin α3 (Impα3) has a high flexibility. The protein NUPR1, a nuclear protein involved in the cell-stress response and cell cycle regulation, is an intrinsically disordered protein (IDP) that has a nuclear localization sequence (NLS) to allow for nuclear translocation. NUPR1 does localize through the whole cell. In this work, we studied the affinity of the isolated wild-type NLS region (residues 54–74) of NUPR1 towards Impα3 and several mutants of the NLS region by using several biophysical techniques and molecular docking approaches. The NLS region of NUPR1 interacted with Impα3, opening the way to model the nuclear translocation of disordered proteins. All the isolated NLS peptides were disordered. They bound to Impα3 with low micromolar affinity (1.7–27 μM). Binding was hampered by removal of either Lys65 or Lys69 residues, indicating that positive charges were important; furthermore, binding decreased when Thr68 was phosphorylated. The peptide phosphorylated at Thr68, as well as four phospho-mimetic peptides (all containing the Thr68Glu mutation), showed the presence of a sequential NN(i,i + 1) nuclear Overhauser effect (NOE) in the 2D-1H-NMR (two-dimensional–proton NMR) spectra, indicating the presence of turn-like conformations. Thus, the phosphorylation of Thr68 modulates the binding of NUPR1 to Impα3 by a conformational, entropy-driven switch from a random-coil conformation to a turn-like structure.
Collapse
|
4
|
Martin-Fernandez ML, Clarke DT, Roberts SK, Zanetti-Domingues LC, Gervasio FL. Structure and Dynamics of the EGF Receptor as Revealed by Experiments and Simulations and Its Relevance to Non-Small Cell Lung Cancer. Cells 2019; 8:E316. [PMID: 30959819 PMCID: PMC6523254 DOI: 10.3390/cells8040316] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/25/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is historically the prototypical receptor tyrosine kinase, being the first cloned and the first where the importance of ligand-induced dimer activation was ascertained. However, many years of structure determination has shown that EGFR is not completely understood. One challenge is that the many structure fragments stored at the PDB only provide a partial view because full-length proteins are flexible entities and dynamics play a key role in their functionality. Another challenge is the shortage of high-resolution data on functionally important higher-order complexes. Still, the interest in the structure/function relationships of EGFR remains unabated because of the crucial role played by oncogenic EGFR mutants in driving non-small cell lung cancer (NSCLC). Despite targeted therapies against EGFR setting a milestone in the treatment of this disease, ubiquitous drug resistance inevitably emerges after one year or so of treatment. The magnitude of the challenge has inspired novel strategies. Among these, the combination of multi-disciplinary experiments and molecular dynamic (MD) simulations have been pivotal in revealing the basic nature of EGFR monomers, dimers and multimers, and the structure-function relationships that underpin the mechanisms by which EGFR dysregulation contributes to the onset of NSCLC and resistance to treatment.
Collapse
Affiliation(s)
- Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | - David T Clarke
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | - Selene K Roberts
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | - Laura C Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK.
| | | |
Collapse
|
5
|
Meng Y, Pond MP, Roux B. Tyrosine Kinase Activation and Conformational Flexibility: Lessons from Src-Family Tyrosine Kinases. Acc Chem Res 2017; 50:1193-1201. [PMID: 28426203 DOI: 10.1021/acs.accounts.7b00012] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein kinases are enzymes that catalyze the covalent transfer of the γ-phosphate of an adenosine triphosphate (ATP) molecule onto a tyrosine, serine, threonine, or histidine residue in the substrate and thus send a chemical signal to networks of downstream proteins. They are important cellular signaling enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Unregulated protein kinase activity is often associated with a wide range of diseases, therefore making protein kinases major therapeutic targets. A prototypical system of central interest to understand the regulation of kinase activity is provided by tyrosine kinase c-Src, which belongs to the family of Src-related non-receptor tyrosine kinases (SFKs). Although the broad picture of autoinhibition via the regulatory domains and via the phosphorylation of the C-terminal tail is well characterized from a structural point of view, a detailed mechanistic understanding at the atomic-level is lacking. Advanced computational methods based on all-atom molecular dynamics (MD) simulations are employed to advance our understanding of tyrosine kinase activation. The computational studies suggest that the isolated kinase domain (KD) is energetically most favorable in the inactive conformation when the activation loop (A-loop) of the KD is not phosphorylated. The KD makes transient visits to a catalytically competent active-like conformation. The process of bimolecular trans-autophosphorylation of the A-loop eventually locks the KD in the active state. Activating point mutations may act by slightly increasing the population of the active-like conformation, enhancing the availability of the A-loop to be phosphorylated. The Src-homology 2 (SH2) and Src-homology 3 (SH3) regulatory domains, depending upon their configuration, either promote the inactive or the active state of the kinase domain. In addition to the roles played by the SH3, SH2, and KD, the Src-homology 4-Unique domain (SH4-U) region also serves as a key moderator of substrate specificity and kinase function. Thus, a fundamental understanding of the conformational propensity of the SH4-U region and how this affects the association to the membrane surface are likely to lead to the discovery of new intermediate states and alternate strategies for inhibition of kinase activity for drug discovery. The existence of a multitude of KD conformations poses a great challenge aimed at the design of specific inhibitors. One promising computational strategy to explore the conformational flexibility of the KD is to construct Markov state models from aggregated MD data.
Collapse
Affiliation(s)
- Yilin Meng
- Department of Biochemistry
and Molecular Biology, Gordon Center for Integrative Science, University of Chicago 929 E 57th Street, Chicago, Illinois 60637, United States
| | - Matthew P. Pond
- Department of Biochemistry
and Molecular Biology, Gordon Center for Integrative Science, University of Chicago 929 E 57th Street, Chicago, Illinois 60637, United States
| | - Benoît Roux
- Department of Biochemistry
and Molecular Biology, Gordon Center for Integrative Science, University of Chicago 929 E 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Fajer M, Meng Y, Roux B. The Activation of c-Src Tyrosine Kinase: Conformational Transition Pathway and Free Energy Landscape. J Phys Chem B 2017; 121:3352-3363. [PMID: 27715044 PMCID: PMC5398919 DOI: 10.1021/acs.jpcb.6b08409] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tyrosine kinases are important cellular signaling allosteric enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Their activity must be tightly controlled, and malfunction can lead to a variety of diseases, particularly cancer. The nonreceptor tyrosine kinase c-Src, a prototypical model system and a representative member of the Src-family, functions as complex multidomain allosteric molecular switches comprising SH2 and SH3 domains modulating the activity of the catalytic domain. The broad picture of self-inhibition of c-Src via the SH2 and SH3 regulatory domains is well characterized from a structural point of view, but a detailed molecular mechanism understanding is nonetheless still lacking. Here, we use advanced computational methods based on all-atom molecular dynamics simulations with explicit solvent to advance our understanding of kinase activation. To elucidate the mechanism of regulation and self-inhibition, we have computed the pathway and the free energy landscapes for the "inactive-to-active" conformational transition of c-Src for different configurations of the SH2 and SH3 domains. Using the isolated c-Src catalytic domain as a baseline for comparison, it is observed that the SH2 and SH3 domains, depending upon their bound orientation, promote either the inactive or active state of the catalytic domain. The regulatory structural information from the SH2-SH3 tandem is allosterically transmitted via the N-terminal linker of the catalytic domain. Analysis of the conformational transition pathways also illustrates the importance of the conserved tryptophan 260 in activating c-Src, and reveals a series of concerted events during the activation process.
Collapse
Affiliation(s)
| | | | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, 60637, USA
| |
Collapse
|
7
|
Meng Y, Roux B. Computational study of the W260A activating mutant of Src tyrosine kinase. Protein Sci 2015; 25:219-30. [PMID: 26106037 DOI: 10.1002/pro.2731] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 01/22/2023]
Abstract
Tyrosine kinases are enzymes playing a critical role in cellular signaling. Mutations causing increased in kinase activity are often associated with cancer and various pathologies. One example in Src tyrosine kinases is offered by the substitution of the highly conserved tryptophan 260 by an alanine (W260A), which has been shown to cause an increase in activity. Here, molecular dynamics simulations based on atomic models are carried out to characterize the conformational changes in the linker region and the catalytic (kinase) domain of Src kinase to elucidate the impact of the W260A mutation. Umbrella sampling calculations show that the conformation of the linker observed in the assembled down-regulated state of the kinase is most favored when the kinase domain is in the inactive state, whereas the conformation of the linker observed in the re-assembled up-regulated state of the kinase is favored when the kinase domain is in the unphosphorylated active-like state. The calculations further indicate that there are only small differences between the WT and W260A mutant. In both cases, the intermediates states are very similar and the down-regulated inactive conformation is the most stable state. However, the calculations also show that the free energy cost to reach the unphosphorylated active-like conformation is slightly smaller for the W260A mutant compared with WT. A simple kinetic model is developed and submitted to a Bayesian Monte Carlo analysis to illustrate how such small differences can contribute to accelerate the trans-autophosphorylation reaction and yield a large increase in the activity of the mutant as observed experimentally.
Collapse
Affiliation(s)
- Yilin Meng
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, 60637
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, 60637
| |
Collapse
|
8
|
Vashisth H. Theoretical and computational studies of peptides and receptors of the insulin family. MEMBRANES 2015; 5:48-83. [PMID: 25680077 PMCID: PMC4384091 DOI: 10.3390/membranes5010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/28/2015] [Indexed: 01/05/2023]
Abstract
Synergistic interactions among peptides and receptors of the insulin family are required for glucose homeostasis, normal cellular growth and development, proliferation, differentiation and other metabolic processes. The peptides of the insulin family are disulfide-linked single or dual-chain proteins, while receptors are ligand-activated transmembrane glycoproteins of the receptor tyrosine kinase (RTK) superfamily. Binding of ligands to the extracellular domains of receptors is known to initiate signaling via activation of intracellular kinase domains. While the structure of insulin has been known since 1969, recent decades have seen remarkable progress on the structural biology of apo and liganded receptor fragments. Here, we review how this useful structural information (on ligands and receptors) has enabled large-scale atomically-resolved simulations to elucidate the conformational dynamics of these biomolecules. Particularly, applications of molecular dynamics (MD) and Monte Carlo (MC) simulation methods are discussed in various contexts, including studies of isolated ligands, apo-receptors, ligand/receptor complexes and intracellular kinase domains. The review concludes with a brief overview and future outlook for modeling and computational studies in this family of proteins.
Collapse
Affiliation(s)
- Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, 33 Academic Way, Durham, NH 03824, USA.
| |
Collapse
|
9
|
Chauvot de Beauchêne I, Allain A, Panel N, Laine E, Trouvé A, Dubreuil P, Tchertanov L. Hotspot mutations in KIT receptor differentially modulate its allosterically coupled conformational dynamics: impact on activation and drug sensitivity. PLoS Comput Biol 2014; 10:e1003749. [PMID: 25079768 PMCID: PMC4117417 DOI: 10.1371/journal.pcbi.1003749] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 06/12/2014] [Indexed: 12/03/2022] Open
Abstract
Receptor tyrosine kinase KIT controls many signal transduction pathways and represents a typical allosterically regulated protein. The mutation-induced deregulation of KIT activity impairs cellular physiological functions and causes serious human diseases. The impact of hotspots mutations (D816H/Y/N/V and V560G/D) localized in crucial regulatory segments, the juxtamembrane region (JMR) and the activation (A-) loop, on KIT internal dynamics was systematically studied by molecular dynamics simulations. The mutational outcomes predicted in silico were correlated with in vitro and in vivo activation rates and drug sensitivities of KIT mutants. The allosteric regulation of KIT in the native and mutated forms is described in terms of communication between the two remote segments, JMR and A-loop. A strong correlation between the communication profile and the structural and dynamical features of KIT in the native and mutated forms was established. Our results provide new insight on the determinants of receptor KIT constitutive activation by mutations and resistance of KIT mutants to inhibitors. Depiction of an intra-molecular component of the communication network constitutes a first step towards an integrated description of vast communication pathways established by KIT in physiopathological contexts. Receptor tyrosine kinase KIT plays a crucial role in the regulation of cell signaling. This allosterically controlled activity may be affected by gain-of-function mutations that promote the development of several cancers. Identification of the molecular basis of KIT constitutive activation and allosteric regulation has inspired computational study of KIT hotspot mutations. In the present contribution, we investigated the mutation-induced effects on KIT conformational dynamics and intra-protein communication conditionally on the mutation location and the nature of the substituting amino acid. Our data elucidate that all studied mutations stabilize an inactive non-autoinhibited state of KIT over the inactive auto-inhibited state prevalent for the native protein. This shift in the protein conformational landscape promotes KIT constitutive activation. Our in silico analysis established correlations between the structural and dynamical effects induced by oncogenic mutations and the mutants auto-activation rates and drug sensitivities measured in vitro and in vivo. Particularly, the A-loop mutations stabilize the drug-resistant forms, while the JMR mutations may facilitate inhibitors binding to the active site. Cross-correlations established between local and long-range structural and dynamical effects demonstrate the allosteric character of the gain-of-function mutations mode of action.
Collapse
Affiliation(s)
- Isaure Chauvot de Beauchêne
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliqués (LBPA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Ariane Allain
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliqués (LBPA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Nicolas Panel
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliqués (LBPA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Elodie Laine
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliqués (LBPA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Alain Trouvé
- Centre de Mathématiques et de Leurs Applications (CMLA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Patrice Dubreuil
- Inserm, U1068, Signaling, Hematopoiesis and Mechanism of Oncogenesis (CRCM); Institut Paoli-Calmettes; Aix-Marseille University; CNRS, UMR7258, Marseille, France
| | - Luba Tchertanov
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliqués (LBPA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
- Centre de Mathématiques et de Leurs Applications (CMLA-CNRS), Ecole Normale Supérieure de Cachan, Cachan, France
- * E-mail:
| |
Collapse
|
10
|
Structural dynamic analysis of apo and ATP-bound IRAK4 kinase. Sci Rep 2014; 4:5748. [PMID: 25034608 PMCID: PMC4103033 DOI: 10.1038/srep05748] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/02/2014] [Indexed: 12/15/2022] Open
Abstract
Interleukin-1 receptor-associated kinases (IRAKs) are Ser/Thr protein kinases that play an important role as signaling mediators in the signal transduction facilitated by the Toll-like receptor (TLR) and interleukin-1 receptor families. Among IRAK family members, IRAK4 is one of the drug targets for diseases related to the TLR and IL-1R signaling pathways. Experimental evidence suggests that the IRAK4 kinase domain is phosphorylated in its activation loop at T342, T345, and S346 in the fully activated state. However, the molecular interactions of subdomains within the active and inactive IRAK4 kinase domain are poorly understood. Hence, we employed a long-range molecular dynamics (MD) simulation to compare apo IRAK4 kinase domains (phosphorylated and unphosphorylated) and ATP-bound phosphorylated IRAK4 kinase domains. The MD results strongly suggested that lobe uncoupling occurs in apo unphosphorylated IRAK4 kinase via the disruption of the R334/T345 and R310/T345 interaction. In addition, apo unphosphorylated trajectory result in high mobility, particularly in the N lobe, activation segment, helix αG, and its adjoining loops. The Asp-Phe-Gly (DFG) and His-Arg-Asp (HRD) conserved kinase motif analysis showed the importance of these motifs in IRAK4 kinase activation. This study provides important information on the structural dynamics of IRAK4 kinase, which will aid in inhibitor development.
Collapse
|
11
|
Xiang S, Gapsys V, Kim HY, Bessonov S, Hsiao HH, Möhlmann S, Klaukien V, Ficner R, Becker S, Urlaub H, Lührmann R, de Groot B, Zweckstetter M. Phosphorylation drives a dynamic switch in serine/arginine-rich proteins. Structure 2013; 21:2162-74. [PMID: 24183573 DOI: 10.1016/j.str.2013.09.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 11/25/2022]
Abstract
Serine/arginine-rich (SR) proteins are important players in RNA metabolism and are extensively phosphorylated at serine residues in RS repeats. Here, we show that phosphorylation switches the RS domain of the serine/arginine-rich splicing factor 1 from a fully disordered state to a partially rigidified arch-like structure. Nuclear magnetic resonance spectroscopy in combination with molecular dynamics simulations revealed that the conformational switch is restricted to RS repeats, critically depends on the phosphate charge state and strongly decreases the conformational entropy of RS domains. The dynamic switch also occurs in the 100 kDa SR-related protein hPrp28, for which phosphorylation at the RS repeat is required for spliceosome assembly. Thus, a phosphorylation-induced dynamic switch is common to the class of serine/arginine-rich proteins and provides a molecular basis for the functional redundancy of serine/arginine-rich proteins and the profound influence of RS domain phosphorylation on protein-protein and protein-RNA interactions.
Collapse
Affiliation(s)
- Shengqi Xiang
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Vashisth H, Maragliano L, Abrams CF. "DFG-flip" in the insulin receptor kinase is facilitated by a helical intermediate state of the activation loop. Biophys J 2012; 102:1979-87. [PMID: 22768955 DOI: 10.1016/j.bpj.2012.03.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/05/2012] [Accepted: 03/12/2012] [Indexed: 11/28/2022] Open
Abstract
We have characterized a large-scale inactive-to-active conformational change in the activation-loop of the insulin receptor kinase domain at the atomistic level via untargeted temperature-accelerated molecular dynamics (TAMD) and free-energy calculations using the string method. TAMD simulations consistently show folding of the A-loop into a helical conformation followed by unfolding to an active conformation, causing the highly conserved DFG-motif (Asp(1150), Phe(1151), and Gly(1152)) to switch from the inactive "D-out/F-in" to the nucleotide-binding-competent "D-in/F-out" conformation. The minimum free-energy path computed from the string method preserves these helical intermediates along the inactive-to-active path, and the thermodynamic free-energy differences are consistent with previous work on various other kinases. The mechanisms revealed by TAMD also suggest that the regulatory spine can be dynamically assembled/disassembled either by DFG-flip or by movement of the αC-helix. Together, these findings both broaden our understanding of kinase activation and point to intermediates as specific therapeutic targets.
Collapse
Affiliation(s)
- Harish Vashisth
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
13
|
Laine E, Auclair C, Tchertanov L. Allosteric communication across the native and mutated KIT receptor tyrosine kinase. PLoS Comput Biol 2012; 8:e1002661. [PMID: 22927810 PMCID: PMC3426562 DOI: 10.1371/journal.pcbi.1002661] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/12/2012] [Indexed: 11/18/2022] Open
Abstract
A fundamental goal in cellular signaling is to understand allosteric communication, the process by which signals originated at one site in a protein propagate dependably to affect remote functional sites. Here, we describe the allosteric regulation of the receptor tyrosine kinase KIT. Our analysis evidenced that communication routes established between the activation loop (A-loop) and the distant juxtamembrane region (JMR) in the native protein were disrupted by the oncogenic mutation D816V positioned in the A-loop. In silico mutagenesis provided a plausible way of restoring the protein communication detected in the native KIT by introducing a counter-balancing second mutation D792E. The communication patterns observed in the native and mutated KIT correlate perfectly with the structural and dynamical features of these proteins. Particularly, a long-distance effect of the D816V mutation manifested as an important structural re-organization of the JMR in the oncogenic mutant was completely vanished in the double mutant D816V/D792E. This detailed characterization of the allosteric communication in the different forms of KIT, native and mutants, was performed by using a modular network representation composed of communication pathways and independent dynamic segments. Such representation permits to enrich a purely mechanistic interaction-based model of protein communication by the introduction of concerted local atomic fluctuations. This method, validated on KIT receptor, may guide a rational modulation of the physiopathological activities of other receptor tyrosine kinases. The majority of functionally important biological processes are regulated by allosteric communication within individual proteins and across protein complexes. Receptor tyrosine kinases (RTKs) control signal transduction pathways and consequently represent a typical paradigm. The mutation-induced deregulation of RTK activity impairs crucial cellular physiological functions and causes serious human diseases. The present study focuses on the allosteric communication across the three-dimensional structure of the RTK KIT cytoplasmic region. Combining a mechanistic model of information transmission with the analysis of concerted local atomic fluctuations we examined and compared the communication profiles in the native and D816V-mutated proteins. This approach permitted to localize and visualize communication routes in the native KIT and revealed that these routes were disrupted in the mutant D816V. We proposed in silico mutagenesis as a mean to restore the communication detected in the native KIT. Our work sheds light on the allosteric communication in RTKs, a phenomenon playing an essential role in signaling pathways albeit experiments do not provide the atomic details of the path followed in going from one structural element to the other. A rational understanding of the molecular determinants underlying the effects of disease-related kinase mutations may contribute to the improvement of targeted therapies.
Collapse
Affiliation(s)
- Elodie Laine
- LBPA, CNRS - ENS de Cachan, LabEx LERMIT, Cachan, France
| | | | - Luba Tchertanov
- LBPA, CNRS - ENS de Cachan, LabEx LERMIT, Cachan, France
- * E-mail:
| |
Collapse
|
14
|
Schnieders MJ, Kaoud TS, Yan C, Dalby KN, Ren P. Computational insights for the discovery of non-ATP competitive inhibitors of MAP kinases. Curr Pharm Des 2012; 18:1173-85. [PMID: 22316156 DOI: 10.2174/138161212799436368] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/06/2011] [Indexed: 12/22/2022]
Abstract
Due to their role in cellular signaling mitogen activated protein (MAP) kinases represent targets of pharmaceutical interest. However, the majority of known MAP kinase inhibitors compete with cellular ATP and target an ATP binding pocket that is highly conserved in the 500 plus representatives of the human protein kinase family. Here we review progress toward the development of non-ATP competitive MAP kinase inhibitors for the extracellular signal regulated kinases (ERK1/2), the c-jun N-terminal kinases (JNK1/2/3) and the p38 MAPKs (α, β, γ, and δ). Special emphasis is placed on the role of computational methods in the drug discovery process for MAP kinases. Topics include recent advances in X-ray crystallography theory that improve the MAP kinase structures essential to structurebased drug discovery, the use of molecular dynamics to understand the conformational heterogeneity of the activation loop and inhibitors discovered by virtual screening. The impact of an advanced polarizable force field such as AMOEBA used in conjunction with sophisticated kinetic and thermodynamic simulation methods is also discussed.
Collapse
Affiliation(s)
- Michael J Schnieders
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | | | |
Collapse
|
15
|
Huang H, Zhao R, Dickson BM, Skeel RD, Post CB. αC helix as a switch in the conformational transition of Src/CDK-like kinase domains. J Phys Chem B 2012; 116:4465-75. [PMID: 22448785 DOI: 10.1021/jp301628r] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One mechanism of regulating the catalytic activity of protein kinases is through conformational transitions. Despite great diversity in the structural changes involved in the transitions, a certain set of changes within the kinase domain (KD) has been observed for many kinases including Src and CDK2. We investigated this conformational transition computationally to identify the topological features that are energetically critical to the transition. Results from both molecular dynamics sampling and transition path optimization highlight the displacement of the αC helix as the major energy barrier, mediating the switch of the KD between the active and down-regulated states. The critical role of the αC helix is noteworthy by providing a rationale for a number of activation and deactivation mechanisms known to occur in cells. We find that kinases with the αC helix displacement exist throughout the kinome, suggesting that this feature may have emerged early in evolution.
Collapse
Affiliation(s)
- He Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Markey Center for Structural Biology and Purdue Cancer Center, Purdue University, West Lafayette, Indiana 47907, United States
| | | | | | | | | |
Collapse
|
16
|
Chioccioli M, Marsili S, Bonaccini C, Procacci P, Gratteri P. Insights into the conformational switching mechanism of the human vascular endothelial growth factor receptor type 2 kinase domain. J Chem Inf Model 2012; 52:483-91. [PMID: 22229497 DOI: 10.1021/ci200513a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human vascular endothelial growth factor receptor type 2 (h-VEFGR2) is a receptor tyrosine kinase involved in the angiogenesis process and regarded as an interesting target for the design of anticancer drugs. Its activation/inactivation mechanism is related to conformational changes in its cytoplasmatic kinase domain, involving first among all the αC-helix in N-lobe and the A-loop in C-lobe. Affinity of inhibitors for the active or inactive kinase form could dictate the open or closed conformation of the A-loop, thus making the different conformations of the kinase domain receptor (KDR) domain different drug targets in drug discovery. In this view, a detailed knowledge of the conformational landscape of KDR domain is of central relevance to rationalize the efficiency and selectivity of kinase inhibitors. Here, molecular dynamics simulations were used to gain insight into the conformational switching activity of the KDR domain and to identify intermediate conformations between the two limiting active and inactive conformations. Specific energy barriers have been selectively removed to induce, and hence highlight at the atomistic level, the regulation mechanism of the A-loop opening. The proposed strategy allowed to repeatedly observe the escape of the KDR domain from the DFG-out free energy basin and to identify rare intermediate conformations between the DFG-out and the DFG-in structures to be employed in a structure-based drug discovery process.
Collapse
Affiliation(s)
- Matteo Chioccioli
- Laboratory of Molecular Modeling Cheminformatics and QSAR, Department of Pharmaceutical Sciences, University of Firenze, Via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze Italy
| | | | | | | | | |
Collapse
|
17
|
Seco J, Ferrer-Costa C, Campanera JM, Soliva R, Barril X. Allosteric regulation of PKCθ: understanding multistep phosphorylation and priming by ligands in AGC kinases. Proteins 2011; 80:269-80. [PMID: 22072623 DOI: 10.1002/prot.23205] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 09/12/2011] [Accepted: 09/18/2011] [Indexed: 01/13/2023]
Abstract
Protein kinases play critical roles in cellular activation and differentiation, and are involved in numerous pathophysiological processes. As a critical component of the regulatory circuitry of the cell, the kinase domain has the ability to integrate multiple signals, yielding a predetermined output. In PKC and other protein kinases of the AGC family, several phosphorylation sites control the activity, but these are in turn influenced by the presence of ligands in the binding pocket, which promotes phosphorylation. Here, we take PKC-theta as a prototypical member of the family and use molecular dynamics simulations to investigate the cross-talk that exists between regulatory and functional sites. We first show how the apo-unphosphorylated form of the kinase is populating a conformational space in which access to the ATP binding site and to the activation loop (AL) are simultaneously hindered. This could explain why the inactive state is not only catalytically incompetent but also resistant to activation. AL phosphorylation induces ATP binding site opening, which can then readily accept the cofactor. But the signal transmission mechanism works both ways, and if ligand binding to the unphosphorylated form occurs first, the AL is de-protected and becomes exposed to phosphorylation, thus providing an explanation for the paradoxical activation of PKCs by their inhibitors.
Collapse
Affiliation(s)
- Jesus Seco
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
18
|
Sutto L, Mereu I, Gervasio FL. A Hybrid All-Atom Structure-Based Model for Protein Folding and Large Scale Conformational Transitions. J Chem Theory Comput 2011; 7:4208-17. [DOI: 10.1021/ct200547m] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ludovico Sutto
- Spanish National Cancer Research Center (CNIO), Structural Biology and Biocomputing Programme, Melchor Fernandez Almagro, 3, E-28029 Madrid, Spain
| | - Ilaria Mereu
- Spanish National Cancer Research Center (CNIO), Structural Biology and Biocomputing Programme, Melchor Fernandez Almagro, 3, E-28029 Madrid, Spain
| | - Francesco Luigi Gervasio
- Spanish National Cancer Research Center (CNIO), Structural Biology and Biocomputing Programme, Melchor Fernandez Almagro, 3, E-28029 Madrid, Spain
| |
Collapse
|
19
|
Narayanan A, LeClaire LL, Barber DL, Jacobson MP. Phosphorylation of the Arp2 subunit relieves auto-inhibitory interactions for Arp2/3 complex activation. PLoS Comput Biol 2011; 7:e1002226. [PMID: 22125478 PMCID: PMC3220268 DOI: 10.1371/journal.pcbi.1002226] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 08/27/2011] [Indexed: 11/18/2022] Open
Abstract
Actin filament assembly by the actin-related protein (Arp) 2/3 complex is necessary to build many cellular structures, including lamellipodia at the leading edge of motile cells and phagocytic cups, and to move endosomes and intracellular pathogens. The crucial role of the Arp2/3 complex in cellular processes requires precise spatiotemporal regulation of its activity. While binding of nucleation-promoting factors (NPFs) has long been considered essential to Arp2/3 complex activity, we recently showed that phosphorylation of the Arp2 subunit is also necessary for Arp2/3 complex activation. Using molecular dynamics simulations and biochemical assays with recombinant Arp2/3 complex, we now show how phosphorylation of Arp2 induces conformational changes permitting activation. The simulations suggest that phosphorylation causes reorientation of Arp2 relative to Arp3 by destabilizing a network of salt-bridge interactions at the interface of the Arp2, Arp3, and ARPC4 subunits. Simulations also suggest a gain-of-function ARPC4 mutant that we show experimentally to have substantial activity in the absence of NPFs. We propose a model in which a network of auto-inhibitory salt-bridge interactions holds the Arp2 subunit in an inactive orientation. These auto-inhibitory interactions are destabilized upon phosphorylation of Arp2, allowing Arp2 to reorient to an activation-competent state.
Collapse
Affiliation(s)
- Arjun Narayanan
- Graduate Group in Biophysics, University of California, San Francisco, San Francisco, California, USA.
| | | | | | | |
Collapse
|
20
|
Dixit A, Verkhivker GM. Computational modeling of allosteric communication reveals organizing principles of mutation-induced signaling in ABL and EGFR kinases. PLoS Comput Biol 2011; 7:e1002179. [PMID: 21998569 PMCID: PMC3188506 DOI: 10.1371/journal.pcbi.1002179] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/16/2011] [Indexed: 12/15/2022] Open
Abstract
The emerging structural information about allosteric kinase complexes and the growing number of allosteric inhibitors call for a systematic strategy to delineate and classify mechanisms of allosteric regulation and long-range communication that control kinase activity. In this work, we have investigated mechanistic aspects of long-range communications in ABL and EGFR kinases based on the results of multiscale simulations of regulatory complexes and computational modeling of signal propagation in proteins. These approaches have been systematically employed to elucidate organizing molecular principles of allosteric signaling in the ABL and EGFR multi-domain regulatory complexes and analyze allosteric signatures of the gate-keeper cancer mutations. We have presented evidence that mechanisms of allosteric activation may have universally evolved in the ABL and EGFR regulatory complexes as a product of a functional cross-talk between the organizing αF-helix and conformationally adaptive αI-helix and αC-helix. These structural elements form a dynamic network of efficiently communicated clusters that may control the long-range interdomain coupling and allosteric activation. The results of this study have unveiled a unifying effect of the gate-keeper cancer mutations as catalysts of kinase activation, leading to the enhanced long-range communication among allosterically coupled segments and stabilization of the active kinase form. The results of this study can reconcile recent experimental studies of allosteric inhibition and long-range cooperativity between binding sites in protein kinases. The presented study offers a novel molecular insight into mechanistic aspects of allosteric kinase signaling and provides a quantitative picture of activation mechanisms in protein kinases at the atomic level. Despite recent progress in computational and experimental studies of dynamic regulation in protein kinases, a mechanistic understanding of long-range communication and mechanisms of mutation-induced signaling controlling kinase activity remains largely qualitative. In this study, we have performed a systematic modeling and analysis of allosteric activation in ABL and EGFR kinases at the increasing level of complexity - from catalytic domain to multi-domain regulatory complexes. The results of this study have revealed organizing structural and mechanistic principles of allosteric signaling in protein kinases. Although activation mechanisms in ABL and EGFR kinases have evolved through acquisition of structurally different regulatory complexes, we have found that long-range interdomain communication between common functional segments (αF-helix and αC-helix) may be important for allosteric activation. The results of study have revealed molecular signatures of activating cancer mutations and have shed the light on general mechanistic aspects of mutation-induced signaling in protein kinases. An advanced understanding and further characterization of molecular signatures of kinase mutations may aid in a better rationalization of mutational effects on clinical outcomes and facilitate molecular-based therapeutic strategies to combat kinase mutation-dependent tumorigenesis.
Collapse
Affiliation(s)
- Anshuman Dixit
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas, United States of America
| | - Gennady M. Verkhivker
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas, United States of America
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Dixit A, Verkhivker GM. The energy landscape analysis of cancer mutations in protein kinases. PLoS One 2011; 6:e26071. [PMID: 21998754 PMCID: PMC3188581 DOI: 10.1371/journal.pone.0026071] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/19/2011] [Indexed: 11/18/2022] Open
Abstract
The growing interest in quantifying the molecular basis of protein kinase activation and allosteric regulation by cancer mutations has fueled computational studies of allosteric signaling in protein kinases. In the present study, we combined computer simulations and the energy landscape analysis of protein kinases to characterize the interplay between oncogenic mutations and locally frustrated sites as important catalysts of allostetric kinase activation. While structurally rigid kinase core constitutes a minimally frustrated hub of the catalytic domain, locally frustrated residue clusters, whose interaction networks are not energetically optimized, are prone to dynamic modulation and could enable allosteric conformational transitions. The results of this study have shown that the energy landscape effect of oncogenic mutations may be allosteric eliciting global changes in the spatial distribution of highly frustrated residues. We have found that mutation-induced allosteric signaling may involve a dynamic coupling between structurally rigid (minimally frustrated) and plastic (locally frustrated) clusters of residues. The presented study has demonstrated that activation cancer mutations may affect the thermodynamic equilibrium between kinase states by allosterically altering the distribution of locally frustrated sites and increasing the local frustration in the inactive form, while eliminating locally frustrated sites and restoring structural rigidity of the active form. The energy landsape analysis of protein kinases and the proposed role of locally frustrated sites in activation mechanisms may have useful implications for bioinformatics-based screening and detection of functional sites critical for allosteric regulation in complex biomolecular systems.
Collapse
Affiliation(s)
- Anshuman Dixit
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas, United States of America
| | - Gennady M. Verkhivker
- School of Computational Sciences and Crean School of Health and Life Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Department of Pharmacology, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Laine E, Chauvot de Beauchêne I, Perahia D, Auclair C, Tchertanov L. Mutation D816V alters the internal structure and dynamics of c-KIT receptor cytoplasmic region: implications for dimerization and activation mechanisms. PLoS Comput Biol 2011; 7:e1002068. [PMID: 21698178 PMCID: PMC3116893 DOI: 10.1371/journal.pcbi.1002068] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 04/11/2011] [Indexed: 12/02/2022] Open
Abstract
The type III receptor tyrosine kinase (RTK) KIT plays a crucial role in the transmission of cellular signals through phosphorylation events that are associated with a switching of the protein conformation between inactive and active states. D816V KIT mutation is associated with various pathologies including mastocytosis and cancers. D816V-mutated KIT is constitutively active, and resistant to treatment with the anti-cancer drug Imatinib. To elucidate the activating molecular mechanism of this mutation, we applied a multi-approach procedure combining molecular dynamics (MD) simulations, normal modes analysis (NMA) and binding site prediction. Multiple 50-ns MD simulations of wild-type KIT and its mutant D816V were recorded using the inactive auto-inhibited structure of the protein, characteristic of type III RTKs. Computed free energy differences enabled us to quantify the impact of D816V on protein stability in the inactive state. We evidenced a local structural alteration of the activation loop (A-loop) upon mutation, and a long-range structural re-organization of the juxta-membrane region (JMR) followed by a weakening of the interaction network with the kinase domain. A thorough normal mode analysis of several MD conformations led to a plausible molecular rationale to propose that JMR is able to depart its auto-inhibitory position more easily in the mutant than in wild-type KIT and is thus able to promote kinase mutant dimerization without the need for extra-cellular ligand binding. Pocket detection at the surface of NMA-displaced conformations finally revealed that detachment of JMR from the kinase domain in the mutant was sufficient to open an access to the catalytic and substrate binding sites. Protein kinases are involved in a huge amount of cellular processes through phosphorylation, a crucial mechanism in cell signaling, and their misregulation often results in disease. The deactivation of protein tyrosine kinases (PTKs) or their oncogenic activation arises from mutations which affect the protein primary structure and the configuration of the enzymatic site apparently by stabilizing the activation loop (A-loop) extended conformation. Particularly, mutation D816V of receptor tyrosine kinase (RTK) KIT, found in patients with pediatric mastocytosis, acute leukemia or germ cell tumors, can be considered as the archetype of mutation inducing a displacement of the population equilibrium toward the active conformation. We present a comprehensive computational study of the activating mechanism(s) of this mutation. Our multi-approach in silico procedure evidenced a local alteration of the A-loop structure, and a long-range structural re-organization of the juxta-membrane region (JMR) followed by a weakening of the interaction network with the kinase domain. Our results provided a plausible conception of how the observed departure of JMR from kinase domain in the mutant promotes kinase mutant dimerization without requiring extra-cellular ligand binding. The pocket profiles we obtained suggested putative allosteric binding sites that could be targeted by ligands/modulators that trap the mutated enzyme.
Collapse
Affiliation(s)
- Elodie Laine
- LBPA, CNRS - ENS de Cachan, Cachan, France
- * E-mail: (EL); (LT)
| | | | | | | | - Luba Tchertanov
- LBPA, CNRS - ENS de Cachan, Cachan, France
- * E-mail: (EL); (LT)
| |
Collapse
|
23
|
Shih AJ, Telesco SE, Choi SH, Lemmon MA, Radhakrishnan R. Molecular dynamics analysis of conserved hydrophobic and hydrophilic bond-interaction networks in ErbB family kinases. Biochem J 2011; 436:241-51. [PMID: 21426301 PMCID: PMC3138537 DOI: 10.1042/bj20101791] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The EGFR (epidermal growth factor receptor)/ErbB/HER (human EGFR) family of kinases contains four homologous receptor tyrosine kinases that are important regulatory elements in key signalling pathways. To elucidate the atomistic mechanisms of dimerization-dependent activation in the ErbB family, we have performed molecular dynamics simulations of the intracellular kinase domains of three members of the ErbB family (those with known kinase activity), namely EGFR, ErbB2 (HER2) and ErbB4 (HER4), in different molecular contexts: monomer against dimer and wild-type against mutant. Using bioinformatics and fluctuation analyses of the molecular dynamics trajectories, we relate sequence similarities to correspondence of specific bond-interaction networks and collective dynamical modes. We find that in the active conformation of the ErbB kinases, key subdomain motions are co-ordinated through conserved hydrophilic interactions: activating bond-networks consisting of hydrogen bonds and salt bridges. The inactive conformations also demonstrate conserved bonding patterns (albeit less extensive) that sequester key residues and disrupt the activating bond network. Both conformational states have distinct hydrophobic advantages through context-specific hydrophobic interactions. We show that the functional (activating) asymmetric kinase dimer interface forces a corresponding change in the hydrophobic and hydrophilic interactions that characterize the inactivating bond network, resulting in motion of the αC-helix through allostery. Several of the clinically identified activating kinase mutations of EGFR act in a similar fashion to disrupt the inactivating bond network. The present molecular dynamics study reveals a fundamental difference in the sequence of events in EGFR activation compared with that described for the Src kinase Hck.
Collapse
Affiliation(s)
- Andrew J. Shih
- Department of Bioengineering, University of Pennsylvania, 210 S. 33 Street, 240 Skirkanich Hall, Philadelphia, PA 19104
| | - Shannon E. Telesco
- Department of Bioengineering, University of Pennsylvania, 210 S. 33 Street, 240 Skirkanich Hall, Philadelphia, PA 19104
| | - Sung Hee Choi
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 809C Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104
| | - Mark A. Lemmon
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 809C Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104
| | - Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, 210 S. 33 Street, 240 Skirkanich Hall, Philadelphia, PA 19104
| |
Collapse
|
24
|
Ho BK, Agard DA. An improved strategy for generating forces in steered molecular dynamics: the mechanical unfolding of titin, e2lip3 and ubiquitin. PLoS One 2010; 5. [PMID: 20927369 PMCID: PMC2947501 DOI: 10.1371/journal.pone.0013068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 08/30/2010] [Indexed: 11/18/2022] Open
Abstract
One of the applications of Molecular Dynamics (MD) simulations is to explore the energetic barriers to mechanical unfolding of proteins such as occurs in response to the mechanical pulling of single molecules in Atomic Force Microscopy (AFM) experiments. Although Steered Molecular Dynamics simulations have provided microscopic details of the unfolding process during the pulling, the simulated forces required for unfolding are typically far in excess of the measured values. To rectify this, we have developed the Pulsed Unconstrained Fluctuating Forces (PUFF) method, which induces constant-momentum motions by applying forces directly to the instantaneous velocity of selected atoms in a protein system. The driving forces are applied in pulses, which allows the system to relax between pulses, resulting in more accurate unfolding force estimations than in previous methods. In the cases of titin, ubiquitin and e2lip3, the PUFF trajectories produce force fluctuations that agree quantitatively with AFM experiments. Another useful property of PUFF is that simulations get trapped if the target momentum is too low, simplifying the discovery and analysis of unfolding intermediates.
Collapse
Affiliation(s)
- Bosco K Ho
- Department of Biophysics and Biochemistry, Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America.
| | | |
Collapse
|
25
|
Phosphorylation and ATP-binding induced conformational changes in the PrkC, Ser/Thr kinase from B. subtilis. J Comput Aided Mol Des 2010; 24:733-47. [PMID: 20563625 DOI: 10.1007/s10822-010-9370-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
Abstract
Recent studies on the PrkC, serine-threonine kinase show that that the enzyme is located at the inner membrane of endospores and is responsible for triggering spore germination. The activity of the protein increases considerably after phosphorylation of four threonine residues placed on the activation loop and one serine placed in the C-terminal lobe of the PrkC. The molecular relationship between phosphorylation of these residues and enzyme activity is not known. In this work molecular dynamics simulation is performed on four forms of the protein kinase PrkC from B. subtilis-phosphorylated or unphosphorylated; with or without ATP bound-in order to gain insight into phosphorylation and ATP binding on the conformational changes and functions of the protein kinase. Our results show how phosphorylation, as well as the presence of ATP, is important for the activity of the enzyme through its molecular interaction with the catalytic core residues. Three of four threonine residues were found to be involved in the interactions with conservative motifs important for the enzyme activity. Two of the threonine residues (T167 and T165) are involved in ionic interactions with an arginine cluster from alphaC-helix. The third residue (T163) plays a crucial role, interacting with His-Arg-Asp triad (HRD). Last of the threonine residues (T162), as well as the serine (S214), were indicated to play a role in the substrate recognition or dimerization of the enzyme. The presence of ATP in the unphosphorylated model induced conformational instability of the activation loop and Asp-Phe-Gly motif (DFG). Based on our calculations we put forward a hypothesis suggesting that the ATP binds after phosphorylation of the activation loop to create a fully active conformation in the closed position.
Collapse
|
26
|
Liu J, Nussinov R. Molecular dynamics reveal the essential role of linker motions in the function of cullin-RING E3 ligases. J Mol Biol 2010; 396:1508-23. [PMID: 20083119 PMCID: PMC2824043 DOI: 10.1016/j.jmb.2010.01.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 01/10/2010] [Accepted: 01/12/2010] [Indexed: 11/30/2022]
Abstract
Tagging proteins by polyubiquitin is a key step in protein degradation. Cullin-RING E3 ubiquitin ligases facilitate ubiquitin transfer from the E2-conjugating enzyme to the substrate, yet crystallography indicates a large distance between the E2 and the substrate, raising the question of how this distance is bridged in the ubiquitin transfer reaction. Here, we demonstrate that the linker motions in the substrate binding proteins can allosterically shorten this distance to facilitate this crucial ubiquitin transfer step and increase this distance to allow polyubiquitination. We performed molecular dynamics simulations for five substrate binding proteins, Skp2, Fbw7, beta-TrCP1, Cdc4, and pVHL, in two forms: bound to their substrates and bound to both substrate and adaptor. The adaptor connects the substrate binding proteins to the cullin. In the bound-to-both forms of all cases, we observed rotations of the substrate binding domain, shortening the gap between the tip of the substrate peptide and the E2 active site by 7-12 A compared with the crystal structures. Overall, together with our earlier simulations of the unbound forms and the bound-to-adaptor forms, the emerging picture is that the maximum distance of 51-73 A between the substrate binding domain and the E2 active site in the modeled unbound forms of these five proteins shrinks to a minimum of 39-49 A in the bound-to-both forms. This large distance range, the result of allosterically controlled linker motions, facilitates ubiquitin transfer and polyubiquitination and as such argues that the cullin-RING E3 ubiquitin ligase is under conformational control. We further observed that substrate binding proteins with multiple substrate acceptor lysines have a larger distance range between the substrate and the E2 as compared with beta-TrCP1, with only one acceptor lysine.
Collapse
Affiliation(s)
- Jin Liu
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702
| | - Ruth Nussinov
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
27
|
Grant BJ, Gorfe AA, McCammon JA. Large conformational changes in proteins: signaling and other functions. Curr Opin Struct Biol 2010; 20:142-7. [PMID: 20060708 DOI: 10.1016/j.sbi.2009.12.004] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/10/2009] [Accepted: 12/11/2009] [Indexed: 11/30/2022]
Abstract
Guanine and adenine nucleotide triphosphatases, such as Ras proteins and protein kinases, undergo large conformational changes upon ligand binding in the course of their functions. New computer simulation methods have combined with experimental studies to deepen our understanding of these phenomena. In particular, a 'conformational selection' picture is emerging, where alterations in the relative populations of pre-existing conformations can best describe the conformational switching activity of these important proteins.
Collapse
Affiliation(s)
- Barry J Grant
- Department of Chemistry and Biochemistry and Center for Theoretical Biological Physics, University of California San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
28
|
Dixit A, Yi L, Gowthaman R, Torkamani A, Schork NJ, Verkhivker GM. Sequence and structure signatures of cancer mutation hotspots in protein kinases. PLoS One 2009; 4:e7485. [PMID: 19834613 PMCID: PMC2759519 DOI: 10.1371/journal.pone.0007485] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 09/25/2009] [Indexed: 11/18/2022] Open
Abstract
Protein kinases are the most common protein domains implicated in cancer, where somatically acquired mutations are known to be functionally linked to a variety of cancers. Resequencing studies of protein kinase coding regions have emphasized the importance of sequence and structure determinants of cancer-causing kinase mutations in understanding of the mutation-dependent activation process. We have developed an integrated bioinformatics resource, which consolidated and mapped all currently available information on genetic modifications in protein kinase genes with sequence, structure and functional data. The integration of diverse data types provided a convenient framework for kinome-wide study of sequence-based and structure-based signatures of cancer mutations. The database-driven analysis has revealed a differential enrichment of SNPs categories in functional regions of the kinase domain, demonstrating that a significant number of cancer mutations could fall at structurally equivalent positions (mutational hotspots) within the catalytic core. We have also found that structurally conserved mutational hotspots can be shared by multiple kinase genes and are often enriched by cancer driver mutations with high oncogenic activity. Structural modeling and energetic analysis of the mutational hotspots have suggested a common molecular mechanism of kinase activation by cancer mutations, and have allowed to reconcile the experimental data. According to a proposed mechanism, structural effect of kinase mutations with a high oncogenic potential may manifest in a significant destabilization of the autoinhibited kinase form, which is likely to drive tumorigenesis at some level. Structure-based functional annotation and prediction of cancer mutation effects in protein kinases can facilitate an understanding of the mutation-dependent activation process and inform experimental studies exploring molecular pathology of tumorigenesis.
Collapse
Affiliation(s)
- Anshuman Dixit
- Graduate Program for Bioinformatics, Center for Bioinformatics, The University of Kansas, Lawrence, Kansas, United States of America
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas, United States of America
| | - Lin Yi
- Graduate Program for Bioinformatics, Center for Bioinformatics, The University of Kansas, Lawrence, Kansas, United States of America
| | - Ragul Gowthaman
- Graduate Program for Bioinformatics, Center for Bioinformatics, The University of Kansas, Lawrence, Kansas, United States of America
| | - Ali Torkamani
- Scripps Genomic Medicine, Department of Molecular and Experimental Medicine, Scripps Health and The Scripps Research Institute, La Jolla, California, United States of America
| | - Nicholas J. Schork
- Scripps Genomic Medicine, Department of Molecular and Experimental Medicine, Scripps Health and The Scripps Research Institute, La Jolla, California, United States of America
| | - Gennady M. Verkhivker
- Graduate Program for Bioinformatics, Center for Bioinformatics, The University of Kansas, Lawrence, Kansas, United States of America
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas, United States of America
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Hierarchical modeling of activation mechanisms in the ABL and EGFR kinase domains: thermodynamic and mechanistic catalysts of kinase activation by cancer mutations. PLoS Comput Biol 2009; 5:e1000487. [PMID: 19714203 PMCID: PMC2722018 DOI: 10.1371/journal.pcbi.1000487] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 07/27/2009] [Indexed: 11/24/2022] Open
Abstract
Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type) and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition and the enhanced stabilization of the active kinase form. The results of this study reconcile current experimental data with insights from theoretical approaches, pointing to general mechanistic aspects of activating transitions in protein kinases. Mutations in protein kinases are implicated in many cancers, and an important goal of cancer research is to elucidate molecular effects of mutated kinase genes that contribute to tumorigenesis. We present a comprehensive computational study of molecular mechanisms of kinase activation by cancer-causing mutations. Using a battery of computational approaches, we have systematically investigated the effects of clinically important cancer mutants on dynamics of the ABL and EGFR kinase domains and regulatory multi-protein complexes. The results of this study have illuminated common and specific features of the activation mechanism in the normal and oncogenic forms of ABL and EGFR. We have found that mutants with the higher oncogenic activity may cause a partial destabilization of the inactive structure, while simultaneously facilitating activating transitions and the enhanced stabilization of the active conformation. Our results provided useful insights into thermodynamic and mechanistic aspects of the activation mechanism and highlighted the role of structurally distinct conformational states in kinase regulation. Ultimately, molecular signatures of activation mechanisms in the normal and oncogenic states may aid in the correlation of mutational effects with clinical outcomes and facilitate the development of therapeutic strategies to combat kinase mutation-dependent tumorigenesis.
Collapse
|
30
|
Gan W, Yang S, Roux B. Atomistic view of the conformational activation of Src kinase using the string method with swarms-of-trajectories. Biophys J 2009; 97:L8-L10. [PMID: 19686639 PMCID: PMC2726321 DOI: 10.1016/j.bpj.2009.06.016] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/08/2009] [Accepted: 06/18/2009] [Indexed: 11/30/2022] Open
Abstract
The inactive-to-active conformational transition of the catalytic domain of human c-Src tyrosine kinase is characterized using the string method with swarms-of-trajectories with all-atom explicit solvent molecular dynamics simulations. The activation process occurs in two main steps in which the activation loop (A-loop) opens first, followed by the rotation of the alphaC helix. The computed potential of mean force energy along the activation pathway displays a local minimum, which allows the identification of an intermediate state. These results show that the string method with swarms-of-trajectories is an effective technique to characterize complex and slow conformational transitions in large biomolecular systems.
Collapse
Affiliation(s)
- Wenxun Gan
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637
| | - Sichun Yang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
31
|
Pan Y, Nussinov R. Cooperativity dominates the genomic organization of p53-response elements: a mechanistic view. PLoS Comput Biol 2009; 5:e1000448. [PMID: 19629163 PMCID: PMC2705680 DOI: 10.1371/journal.pcbi.1000448] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 06/24/2009] [Indexed: 11/18/2022] Open
Abstract
p53-response elements (p53-REs) are organized as two repeats of a palindromic DNA segment spaced by 0 to 20 base pairs (bp). Several experiments indicate that in the vast majority of the human p53-REs there are no spacers between the two repeats; those with spacers, particularly with sizes beyond two nucleotides, are rare. This raises the question of what it indicates about the factors determining the p53-RE genomic organization. Clearly, given the double helical DNA conformation, the orientation of two p53 core domain dimers with respect to each other will vary depending on the spacer size: a small spacer of 0 to 2 bps will lead to the closest p53 dimer-dimer orientation; a 10-bp spacer will locate the p53 dimers on the same DNA face but necessitate DNA looping; while a 5-bp spacer will position the p53 dimers on opposite DNA faces. Here, via conformational analysis we show that when there are 0-2 bp spacers, p53-DNA binding is cooperative; however, cooperativity is greatly diminished when there are spacers with sizes beyond 2 bp. Cooperative binding is broadly recognized to be crucial for biological processes, including transcriptional regulation. Our results clearly indicate that cooperativity of the p53-DNA association dominates the genomic organization of the p53-REs, raising questions of the structural organization and functional roles of p53-REs with larger spacers. We further propose that a dynamic landscape scenario of p53 and p53-REs can better explain the selectivity of the degenerate p53-REs. Our conclusions bear on the evolutionary preference of the p53-RE organization and as such, are expected to have broad implications to other multimeric transcription factor response element organization.
Collapse
Affiliation(s)
- Yongping Pan
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, Maryland, United States of America
| | - Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, Maryland, United States of America
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
32
|
Piserchio A, Ghose R, Cowburn D. Optimized bacterial expression and purification of the c-Src catalytic domain for solution NMR studies. JOURNAL OF BIOMOLECULAR NMR 2009; 44:87-93. [PMID: 19399371 PMCID: PMC2735562 DOI: 10.1007/s10858-009-9318-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 04/06/2009] [Indexed: 05/27/2023]
Abstract
Progression of a host of human cancers is associated with elevated levels of expression and catalytic activity of the Src family of tyrosine kinases (SFKs), making them key therapeutic targets. Even with the availability of multiple crystal structures of active and inactive forms of the SFK catalytic domain (CD), a complete understanding of its catalytic regulation is unavailable. Also unavailable are atomic or near-atomic resolution information about their interactions, often weak or transient, with regulating phosphatases and downstream targets. Solution NMR, the biophysical method best suited to tackle this problem, was previously hindered by difficulties in bacterial expression and purification of sufficient quantities of soluble, properly folded protein for economically viable labeling with NMR-active isotopes. Through a choice of optimal constructs, co-expression with chaperones and optimization of the purification protocol, we have achieved the ability to bacterially produce large quantities of the isotopically-labeled CD of c-Src, the prototypical SFK, and of its activating Tyr-phosphorylated form. All constructs produce excellent spectra allowing solution NMR studies of this family in an efficient manner.
Collapse
Affiliation(s)
- Andrea Piserchio
- New York Structural Biology Center, New York, New York, 10027
- The Department of Chemistry, The City College of New York, New York 10031
| | - Ranajeet Ghose
- The Department of Chemistry, The City College of New York, New York 10031
- Graduate Center of the City University of New York, New York, New York 10016
| | - David Cowburn
- New York Structural Biology Center, New York, New York, 10027
| |
Collapse
|
33
|
Narayanan A, Jacobson MP. Computational studies of protein regulation by post-translational phosphorylation. Curr Opin Struct Biol 2009; 19:156-63. [DOI: 10.1016/j.sbi.2009.02.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 02/20/2009] [Accepted: 02/24/2009] [Indexed: 02/08/2023]
|
34
|
Yang S, Banavali NK, Roux B. Mapping the conformational transition in Src activation by cumulating the information from multiple molecular dynamics trajectories. Proc Natl Acad Sci U S A 2009; 106:3776-81. [PMID: 19225111 PMCID: PMC2656156 DOI: 10.1073/pnas.0808261106] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Indexed: 11/18/2022] Open
Abstract
The Src-family kinases are allosteric enzymes that play a key role in the regulation of cell growth and proliferation. In response to cellular signals, they undergo large conformational changes to switch between distinct inactive and active states. A computational strategy for characterizing the conformational transition pathway is presented to bridge the inactive and active states of the catalytic domain of Hck. The information from a large number (78) of independent all-atom molecular dynamics trajectories with explicit solvent is combined together to assemble a connectivity map of the conformational transition. Two intermediate states along the activation pathways are identified, and their structural features are characterized. A coarse free-energy landscape is built in terms of the collective motions corresponding to the opening of the activation loop (A-loop) and the rotation of the alphaC helix. This landscape shows that the protein can adopt a multitude of conformations in which the A-loop is partially open, while the alphaC helix remains in the orientation characteristic of the inactive conformation. The complete transition leading to the active conformation requires a concerted movement involving further opening of the A-loop, the relative alignment of N-lobe and C-lobe, and the rotation of the alphaC helix needed to recruit the residues necessary for catalysis in the active site. The analysis leads to a dynamic view of the full-length kinase activation, whereby transitions of the catalytic domain to intermediate configurations with a partially open A-loop are permitted, even while the SH2-SH3 clamp remains fully engaged. These transitions would render Y416 available for the transphosphorylation event that ultimately locks down the active state. The results provide a broad framework for picturing the conformational transitions leading to kinase activation.
Collapse
Affiliation(s)
- Sichun Yang
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637; and
| | - Nilesh K. Banavali
- Laboratory of Computational and Structural Biology, Division of Genetics, Wadsworth Center, New York State Department of Health, Empire State Plaza, P.O. Box 509, Albany, NY 12201
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637; and
| |
Collapse
|
35
|
Abstract
Regulated activity of Src kinases is critical for cell growth. Src kinases can be activated by trans-phosphorylation of a tyrosine located in the central activation loop of the catalytic domain. However, because the required exposure of this tyrosine is not observed in the down-regulated X-ray structures of Src kinases, transient partial opening of the activation loop appears to be necessary for such processes. Umbrella sampling molecular dynamics simulations are used to characterize the free energy landscape of opening of the hydrophilic part of the activation loop in the Src kinase Hck. The loop prefers a partially open conformation where Tyr416 has increased accessibility, but remains partly shielded. An asymmetric distribution of the charged residues in the sequence near Tyr416, which contributes to shielding, is found to be conserved in Src family members. A conformational equilibrium involving exchange of electrostatic interactions between the conserved residues Glu310 and Arg385 or Arg409 affects activation loop opening. A mechanism for access of unphosphorylated Tyr416 into an external catalytic site is suggested based on these observations.
Collapse
Affiliation(s)
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, 929 E. 57 St, Chicago, IL 60637, USA
| |
Collapse
|
36
|
Daily MD, Upadhyaya TJ, Gray JJ. Contact rearrangements form coupled networks from local motions in allosteric proteins. Proteins 2008; 71:455-66. [PMID: 17957766 PMCID: PMC5009369 DOI: 10.1002/prot.21800] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Allosteric proteins bind an effector molecule at one site resulting in a functional change at a second site. We hypothesize that networks of contacts altered, formed, or broken are a significant contributor to allosteric communication in proteins. In this work, we identify which interactions change significantly between the residue-residue contact networks of two allosteric structures, and then organize these changes into graphs. We perform the analysis on 15 pairs of allosteric structures with effector and substrate each present in at least one of the two structures. Most proteins exhibit large, dense regions of contact rearrangement, and the graphs form connected paths between allosteric effector and substrate sites in five of these proteins. In the remaining 10 proteins, large-scale conformational changes such as rigid-body motions are likely required in addition to contact rearrangement networks to account for substrate-effector communication. On average, clusters which contain at least one substrate or effector molecule comprise 20% of the protein. These allosteric graphs are small worlds; that is, they typically have mean shortest path lengths comparable to those of corresponding random graphs and average clustering coefficients enhanced relative to those of random graphs. The networks capture 60-80% of known allostery-perturbing mutants in three proteins, and the metrics degree and closeness are statistically good discriminators of mutant residues from nonmutant residues within the networks in two of these three proteins. For two proteins, coevolving clusters of residues which have been hypothesized to be allosterically important differ from the regions with the most contact rearrangement. Residues and contacts which modulate normal mode fluctuations also often participate in the contact rearrangement networks. In summary, residue-residue contact rearrangement networks provide useful representations of the portions of allosteric pathways resulting from coupled local motions.
Collapse
Affiliation(s)
- Michael D. Daily
- Program in Molecular & Computational Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218
| | - Tarak J. Upadhyaya
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - Jeffrey J. Gray
- Program in Molecular & Computational Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218
| |
Collapse
|
37
|
Yang S, Roux B. Src kinase conformational activation: thermodynamics, pathways, and mechanisms. PLoS Comput Biol 2008; 4:e1000047. [PMID: 18369437 PMCID: PMC2268010 DOI: 10.1371/journal.pcbi.1000047] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 02/28/2008] [Indexed: 11/19/2022] Open
Abstract
Tyrosine kinases of the Src-family are large allosteric enzymes that play a key role in cellular signaling. Conversion of the kinase from an inactive to an active state is accompanied by substantial structural changes. Here, we construct a coarse-grained model of the catalytic domain incorporating experimental structures for the two stable states, and simulate the dynamics of conformational transitions in kinase activation. We explore the transition energy landscapes by constructing a structural network among clusters of conformations from the simulations. From the structural network, two major ensembles of pathways for the activation are identified. In the first transition pathway, we find a coordinated switching mechanism of interactions among the alphaC helix, the activation-loop, and the beta strands in the N-lobe of the catalytic domain. In a second pathway, the conformational change is coupled to a partial unfolding of the N-lobe region of the catalytic domain. We also characterize the switching mechanism for the alphaC helix and the activation-loop in detail. Finally, we test the performance of a Markov model and its ability to account for the structural kinetics in the context of Src conformational changes. Taken together, these results provide a broad framework for understanding the main features of the conformational transition taking place upon Src activation.
Collapse
Affiliation(s)
- Sichun Yang
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, The University of Chicago, Chicago, Illinois, United States of America
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|