1
|
Hayes BH, Tsai RK, Dooling LJ, Kadu S, Lee JY, Pantano D, Rodriguez PL, Subramanian S, Shin JW, Discher DE. Macrophages show higher levels of engulfment after disruption of cis interactions between CD47 and the checkpoint receptor SIRPα. J Cell Sci 2020; 133:jcs.237800. [PMID: 31964705 DOI: 10.1242/jcs.237800] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022] Open
Abstract
The macrophage checkpoint receptor SIRPα signals against phagocytosis by binding CD47 expressed on all cells - including macrophages. Here, we found that inhibiting cis interactions between SIRPα and CD47 on the same macrophage increased engulfment ('eating') by approximately the same level as inhibiting trans interactions. Antibody blockade of CD47, as pursued in clinical trials against cancer, was applied separately to human-derived macrophages and to red blood cell (RBC) targets for phagocytosis, and both scenarios produced surprisingly similar increases in RBC engulfment. Blockade of both macrophages and targets resulted in hyper-phagocytosis, and knockdown of macrophage-CD47 likewise increased engulfment of 'foreign' cells and particles, decreased the baseline inhibitory signaling of SIRPα, and linearly increased binding of soluble CD47 in trans, consistent with cis-trans competition. Many cell types express both SIRPα and CD47, including mouse melanoma B16 cells, and CRISPR-mediated deletions modulate B16 phagocytosis, consistent with cis-trans competition. Additionally, soluble SIRPα binding to human CD47 displayed on Chinese hamster ovary (CHO) cells was suppressed by SIRPα co-display, and atomistic computations confirm SIRPα bends and binds CD47 in cis Safety and efficacy profiles for CD47-SIRPα blockade might therefore reflect a disruption of both cis and trans interactions.
Collapse
Affiliation(s)
- Brandon H Hayes
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA.,Graduate Group in Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard K Tsai
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA.,Graduate Group in Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lawrence J Dooling
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Siddhant Kadu
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justine Y Lee
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diego Pantano
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pia L Rodriguez
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Jae-Won Shin
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA.,Graduate Group in Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dennis E Discher
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104, USA.,Graduate Group in Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.,Graduate Group in Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Khade PM, Kumar A, Jernigan RL. Characterizing and Predicting Protein Hinges for Mechanistic Insight. J Mol Biol 2019; 432:508-522. [PMID: 31786268 DOI: 10.1016/j.jmb.2019.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/01/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022]
Abstract
The functioning of proteins requires highly specific dynamics, which depend critically on the details of how amino acids are packed. Hinge motions are the most common type of large motion, typified by the opening and closing of enzymes around their substrates. The packing and geometries of residues are characterized here by graph theory. This characterization is sufficient to enable reliable hinge predictions from a single static structure, and notably, this can be from either the open or the closed form of a structure. This new method to identify hinges within protein structures is called PACKMAN. The predicted hinges are validated by using permutation tests on B-factors. Hinge prediction results are compared against lists of manually curated hinge residues, and the results suggest that PACKMAN is robust enough to reproduce the known conformational changes and is able to predict hinge regions equally well from either the open or the closed forms of a protein. A group of 167 protein pairs with open and closed structures has been investigated Examples are shown for several additional proteins, including Zika virus nonstructured (NS) proteins where there are 6 hinge regions in the NS5 protein, 5 hinge regions in the NS2B bound in the NS3 protease complex and 5 hinges in the NS3- helicase protein. Results obtained from this method can be important for generating conformational ensembles of protein targets for drug design. PACKMAN is freely accessible at (https://PACKMAN.bb.iastate.edu/).
Collapse
Affiliation(s)
- Pranav M Khade
- Bioinformatics and Computational Biology Program, Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Ambuj Kumar
- Bioinformatics and Computational Biology Program, Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Robert L Jernigan
- Bioinformatics and Computational Biology Program, Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
3
|
Sayılgan JF, Haliloğlu T, Gönen M. Protein dynamics analysis reveals that missense mutations in cancer‐related genes appear frequently on hinge‐neighboring residues. Proteins 2019; 87:512-519. [DOI: 10.1002/prot.25673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/09/2019] [Accepted: 02/17/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Jan Fehmi Sayılgan
- Graduate School of Sciences and EngineeringKoç University İstanbul Turkey
| | - Türkan Haliloğlu
- Department of Chemical Engineering, School of EngineeringBoğaziçi University İstanbul Turkey
- Polymer Research CenterBoğaziçi University İstanbul Turkey
| | - Mehmet Gönen
- Department of Industrial Engineering, College of EngineeringKoç University İstanbul Turkey
- School of MedicineKoç University İstanbul Turkey
- Department of Biomedical Engineering, School of MedicineOregon Health and Science University Portland Oregon
| |
Collapse
|
4
|
Lv D, Gong W, Zhang Y, Liu Y, Li C. A coarse-grained method to predict the open-to-closed behavior of glutamine binding protein. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Leandro J, Stokka AJ, Teigen K, Andersen OA, Flatmark T. Substituting Tyr 138 in the active site loop of human phenylalanine hydroxylase affects catalysis and substrate activation. FEBS Open Bio 2017; 7:1026-1036. [PMID: 28680815 PMCID: PMC5494296 DOI: 10.1002/2211-5463.12243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 11/22/2022] Open
Abstract
Mammalian phenylalanine hydroxylase (PAH) is a key enzyme in l‐phenylalanine (l‐Phe) metabolism and is active as a homotetramer. Biochemical and biophysical work has demonstrated that it cycles between two states with a variably low and a high activity, and that the substrate l‐Phe is the key player in this transition. X‐ray structures of the catalytic domain have shown mobility of a partially intrinsically disordered Tyr138‐loop to the active site in the presence of l‐Phe. The mechanism by which the loop dynamics are coupled to substrate binding at the active site in tetrameric PAH is not fully understood. We have here conducted functional studies of four Tyr138 point mutants. A high linear correlation (r2 = 0.99) was observed between their effects on the catalytic efficiency of the catalytic domain dimers and the corresponding effect on the catalytic efficiency of substrate‐activated full‐length tetramers. In the tetramers, a correlation (r2 = 0.96) was also observed between the increase in catalytic efficiency (activation) and the global conformational change (surface plasmon resonance signal response) at the same l‐Phe concentration. The new data support a similar functional importance of the Tyr138‐loop in the catalytic domain and the full‐length enzyme homotetramer.
Collapse
Affiliation(s)
- João Leandro
- Department of Biomedicine University of Bergen Norway.,Metabolism and Genetics Group Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy University of Lisbon Portugal.,Present address: Department of Genetics and Genomic Sciences Icahn School of Medicine at Mount Sinai 1425 Madison Avenue, Box 1498 New York NY 10029 USA
| | - Anne J Stokka
- Department of Biomedicine University of Bergen Norway.,The Biotechnology Centre of Oslo University of Oslo Norway
| | - Knut Teigen
- Department of Biomedicine University of Bergen Norway
| | - Ole A Andersen
- Department of Biomedicine University of Bergen Norway.,Evotec (UK) Ltd .Abingdon UK
| | | |
Collapse
|
6
|
Tek A, Korostelev AA, Flores SC. MMB-GUI: a fast morphing method demonstrates a possible ribosomal tRNA translocation trajectory. Nucleic Acids Res 2015; 44:95-105. [PMID: 26673695 PMCID: PMC4705676 DOI: 10.1093/nar/gkv1457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 11/28/2015] [Indexed: 02/07/2023] Open
Abstract
Easy-to-use macromolecular viewers, such as UCSF Chimera, are a standard tool in structural biology. They allow rendering and performing geometric operations on large complexes, such as viruses and ribosomes. Dynamical simulation codes enable modeling of conformational changes, but may require considerable time and many CPUs. There is an unmet demand from structural and molecular biologists for software in the middle ground, which would allow visualization combined with quick and interactive modeling of conformational changes, even of large complexes. This motivates MMB-GUI. MMB uses an internal-coordinate, multiscale approach, yielding as much as a 2000-fold speedup over conventional simulation methods. We use Chimera as an interactive graphical interface to control MMB. We show how this can be used for morphing of macromolecules that can be heterogeneous in biopolymer type, sequence, and chain count, accurately recapitulating structural intermediates. We use MMB-GUI to create a possible trajectory of EF-G mediated gate-passing translocation in the ribosome, with all-atom structures. This shows that the GUI makes modeling of large macromolecules accessible to a wide audience. The morph highlights similarities in tRNA conformational changes as tRNA translocates from A to P and from P to E sites and suggests that tRNA flexibility is critical for translocation completion.
Collapse
Affiliation(s)
- Alex Tek
- Cell and Molecular Biology Department, Uppsala University, Box 596, Uppsala 751 24, Sweden
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA
| | | |
Collapse
|
7
|
Sethi A, Clarke D, Chen J, Kumar S, Galeev TR, Regan L, Gerstein M. Reads meet rotamers: structural biology in the age of deep sequencing. Curr Opin Struct Biol 2015; 35:125-34. [PMID: 26658741 DOI: 10.1016/j.sbi.2015.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 01/07/2023]
Abstract
Structure has traditionally been interrelated with sequence, usually in the framework of comparing sequences across species sharing a common fold. However, the nature of information within the sequence and structure databases is evolving, changing the type of comparisons possible. In particular, we now have a vast amount of personal genome sequences from human populations and a greater fraction of new structures contain interacting proteins within large complexes. Consequently, we have to recast our conception of sequence conservation and its relation to structure-for example, focusing more on selection within the human population. Moreover, within structural biology there is less emphasis on the discovery of novel folds and more on relating structures to networks of protein interactions. We cover this changing mindset here.
Collapse
Affiliation(s)
- Anurag Sethi
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States
| | - Declan Clarke
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Jieming Chen
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Sushant Kumar
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States
| | - Timur R Galeev
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States
| | - Lynne Regan
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States; Department of Chemistry, Yale University, New Haven, CT, United States
| | - Mark Gerstein
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States.
| |
Collapse
|
8
|
Sim J, Sim J, Park E, Lee J. Method for identification of rigid domains and hinge residues in proteins based on exhaustive enumeration. Proteins 2015; 83:1054-67. [DOI: 10.1002/prot.24799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/28/2015] [Accepted: 03/10/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Jaehyun Sim
- Department of Oral Microbiology and Immunology; School of Dentistry, Seoul National University; Seoul 110-749 Korea
| | - Jun Sim
- Department of Bioinformatics and Life Science; Soongsil University; Seoul 156-743 Korea
| | - Eunsung Park
- Administrative Service Division, Apsun Dental Hospital; Seoul 135-590 Korea
| | - Julian Lee
- Department of Oral Microbiology and Immunology; School of Dentistry, Seoul National University; Seoul 110-749 Korea
| |
Collapse
|
9
|
Kobayashi C, Koike R, Ota M, Sugita Y. Hierarchical domain-motion analysis of conformational changes in sarcoplasmic reticulum Ca2+
-ATPase. Proteins 2015; 83:746-56. [DOI: 10.1002/prot.24763] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 12/15/2014] [Accepted: 12/21/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Chigusa Kobayashi
- Computational Biophysics Research Team, Research Division; RIKEN Advanced Institute for Computational Science; 7-1-26 Minatojima-Minamimachi, Chuo-Ku Kobe Hyogo Kobe 640-0047 Japan
| | - Ryotaro Koike
- Graduate School of Information Science; Nagoya University; Furo-Cho, Chikusa-Ku Nagoya Aichi 464-8601 Japan
| | - Motonori Ota
- Graduate School of Information Science; Nagoya University; Furo-Cho, Chikusa-Ku Nagoya Aichi 464-8601 Japan
| | - Yuji Sugita
- Computational Biophysics Research Team, Research Division; RIKEN Advanced Institute for Computational Science; 7-1-26 Minatojima-Minamimachi, Chuo-Ku Kobe Hyogo Kobe 640-0047 Japan
- RIKEN Theoretical Molecular Science Laboratory; 2-1 Hirosawa Wako-Shi Saitama 351-0198 Japan
- Laboratory for Biomolecular Function Simulation, Computational Biology Research Core; RIKEN Quantitative Biology Center; 7-1-26 Minatojima-Minamimachi, Chuo-Ku Kobe Hyogo Kobe 640-0047 Japan
- RIKEN iTHES; 2-1 Hirosawa Wako-Shi Saitama 351-0198 Japan
| |
Collapse
|
10
|
Shamsuddin R, Doktorova M, Jaswal S, Lee-St John A, McMenimen K. Computational prediction of hinge axes in proteins. BMC Bioinformatics 2014; 15 Suppl 8:S2. [PMID: 25080829 PMCID: PMC4120148 DOI: 10.1186/1471-2105-15-s8-s2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A protein's function is determined by the wide range of motions exhibited by its 3D structure. However, current experimental techniques are not able to reliably provide the level of detail required for elucidating the exact mechanisms of protein motion essential for effective drug screening and design. Computational tools are instrumental in the study of the underlying structure-function relationship. We focus on a special type of proteins called "hinge proteins" which exhibit a motion that can be interpreted as a rotation of one domain relative to another. RESULTS This work proposes a computational approach that uses the geometric structure of a single conformation to predict the feasible motions of the protein and is founded in recent work from rigidity theory, an area of mathematics that studies flexibility properties of general structures. Given a single conformational state, our analysis predicts a relative axis of motion between two specified domains. We analyze a dataset of 19 structures known to exhibit this hinge-like behavior. For 15, the predicted axis is consistent with a motion to a second, known conformation. We present a detailed case study for three proteins whose dynamics have been well-studied in the literature: calmodulin, the LAO binding protein and the Bence-Jones protein. CONCLUSIONS Our results show that incorporating rigidity-theoretic analyses can lead to effective computational methods for understanding hinge motions in macromolecules. This initial investigation is the first step towards a new tool for probing the structure-dynamics relationship in proteins.
Collapse
|
11
|
McCoy AJ, Nicholls RA, Schneider TR. SCEDS: protein fragments for molecular replacement in Phaser. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2216-25. [PMID: 24189233 PMCID: PMC3817695 DOI: 10.1107/s0907444913021811] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/05/2013] [Indexed: 11/30/2022]
Abstract
A method is described for generating protein fragments suitable for use as molecular-replacement (MR) template models. The template model for a protein suspected to undergo a conformational change is perturbed along combinations of low-frequency normal modes of the elastic network model. The unperturbed structure is then compared with each perturbed structure in turn and the structurally invariant regions are identified by analysing the difference distance matrix. These fragments are scored with SCEDS, which is a combined measure of the sphericity of the fragments, the continuity of the fragments with respect to the polypeptide chain, the equality in number of atoms in the fragments and the density of C(α) atoms in the triaxial ellipsoid of the fragment extents. The fragment divisions with the highest SCEDS are then used as separate template models for MR. Test cases show that where the protein contains fragments that undergo a change in juxtaposition between template model and target, SCEDS can identify fragments that lead to a lower R factor after ten cycles of all-atom refinement with REFMAC5 than the original template structure. The method has been implemented in the software Phaser.
Collapse
Affiliation(s)
- Airlie J. McCoy
- Cambridge Institute for Medical Research, Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, England
| | - Robert A. Nicholls
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, England
| | - Thomas R. Schneider
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| |
Collapse
|
12
|
Flores SC. Fast fitting to low resolution density maps: elucidating large-scale motions of the ribosome. Nucleic Acids Res 2013; 42:e9. [PMID: 24081579 PMCID: PMC3902909 DOI: 10.1093/nar/gkt906] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Determining the conformational rearrangements of large macromolecules is challenging experimentally and computationally. Case in point is the ribosome; it has been observed by high-resolution crystallography in several states, but many others are known only from low-resolution methods including cryo-electron microscopy. Combining these data into dynamical trajectories that may aid understanding of its largest-scale conformational changes has so far remained out of reach of computational methods. Most existing methods either model all atoms explicitly, resulting in often prohibitive cost, or use approximations that lose interesting structural and dynamical detail. In this work, I introduce Internal Coordinate Flexible Fitting, which uses full atomic forces and flexibility in limited regions of a model, capturing extensive conformational rearrangements at low cost. I use it to turn multiple low-resolution density maps, crystallographic structures and biochemical information into unified all-atoms trajectories of ribosomal translocation. Internal Coordinate Flexible Fitting is three orders of magnitude faster than the most comparable existing method.
Collapse
Affiliation(s)
- Samuel Coulbourn Flores
- Computational and Systems Biology Program, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, 75321 Uppsala, Sweden
| |
Collapse
|
13
|
Steinbach A, Maurer CK, Weidel E, Henn C, Brengel C, Hartmann RW, Negri M. Molecular basis of HHQ biosynthesis: molecular dynamics simulations, enzyme kinetic and surface plasmon resonance studies. BMC BIOPHYSICS 2013; 6:10. [PMID: 23916145 PMCID: PMC3734052 DOI: 10.1186/2046-1682-6-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 07/25/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND PQS (PseudomonasQuinolone Signal) and its precursor HHQ are signal molecules of the P. aeruginosa quorum sensing system. They explicate their role in mammalian pathogenicity by binding to the receptor PqsR that induces virulence factor production and biofilm formation. The enzyme PqsD catalyses the biosynthesis of HHQ. RESULTS Enzyme kinetic analysis and surface plasmon resonance (SPR) biosensor experiments were used to determine mechanism and substrate order of the biosynthesis. Comparative analysis led to the identification of domains involved in functionality of PqsD. A kinetic cycle was set up and molecular dynamics (MD) simulations were used to study the molecular bases of the kinetics of PqsD. Trajectory analysis, pocket volume measurements, binding energy estimations and decompositions ensured insights into the binding mode of the substrates anthraniloyl-CoA and β-ketodecanoic acid. CONCLUSIONS Enzyme kinetics and SPR experiments hint at a ping-pong mechanism for PqsD with ACoA as first substrate. Trajectory analysis of different PqsD complexes evidenced ligand-dependent induced-fit motions affecting the modified ACoA funnel access to the exposure of a secondary channel. A tunnel-network is formed in which Ser317 plays an important role by binding to both substrates. Mutagenesis experiments resulting in the inactive S317F mutant confirmed the importance of this residue. Two binding modes for β-ketodecanoic acid were identified with distinct catalytic mechanism preferences.
Collapse
Affiliation(s)
- Anke Steinbach
- Helmholtz-Institute for Pharmaceutical Research Saarland, Campus C2.3, 66123, Saarbrücken, Germany
| | - Christine K Maurer
- Helmholtz-Institute for Pharmaceutical Research Saarland, Campus C2.3, 66123, Saarbrücken, Germany
| | | | - Claudia Henn
- Helmholtz-Institute for Pharmaceutical Research Saarland, Campus C2.3, 66123, Saarbrücken, Germany.,Current address: MIP Pharma GmbH, Kirkelerstr. 41, 66440,Blieskastel-Niederwürzbach, Germany
| | - Christian Brengel
- Helmholtz-Institute for Pharmaceutical Research Saarland, Campus C2.3, 66123, Saarbrücken, Germany
| | - Rolf W Hartmann
- Helmholtz-Institute for Pharmaceutical Research Saarland, Campus C2.3, 66123, Saarbrücken, Germany.,Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, 66123, Saarbrücken, Germany
| | - Matthias Negri
- Helmholtz-Institute for Pharmaceutical Research Saarland, Campus C2.3, 66123, Saarbrücken, Germany
| |
Collapse
|
14
|
Localized lipid packing of transmembrane domains impedes integrin clustering. PLoS Comput Biol 2013; 9:e1002948. [PMID: 23516344 PMCID: PMC3597534 DOI: 10.1371/journal.pcbi.1002948] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 01/11/2013] [Indexed: 12/12/2022] Open
Abstract
Integrin clustering plays a pivotal role in a host of cell functions. Hetero-dimeric integrin adhesion receptors regulate cell migration, survival, and differentiation by communicating signals bidirectionally across the plasma membrane. Thus far, crystallographic structures of integrin components are solved only separately, and for some integrin types. Also, the sequence of interactions that leads to signal transduction remains ambiguous. Particularly, it remains controversial whether the homo-dimerization of integrin transmembrane domains occurs following the integrin activation (i.e. when integrin ectodomain is stretched out) or if it regulates integrin clustering. This study employs molecular dynamics modeling approaches to address these questions in molecular details and sheds light on the crucial effect of the plasma membrane. Conducting a normal mode analysis of the intact αllbβ3 integrin, it is demonstrated that the ectodomain and transmembrane-cytoplasmic domains are connected via a membrane-proximal hinge region, thus merely transmembrane-cytoplasmic domains are modeled. By measuring the free energy change and force required to form integrin homo-oligomers, this study suggests that the β-subunit homo-oligomerization potentially regulates integrin clustering, as opposed to α-subunit, which appears to be a poor regulator for the clustering process. If α-subunits are to regulate the clustering they should overcome a high-energy barrier formed by a stable lipid pack around them. Finally, an outside-in activation-clustering scenario is speculated, explaining how further loading the already-active integrin affects its homo-oligomerization so that focal adhesions grow in size. Focal adhesions are complex, dynamic structures of multiple proteins that act as the cell's mechanical anchorage to its surrounding. Integrins are proteins linking the cell inner and outer environments, which act as a bridge that crosses the cell membrane. Integrins respond to mechanical loads exerted to them by changing their conformations. Several diseases, such as atherosclerosis and different types of cancer, are caused by altered function of integrins. Essential to the formation of focal adhesions is the process of integrin clustering. Bidirectional integrin signaling involves conformational changes in this protein, clustering, and finally the assembly of a large intracellular adhesion complex. Integrin clustering is defined as the interaction of integrins to form lateral assemblies that eventually lead to focal adhesion formation. The effect of the plasma membrane on formation of integrin clusters has been largely neglected in current literature; subsequently some apparently contradictory data has been reported by a number of researchers in the field. Using a molecular dynamics modeling approach, a computational method that simulates systems in a full-atomic scale, we probe the role of the plasma membrane in integrin clustering and hypothesize a clustering scenario that explains the relationship between integrin activation and focal adhesion growth.
Collapse
|
15
|
Swett R, Cisneros GA, Feig AL. Conformational analysis of Clostridium difficile toxin B and its implications for substrate recognition. PLoS One 2012; 7:e41518. [PMID: 22844485 PMCID: PMC3402401 DOI: 10.1371/journal.pone.0041518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/21/2012] [Indexed: 01/02/2023] Open
Abstract
Clostridium difficile (C. difficile) is an opportunistic pathogen that can cause potentially lethal hospital-acquired infections. The cellular damage that it causes is the result of two large clostridial cytotoxins: TcdA and TcdB which act by glucosylating cytosolic G-proteins, mis-regulation of which induces apoptosis. TcdB is a large flexible protein that appears to undergo significant structural rearrangement upon accommodation of its substrates: UDP-glucose and a Rho-family GTPase. To characterize the conformational space of TcdB, we applied normal mode and hinge-region analysis, followed by long-timescale unbiased molecular dynamics. In order to examine the TcdB and RhoA interaction, macromolecular docking and simulation of the TcdB/RhoA complex was performed. Generalized Masked Delaunay analysis of the simulations determined the extent of significant motions. This combination of methods elucidated a wide range of motions within TcdB that are reiterated in both the low-cost normal mode analysis and the extensive MD simulation. Of particular interest are the coupled motions between a peripheral 4-helix bundle and a small loop in the active site that must rearrange to allow RhoA entry to the catalytic site. These extensive coupled motions are indicative of TcdB using a conformational capture mechanism for substrate accommodation.
Collapse
Affiliation(s)
- Rebecca Swett
- Department of Chemistry, Wayne State University, Detroit, Michigan, United States of America
| | - G. Andrés Cisneros
- Department of Chemistry, Wayne State University, Detroit, Michigan, United States of America
| | - Andrew L. Feig
- Department of Chemistry, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|
16
|
Abstract
We report an unexpected finding of common structural principles in two unrelated signaling systems: the FAS death domain transformation that initializes the extrinsic apoptotic pathway and signaling by calmodulin bending. The location and design of the hinge is postulated to be a general principle for creating potential signaling event. We suggest that already existing tool can predict the existence of such a hinge and formulate the hypothesis that the internal instabilities designed into the hinge sequences are necessary devices in effective signaling events.
Collapse
Affiliation(s)
- Boguslaw Stec
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, United States.
| |
Collapse
|
17
|
Demerdash ONA, Mitchell JC. Density-cluster NMA: A new protein decomposition technique for coarse-grained normal mode analysis. Proteins 2012; 80:1766-79. [PMID: 22434479 DOI: 10.1002/prot.24072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/13/2012] [Accepted: 03/12/2012] [Indexed: 11/10/2022]
Abstract
Normal mode analysis has emerged as a useful technique for investigating protein motions on long time scales. This is largely due to the advent of coarse-graining techniques, particularly Hooke's Law-based potentials and the rotational-translational blocking (RTB) method for reducing the size of the force-constant matrix, the Hessian. Here we present a new method for domain decomposition for use in RTB that is based on hierarchical clustering of atomic density gradients, which we call Density-Cluster RTB (DCRTB). The method reduces the number of degrees of freedom by 85-90% compared with the standard blocking approaches. We compared the normal modes from DCRTB against standard RTB using 1-4 residues in sequence in a single block, with good agreement between the two methods. We also show that Density-Cluster RTB and standard RTB perform well in capturing the experimentally determined direction of conformational change. Significantly, we report superior correlation of DCRTB with B-factors compared with 1-4 residue per block RTB. Finally, we show significant reduction in computational cost for Density-Cluster RTB that is nearly 100-fold for many examples.
Collapse
Affiliation(s)
- Omar N A Demerdash
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | |
Collapse
|
18
|
Vinculin motion modes analysis with elastic network model. Int J Mol Sci 2012; 13:208-20. [PMID: 22312248 PMCID: PMC3269682 DOI: 10.3390/ijms13010208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/11/2011] [Accepted: 12/12/2011] [Indexed: 12/02/2022] Open
Abstract
Vinculin is an important protein for the linkage between adhesion molecules and the actin cytoskeleton. The activation mechanism of vinculin is still controversial. In order to provide useful information for a better understanding of its activation, we analyze the motion mode of vinculin with elastic network model in this work. The results show that, to some extent, the five domains will present structural rigidity in the motion process. The differences between the structure fluctuations of these domains are significant. When vinculin interacted with other partners, the central long alpha-helix of the first domain becomes bent. This bending deformation can weaken the interaction between the first domain and the tail domain. This motion mode of the first domain is in good agreement with the information extracted from some realistic complex structures. With the aid of the anisotropy elastic network mode, we analyze the motion directions of these domains. The fourth domain has a rotational motion. This rotation is favorable for the releasing of the tail domain from the pincer-like clamp, which is formed by the first and the third domain. All these motion modes are an inherent feature of the structure, and these modes mainly depend on the topology character of the structure.
Collapse
|
19
|
Anand S, Mohanty D. Inter-domain movements in polyketide synthases: a molecular dynamics study. MOLECULAR BIOSYSTEMS 2012; 8:1157-71. [PMID: 22282160 DOI: 10.1039/c2mb05425f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Insights into the structure and dynamics of modular polyketide synthases (PKS) are essential for understanding the mechanistic details of the biosynthesis of a large number of pharmaceutically important secondary metabolites. The crystal structures of the KS-AT di-domain from erythromycin synthase have revealed the relative orientation of various catalytic domains in a minimal PKS module. However, the relatively large distance between catalytic centers of KS and AT domains in the static structure has posed certain intriguing questions regarding mechanistic details of substrate transfer during polyketide biosynthesis. In order to investigate the role of inter-domain movements in substrate channeling, we have carried out a series of explicit solvent MD simulations for time periods ranging from 10 to 15 ns on the KS-AT di-domain and its sub-fragments. Analyses of these MD trajectories have revealed that both the catalytic domains and the structured inter-domain linker region remain close to their starting structures. Inter-domain movements at KS-linker and linker-AT interfaces occur around hinge regions which connect the structured linker region to the catalytic domains. The KS-linker interface was found to be more flexible compared to the linker-AT interface. However, inter-domain movements observed during the timescale of our simulations do not significantly reduce the distance between catalytic centers of KS and AT domains for facilitating substrate channeling. Based on these studies and prediction of intrinsic disorder we propose that the intrinsically unstructured linker stretch preceding the ACP domain might be facilitating movement of ACP domains to various catalytic centers.
Collapse
Affiliation(s)
- Swadha Anand
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | |
Collapse
|
20
|
Identification of key residues for protein conformational transition using elastic network model. J Chem Phys 2011; 135:174101. [DOI: 10.1063/1.3651480] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
21
|
Flores SC, Gerstein MB. Predicting protein ligand binding motions with the conformation explorer. BMC Bioinformatics 2011; 12:417. [PMID: 22032721 PMCID: PMC3354956 DOI: 10.1186/1471-2105-12-417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 10/27/2011] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Knowledge of the structure of proteins bound to known or potential ligands is crucial for biological understanding and drug design. Often the 3D structure of the protein is available in some conformation, but binding the ligand of interest may involve a large scale conformational change which is difficult to predict with existing methods. RESULTS We describe how to generate ligand binding conformations of proteins that move by hinge bending, the largest class of motions. First, we predict the location of the hinge between domains. Second, we apply an Euler rotation to one of the domains about the hinge point. Third, we compute a short-time dynamical trajectory using Molecular Dynamics to equilibrate the protein and ligand and correct unnatural atomic positions. Fourth, we score the generated structures using a novel fitness function which favors closed or holo structures. By iterating the second through fourth steps we systematically minimize the fitness function, thus predicting the conformational change required for small ligand binding for five well studied proteins. CONCLUSIONS We demonstrate that the method in most cases successfully predicts the holo conformation given only an apo structure.
Collapse
Affiliation(s)
- Samuel C Flores
- Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, Uppsala, 75124, Sweden
| | - Mark B Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208114 MBB, New Haven, CT, 06520, USA
- Department of Computer Science, Yale University, PO Box 208114 MBB, New Haven, CT, 06520, USA
| |
Collapse
|
22
|
Flores SC, Sherman MA, Bruns CM, Eastman P, Altman RB. Fast flexible modeling of RNA structure using internal coordinates. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2011; 8:1247-57. [PMID: 21778523 PMCID: PMC4428339 DOI: 10.1109/tcbb.2010.104] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Modeling the structure and dynamics of large macromolecules remains a critical challenge. Molecular dynamics (MD) simulations are expensive because they model every atom independently, and are difficult to combine with experimentally derived knowledge. Assembly of molecules using fragments from libraries relies on the database of known structures and thus may not work for novel motifs. Coarse-grained modeling methods have yielded good results on large molecules but can suffer from difficulties in creating more detailed full atomic realizations. There is therefore a need for molecular modeling algorithms that remain chemically accurate and economical for large molecules, do not rely on fragment libraries, and can incorporate experimental information. RNABuilder works in the internal coordinate space of dihedral angles and thus has time requirements proportional to the number of moving parts rather than the number of atoms. It provides accurate physics-based response to applied forces, but also allows user-specified forces for incorporating experimental information. A particular strength of RNABuilder is that all Leontis-Westhof basepairs can be specified as primitives by the user to be satisfied during model construction. We apply RNABuilder to predict the structure of an RNA molecule with 160 bases from its secondary structure, as well as experimental information. Our model matches the known structure to 10.2 Angstroms RMSD and has low computational expense.
Collapse
Affiliation(s)
- Samuel Coulbourn Flores
- Department of Cell and Molecular Biology, Uppsala University, Box 596, 751 24 Uppsala, Sweden
| | - Michael A. Sherman
- Department of Bioengineering, Stanford University, Stanford, CA 94305-5448
| | | | - Peter Eastman
- Department of Bioengineering, Stanford University, Stanford, CA 94305-5448
| | - Russ Biagio Altman
- Department of Bioengineering, Stanford University, Stanford, CA 94305-5448
| |
Collapse
|
23
|
Leandro J, Simonsen N, Saraste J, Leandro P, Flatmark T. Phenylketonuria as a protein misfolding disease: The mutation pG46S in phenylalanine hydroxylase promotes self-association and fibril formation. Biochim Biophys Acta Mol Basis Dis 2010; 1812:106-20. [PMID: 20937381 DOI: 10.1016/j.bbadis.2010.09.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/02/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
The missense mutation pG46S in the regulatory (R) domain of human phenylalanine hydroxylase (hPAH), associated with a severe form of phenylketonuria, generates a misfolded protein which is rapidly degraded on expression in HEK293 cells. When overexpressed as a MBP-G46S fusion protein, soluble and fully active tetrameric/dimeric forms are assembled and recovered in a metastable conformational state. When MBP is cleaved off, G46S undergoes a conformational change and self-associates with a lag phase and an autocatalytic growth phase (tetramers≫dimers), as determined by light scattering. The self-association is controlled by pH, ionic strength, temperature, protein concentration and the phosphorylation state of Ser16; the net charge of the protein being a main modulator of the process. A superstoichiometric amount of WT dimers revealed a 2-fold enhancement of the rate of G46S dimer self-association. Electron microscopy demonstrates the formation of higher-order oligomers and linear polymers of variable length, partly as a branching network, and partly as individual long and twisted fibrils (diameter ~145-300Å). The heat-shock proteins Hsp70/Hsp40, Hsp90 and a proposed pharmacological PAH chaperone (3-amino-2-benzyl-7-nitro-4-(2-quinolyl)-1,2-dihydroisoquinolin-1-one) partly inhibit the self-association process. Our data indicate that the G46S mutation results in a N-terminal extension of α-helix 1 which perturbs the wild-type α-β sandwich motif in the R-domain and promotes new intermolecular contacts, self-association and non-amyloid fibril formation. The metastable conformational state of G46S as a MBP fusion protein, and its self-association propensity when released from MBP, may represent a model system for the study of other hPAH missense mutations characterized by misfolded proteins.
Collapse
Affiliation(s)
- João Leandro
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | | | | | | | | |
Collapse
|
24
|
Seth A, Sherman M, Eastman P, Delp S. Minimal formulation of joint motion for biomechanisms. NONLINEAR DYNAMICS 2010; 62:291-303. [PMID: 21170173 PMCID: PMC3002261 DOI: 10.1007/s11071-010-9717-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Biomechanical systems share many properties with mechanically engineered systems, and researchers have successfully employed mechanical engineering simulation software to investigate the mechanical behavior of diverse biological mechanisms, ranging from biomolecules to human joints. Unlike their man-made counterparts, however, biomechanisms rarely exhibit the simple, uncoupled, pure-axial motion that is engineered into mechanical joints such as sliders, pins, and ball-and-socket joints. Current mechanical modeling software based on internal-coordinate multibody dynamics can formulate engineered joints directly in minimal coordinates, but requires additional coordinates restricted by constraints to model more complex motions. This approach can be inefficient, inaccurate, and difficult for biomechanists to customize. Since complex motion is the rule rather than the exception in biomechanisms, the benefits of minimal coordinate modeling are not fully realized in biomedical research. Here we introduce a practical implementation for empirically-defined internal-coordinate joints, which we call "mobilizers." A mobilizer encapsulates the observations, measurement frame, and modeling requirements into a hinge specification of the permissible-motion manifold for a minimal set of internal coordinates. Mobilizers support nonlinear mappings that are mathematically equivalent to constraint manifolds but have the advantages of fewer coordinates, no constraints, and exact representation of the biomechanical motion-space-the benefits long enjoyed for internal-coordinate models of mechanical joints. Hinge matrices within the mobilizer are easily specified by user-supplied functions, and provide a direct means of mapping permissible motion derived from empirical data. We present computational results showing substantial performance and accuracy gains for mobilizers versus equivalent joints implemented with constraints. Examples of mobilizers for joints from human biomechanics and molecular dynamics are given. All methods and examples were implemented in Simbody™-an open source multibody-dynamics solver available at https://Simtk.org.
Collapse
Affiliation(s)
- Ajay Seth
- Bioengineering Department, Stanford University, Stanford, CA 94305-5448, USA
| | | | | | | |
Collapse
|
25
|
Zucker F, Champ PC, Merritt EA. Validation of crystallographic models containing TLS or other descriptions of anisotropy. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:889-900. [PMID: 20693688 PMCID: PMC2917275 DOI: 10.1107/s0907444910020421] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 05/28/2010] [Indexed: 04/07/2024]
Abstract
The use of TLS (translation/libration/screw) models to describe anisotropic displacement of atoms within a protein crystal structure has become increasingly common. These models may be used purely as an improved methodology for crystallographic refinement or as the basis for analyzing inter-domain and other large-scale motions implied by the crystal structure. In either case it is desirable to validate that the crystallographic model, including the TLS description of anisotropy, conforms to our best understanding of protein structures and their modes of flexibility. A set of validation tests has been implemented that can be integrated into ongoing crystallographic refinement or run afterwards to evaluate a previously refined structure. In either case validation can serve to increase confidence that the model is correct, to highlight aspects of the model that may be improved or to strengthen the evidence supporting specific modes of flexibility inferred from the refined TLS model. Automated validation checks have been added to the PARVATI and TLSMD web servers and incorporated into the CCP4i user interface.
Collapse
Affiliation(s)
- Frank Zucker
- Biomolecular Structure Center, Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
| | - P. Christoph Champ
- Biomolecular Structure Center, Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
| | - Ethan A. Merritt
- Biomolecular Structure Center, Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
| |
Collapse
|
26
|
Abyzov A, Bjornson R, Felipe M, Gerstein M. RigidFinder: a fast and sensitive method to detect rigid blocks in large macromolecular complexes. Proteins 2010; 78:309-24. [PMID: 19705487 DOI: 10.1002/prot.22544] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Advances in structure determination have made possible the analysis of large macromolecular complexes (some with nearly 10,000 residues, such as GroEL). The large-scale conformational changes associated with these complexes require new approaches. Historically, a crucial component of motion analysis has been the identification of moving rigid blocks from the comparison of different conformations. However, existing tools do not allow consistent block identification in very large structures. Here, we describe a novel method, RigidFinder, for such identification of rigid blocks from different conformations-across many scales, from large complexes to small loops. RigidFinder defines rigidity in terms of blocks, where inter-residue distances are conserved across conformations. Distance conservation, unlike the averaged values (e.g., RMSD) used by many other methods, allows for sensitive identification of motions. A further distinguishing feature of our method, is that, it is capable of finding blocks made from nonconsecutive fragments of multiple polypeptide chains. In our implementation, we utilize an efficient quasi-dynamic programming search algorithm that allows for real-time application to very large structures. RigidFinder can be used at a dedicated web server (http://rigidfinder.molmovdb.org). The server also provides links to examples at various scales such as loop closure, domain motions, partial refolding, and subunit shifts. Moreover, here we describe the detailed application of RigidFinder to four large structures: Pyruvate Phosphate Dikinase, T7 RNA polymerase, RNA polymerase II, and GroEL. The results of the method are in excellent agreement with the expert-described rigid blocks.
Collapse
Affiliation(s)
- Alexej Abyzov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
27
|
FlexSnap: flexible non-sequential protein structure alignment. Algorithms Mol Biol 2010; 5:12. [PMID: 20047669 PMCID: PMC2846951 DOI: 10.1186/1748-7188-5-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 01/04/2010] [Indexed: 11/10/2022] Open
Abstract
Background Proteins have evolved subject to energetic selection pressure for stability and flexibility. Structural similarity between proteins that have gone through conformational changes can be captured effectively if flexibility is considered. Topologically unrelated proteins that preserve secondary structure packing interactions can be detected if both flexibility and Sequential permutations are considered. We propose the FlexSnap algorithm for flexible non-topological protein structural alignment. Results The effectiveness of FlexSnap is demonstrated by measuring the agreement of its alignments with manually curated non-sequential structural alignments. FlexSnap showed competitive results against state-of-the-art algorithms, like DALI, SARF2, MultiProt, FlexProt, and FATCAT. Moreover on the DynDom dataset, FlexSnap reported longer alignments with smaller rmsd. Conclusions We have introduced FlexSnap, a greedy chaining algorithm that reports both sequential and non-sequential alignments and allows twists (hinges). We assessed the quality of the FlexSnap alignments by measuring its agreements with manually curated non-sequential alignments. On the FlexProt dataset, FlexSnap was competitive to state-of-the-art flexible alignment methods. Moreover, we demonstrated the benefits of introducing hinges by showing significant improvements in the alignments reported by FlexSnap for the structure pairs for which rigid alignment methods reported alignments with either low coverage or large rmsd. Availability An implementation of the FlexSnap algorithm will be made available online at http://www.cs.rpi.edu/~zaki/software/flexsnap.
Collapse
|
28
|
Keating KS, Flores SC, Gerstein MB, Kuhn LA. StoneHinge: hinge prediction by network analysis of individual protein structures. Protein Sci 2009; 18:359-71. [PMID: 19180449 DOI: 10.1002/pro.38] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hinge motions are important for molecular recognition, and knowledge of their location can guide the sampling of protein conformations for docking. Predicting domains and intervening hinges is also important for identifying structurally self-determinate units and anticipating the influence of mutations on protein flexibility and stability. Here we present StoneHinge, a novel approach for predicting hinges between domains using input from two complementary analyses of noncovalent bond networks: StoneHingeP, which identifies domain-hinge-domain signatures in ProFlex constraint counting results, and StoneHingeD, which does the same for DomDecomp Gaussian network analyses. Predictions for the two methods are compared to hinges defined in the literature and by visual inspection of interpolated motions between conformations in a series of proteins. For StoneHingeP, all the predicted hinges agree with hinge sites reported in the literature or observed visually, although some predictions include extra residues. Furthermore, no hinges are predicted in six hinge-free proteins. On the other hand, StoneHingeD tends to overpredict the number of hinges, while accurately pinpointing hinge locations. By determining the consensus of their results, StoneHinge improves the specificity, predicting 11 of 13 hinges found both visually and in the literature for nine different open protein structures, and making no false-positive predictions. By comparison, a popular hinge detection method that requires knowledge of both the open and closed conformations finds 10 of the 13 known hinges, while predicting four additional, false hinges.
Collapse
Affiliation(s)
- Kevin S Keating
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
29
|
Large-scale evaluation of dynamically important residues in proteins predicted by the perturbation analysis of a coarse-grained elastic model. BMC STRUCTURAL BIOLOGY 2009; 9:45. [PMID: 19591676 PMCID: PMC2719638 DOI: 10.1186/1472-6807-9-45] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 07/10/2009] [Indexed: 11/10/2022]
Abstract
Backgrounds It is increasingly recognized that protein functions often require intricate conformational dynamics, which involves a network of key amino acid residues that couple spatially separated functional sites. Tremendous efforts have been made to identify these key residues by experimental and computational means. Results We have performed a large-scale evaluation of the predictions of dynamically important residues by a variety of computational protocols including three based on the perturbation and correlation analysis of a coarse-grained elastic model. This study is performed for two lists of test cases with >500 pairs of protein structures. The dynamically important residues predicted by the perturbation and correlation analysis are found to be strongly or moderately conserved in >67% of test cases. They form a sparse network of residues which are clustered both in 3D space and along protein sequence. Their overall conservation is attributed to their dynamic role rather than ligand binding or high network connectivity. Conclusion By modeling how the protein structural fluctuations respond to residue-position-specific perturbations, our highly efficient perturbation and correlation analysis can be used to dissect the functional conformational changes in various proteins with a residue level of detail. The predictions of dynamically important residues serve as promising targets for mutational and functional studies.
Collapse
|
30
|
Teilum K, Olsen JG, Kragelund BB. Functional aspects of protein flexibility. Cell Mol Life Sci 2009; 66:2231-47. [PMID: 19308324 PMCID: PMC11115794 DOI: 10.1007/s00018-009-0014-6] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 02/24/2009] [Accepted: 03/04/2009] [Indexed: 12/29/2022]
Abstract
Proteins are dynamic entities, and they possess an inherent flexibility that allows them to function through molecular interactions within the cell, among cells and even between organisms. Appreciation of the non-static nature of proteins is emerging, but to describe and incorporate this into an intuitive perception of protein function is challenging. Flexibility is of overwhelming importance for protein function, and the changes in protein structure during interactions with binding partners can be dramatic. The present review addresses protein flexibility, focusing on protein-ligand interactions. The thermodynamics involved are reviewed, and examples of structure-function studies involving experimentally determined flexibility descriptions are presented. While much remains to be understood about protein flexibility, it is clear that it is encoded within their amino acid sequence and should be viewed as an integral part of their structure.
Collapse
Affiliation(s)
- Kaare Teilum
- Structural Biology and NMR Laboratory (SBiN-Lab), Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen N, Denmark
| | - Johan G. Olsen
- Structural Biology and NMR Laboratory (SBiN-Lab), Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen N, Denmark
| | - Birthe B. Kragelund
- Structural Biology and NMR Laboratory (SBiN-Lab), Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
31
|
Tsalkova T, Blumenthal DK, Mei FC, White MA, Cheng X. Mechanism of Epac activation: structural and functional analyses of Epac2 hinge mutants with constitutive and reduced activities. J Biol Chem 2009; 284:23644-51. [PMID: 19553663 DOI: 10.1074/jbc.m109.024950] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epac2 is a member of the family of exchange proteins directly activated by cAMP (Epac). Our previous studies suggest a model of Epac activation in which cAMP binding to the enzyme induces a localized "hinge" motion that reorients the regulatory lobe relative to the catalytic lobe without inducing large conformational changes within individual lobes. In this study, we identified the location of the major hinge in Epac2 by normal mode motion correlation and structural alignment analyses. Targeted mutagenesis was then performed to test the functional importance of hinge bending for Epac activation. We show that substitution of the conserved residue phenylalanine 435 with glycine (F435G) facilitates the hinge bending and leads to a constitutively active Epac2 capable of stimulating nucleotide exchange in the absence of cAMP. In contrast, substitution of the same residue with a bulkier side chain, tryptophan (F435W), impedes the hinge motion and results in a dramatic decrease in Epac2 catalytic activity. Structural parameters determined by small angle x-ray scattering further reveal that whereas the F435G mutant assumes a more extended conformation in the absence of cAMP, the F435W mutant is incapable of adopting the fully extended and active conformation in the presence of cAMP. These findings demonstrate the importance of hinge motion in Epac activation. Our study also suggests that phenylalanine at position 435 is the optimal size side chain to keep Epac closed and inactive in the absence of cAMP while still allowing the proper hinge motion for full Epac extension and activation in the presence of cAMP.
Collapse
Affiliation(s)
- Tamara Tsalkova
- Department of Pharmacology, University of Texas Medical Branch, Galveston, Texas 77555-1031, USA
| | | | | | | | | |
Collapse
|
32
|
Structure of bacteriophage SPP1 head-to-tail connection reveals mechanism for viral DNA gating. Proc Natl Acad Sci U S A 2009; 106:8507-12. [PMID: 19433794 DOI: 10.1073/pnas.0812407106] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In many bacterial viruses and in certain animal viruses, the double-stranded DNA genome enters and exits the capsid through a portal gatekeeper. We report a pseudoatomic structure of a complete portal system. The bacteriophage SPP1 gatekeeper is composed of dodecamers of the portal protein gp6, the adaptor gp15, and the stopper gp16. The solution structures of gp15 and gp16 were determined by NMR. They were then docked together with the X-ray structure of gp6 into the electron density of the approximately 1-MDa SPP1 portal complex purified from DNA-filled capsids. The resulting structure reveals that gatekeeper assembly is accompanied by a large rearrangement of the gp15 structure and by folding of a flexible loop of gp16 to form an intersubunit parallel beta-sheet that closes the portal channel. This stopper system prevents release of packaged DNA. Disulfide cross-linking between beta-strands of the stopper blocks the key conformational changes that control genome ejection from the virus at the beginning of host infection.
Collapse
|
33
|
Autophosphorylation-induced degradation of the Pho85 cyclin Pcl5 is essential for response to amino acid limitation. Mol Cell Biol 2008; 28:6858-69. [PMID: 18794371 DOI: 10.1128/mcb.00367-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pho85 cyclins (Pcls), activators of the yeast cyclin-dependent kinase (CDK) Pho85, belong together with the p35 activator of mammalian CDK5 to a distinct structural cyclin class. Different Pcls target Pho85 to distinct substrates. Pcl5 targets Pho85 specifically to Gcn4, a yeast transcription factor involved in the response to amino acid starvation, eventually causing the degradation of Gcn4. Pcl5 is itself highly unstable, an instability that was postulated to be important for regulation of Gcn4 degradation. We used hybrids between different Pcls to circumscribe the substrate recognition function to the core cyclin box domain of Pcl5. Furthermore, the cyclin hybrids revealed that Pcl5 degradation is uniquely dependent on two distinct degradation signals: one N-terminal and one C-terminal to the cyclin box domain. Whereas the C-terminal degradation signal is independent of Pho85, the N-terminal degradation signal requires phosphorylation of a specific threonine residue by the Pho85 molecule bound to the cyclin. This latter mode of degradation depends on the SCF ubiquitin ligase. Degradation of Pcl5 after self-catalyzed phosphorylation ensures that activity of the Pho85/Pcl5 complex is self-limiting in vivo. We demonstrate the importance of this mechanism for the regulation of Gcn4 degradation and for cell growth under conditions of amino acid starvation.
Collapse
|