1
|
Promsut K, Sangtanoo P, Srimongkol P, Saisavoey T, Puthong S, Buakeaw A, Reamtong O, Nutho B, Karnchanatat A. A novel peptide derived from Zingiber cassumunar rhizomes exhibits anticancer activity against the colon adenocarcinoma cells (Caco-2) via the induction of intrinsic apoptosis signaling. PLoS One 2024; 19:e0304701. [PMID: 38870120 PMCID: PMC11175412 DOI: 10.1371/journal.pone.0304701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
This paper presents the initial exploration of the free radical scavenging capabilities of peptides derived from protein hydrolysates (PPH) obtained from Zingiber cassumunar rhizomes (Phlai). To replicate the conditions of gastrointestinal digestion, a combination of pepsin and pancreatin proteolysis was employed to generate these hydrolysates. Subsequently, the hydrolysate underwent fractionation using molecular weight cut-off membranes at 10, 5, 3, and 0.65 kDa. The fraction with a molecular weight less than 0.65 kDa exhibited the highest levels ABTS, DPPH, FRAP, and NO radical scavenging activity. Following this, RP-HPLC was used to further separate the fraction with a molecular weight less than 0.65 kDa into three sub-fractions. Among these, the F5 sub-fraction displayed the most prominent radical-scavenging properties. De novo peptide sequencing via quadrupole-time-of-flight-electron spin induction-mass spectrometry identified a pair of novel peptides: Asp-Gly-Ile-Phe-Val-Leu-Asn-Tyr (DGIFVLNY or DY-8) and Ile-Pro-Thr-Asp-Glu-Lys (IPTDEK or IK-6). Database analysis confirmed various properties, including biological activity, toxicity, hydrophilicity, solubility, and potential allergy concerns. Furthermore, when tested on the human adenocarcinoma colon (Caco-2) cell line, two synthetic peptides demonstrated cellular antioxidant activity in a concentration-dependent manner. These peptides were also assessed using the FITC Annexin V apoptosis detection kit with PI, confirming the induction of apoptosis. Notably, the DY-8 peptide induced apoptosis, upregulated mRNA levels of caspase-3, -8, and -9, and downregulated Bcl-2, as confirmed by real-time quantitative polymerase chain reaction (RT-qPCR). Western blot analysis indicated increased pro-apoptotic Bax expression and decreased anti-apoptotic Bcl-2 expression in Caco-2 cells exposed to the DY-8 peptide. Molecular docking analysis revealed that the DY-8 peptide exhibited binding affinity with Bcl-2, Bcl-xL, and Mcl-1, suggesting potential utility in combating colon cancer as functional food ingredients.
Collapse
Affiliation(s)
- Kitjasit Promsut
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Papassara Sangtanoo
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Piroonporn Srimongkol
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Tanatorn Saisavoey
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Songchan Puthong
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Anumart Buakeaw
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Bodee Nutho
- Department of Pharmacology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Aphichart Karnchanatat
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| |
Collapse
|
2
|
Rai AK, Satija NK. A comparative analysis of daunorubicin and its metabolite daunorubicinol interaction with apoptotic and drug resistance proteins using in silico approach. J Biomol Struct Dyn 2023; 41:10737-10749. [PMID: 36907598 DOI: 10.1080/07391102.2023.2187214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/07/2022] [Indexed: 03/13/2023]
Abstract
Daunorubicin (DNR) is a chemotherapeutic drug associated with multiple side effects, including drug resistance. As the molecular mechanism related to these side effects remain unclear and mostly hypothesized, this study addresses and compares the role of DNR and its metabolite Daunorubicinol (DAUNol) to induce apoptosis and drug resistance using molecular docking, Molecular Dynamics (MD) simulation, MM-PBSA and chemical pathway analysis. The results showed that DNR's interaction was stronger with Bax protein, Mcl-1:mNoxaB and Mcl-1:Bim protein complexes than DAUNol. On the other hand, contrasting results were obtained for drug resistance proteins where stronger interaction was obtained with DAUNol compared to DNR. Further, MD simulation performed for 100 ns provided the details of protein-ligand interaction. Most notable was the interaction of Bax protein with DNR, resulting in conformational changes at α-helices 5, 6 and 9, leading to Bax activation. Finally, the chemical signalling pathway analysis also revealed the regulation of different signalling pathways by DNR and DAUNol. It was observed that DNR majorly impacted the signalling associated with apoptosis while DAUNol mainly targeted pathways related to multidrug resistance and cardiotoxicity. Overall, the results highlight that DNR biotransformation reduces its capability to induce apoptosis while enhancing its ability to induce drug resistance and off-target toxicity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ajit Kumar Rai
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Neeraj Kumar Satija
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
3
|
Reddy CN, Sankararamakrishnan R. Molecular dynamics studies of CED-4/CED-9/EGL-1 ternary complex reveal CED-4 release mechanism in the linear apoptotic pathway of Caenorhabditis elegans. Proteins 2022; 91:679-693. [PMID: 36541866 DOI: 10.1002/prot.26457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/14/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Many steps in programmed cell death are evolutionarily conserved across different species. The Caenorhabditis elegans proteins CED-9, CED-4 and EGL-1 involved in apoptosis are respectively homologous to anti-apoptotic Bcl-2 proteins, Apaf-1 and the "BH3-only" pro-apototic proteins in mammals. In the linear apoptotic pathway of C. elegans, EGL-1 binding to CED-9 leads to the release of CED-4 from CED-9/CED-4 complex. The molecular events leading to this process are not clearly elucidated. While the structures of CED-9 apo, CED-9/EGL-1 and CED-9/CED-4 complexes are known, the CED-9/CED-4/EGL-1 ternary complex structure is not yet determined. In this work, we modeled this ternary complex and performed molecular dynamics simulations of six different systems involving CED-9. CED-9 displays differential dynamics depending upon whether it is bound to CED-4 and/or EGL-1. CED-4 exists as an asymmetric dimer (CED4a and CED4b) in CED-9/CED-4 complex. CED-4a exhibits higher conformational flexibility when simulated without CED-4b. Principal Component Analysis revealed that the direction of CED-4a's winged-helix domain motion differs in the ternary complex. Upon EGL-1 binding, majority of non-covalent interactions involving CARD domain in the CED-4a-CED-9 interface have weakened and only half of the contacts found in the crystal structure between α/β domain of CED4a and CED-9 are found to be stable. Additional stable contacts in the ternary complex and differential dynamics indicate that winged-helix domain may play a key role in CED-4a's dissociation from CED-9. This study has provided a molecular level understanding of potential intermediate states that are likely to occur when CED-4a is released from CED-9.
Collapse
Affiliation(s)
- C Narendra Reddy
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Ramasubbu Sankararamakrishnan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India.,Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
4
|
Tanriver G, Monard G, Catak S. Impact of Deamidation on the Structure and Function of Antiapoptotic Bcl-x L. J Chem Inf Model 2021; 62:102-115. [PMID: 34942070 DOI: 10.1021/acs.jcim.1c00808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bcl-xL is an antiapoptotic mitochondrial trans-membrane protein, which is known to play a crucial role in the survival of tumor cells. The deamidation of Bcl-xL is a pivotal switch that regulates its biological function. The potential impact of deamidation on the structure and dynamics of Bcl-xL is directly linked to the intrinsically disordered region (IDR), which is the main site for post-translational modifications (PTMs). In this study, we explored deamidation-induced conformational changes in Bcl-xL to gain insight into its loss of function by performing microsecond-long molecular dynamics (MD) simulations. MD simulation outcomes showed that the IDR motion and interaction patterns have changed notably upon deamidation. Principal component analysis (PCA) demonstrates significant differences between wild-type and deamidated Bcl-xL and suggests that deamidation affects the structure and dynamics of Bcl-xL. The combination of clustering analysis, H-bond analysis, and PCA revealed changes in conformation, interaction, and dynamics upon deamidation. Differences in contact patterns and essential dynamics that lead to a narrowing in the binding groove (BG) are clear indications of deamidation-induced allosteric effects. In line with previous studies, we show that the IDR plays a very important role in the loss of apoptotic functions of Bcl-xL while providing a unique perspective on the underlying mechanism of Bcl-xL deamidation-induced cell death.
Collapse
Affiliation(s)
- Gamze Tanriver
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey.,Université de Lorraine, LPCT UMR 7019 CNRS, Boulevard des Aiguillettes B.P. 70239, 54506 Vandœuvre-les-Nancy, France
| | - Gerald Monard
- Université de Lorraine, LPCT UMR 7019 CNRS, Boulevard des Aiguillettes B.P. 70239, 54506 Vandœuvre-les-Nancy, France
| | - Saron Catak
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey
| |
Collapse
|
5
|
Bernhem K, Fontana JM, Svensson D, Zhang L, Nilsson LM, Scott L, Blom H, Brismar H, Aperia A. Super-resolution microscopy reveals that Na +/K +-ATPase signaling protects against glucose-induced apoptosis by deactivating Bad. Cell Death Dis 2021; 12:739. [PMID: 34315852 PMCID: PMC8316575 DOI: 10.1038/s41419-021-04025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/08/2022]
Abstract
Activation of the apoptotic pathway is a major cause of progressive loss of function in chronic diseases such as neurodegenerative and diabetic kidney diseases. There is an unmet need for an anti-apoptotic drug that acts in the early stage of the apoptotic process. The multifunctional protein Na+,K+-ATPase has, in addition to its role as a transporter, a signaling function that is activated by its ligand, the cardiotonic steroid ouabain. Several lines of evidence suggest that sub-saturating concentrations of ouabain protect against apoptosis of renal epithelial cells, a common complication and major cause of death in diabetic patients. Here, we induced apoptosis in primary rat renal epithelial cells by exposing them to an elevated glucose concentration (20 mM) and visualized the early steps in the apoptotic process using super-resolution microscopy. Treatment with 10 nM ouabain interfered with the onset of the apoptotic process by inhibiting the activation of the BH3-only protein Bad and its translocation to mitochondria. This occurred before the pro-apoptotic protein Bax had been recruited to mitochondria. Two ouabain regulated and Akt activating Ca2+/calmodulin-dependent kinases were found to play an essential role in the ouabain anti-apoptotic effect. Our results set the stage for further exploration of ouabain as an anti-apoptotic drug in diabetic kidney disease as well as in other chronic diseases associated with excessive apoptosis.
Collapse
Affiliation(s)
- Kristoffer Bernhem
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Jacopo M Fontana
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Daniel Svensson
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Liang Zhang
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Linnéa M Nilsson
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Lena Scott
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Hans Blom
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden.
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| | - Anita Aperia
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
6
|
Reddy CN, Manzar N, Ateeq B, Sankararamakrishnan R. Computational Design of BH3-Mimetic Peptide Inhibitors That Can Bind Specifically to Mcl-1 or Bcl-X L: Role of Non-Hot Spot Residues. Biochemistry 2020; 59:4379-4394. [PMID: 33146015 DOI: 10.1021/acs.biochem.0c00661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interactions between pro- and anti-apoptotic Bcl-2 proteins decide the fate of the cell. The BH3 domain of pro-apoptotic Bcl-2 proteins interacts with the exposed hydrophobic groove of their anti-apoptotic counterparts. Through their design and development, BH3 mimetics that target the hydrophobic groove of specific anti-apoptotic Bcl-2 proteins have the potential to become anticancer drugs. We have developed a novel computational method for designing sequences with BH3 domain features that can bind specifically to anti-apoptotic Mcl-1 or Bcl-XL. In this method, we retained the four highly conserved hydrophobic and aspartic residues of wild-type BH3 sequences and randomly substituted all other positions to generate a large number of BH3-like sequences. We modeled 20000 complex structures with Mcl-1 or Bcl-XL using the BH3-like sequences derived from five wild-type pro-apoptotic BH3 peptides. Peptide-protein interaction energies calculated from these models for each set of BH3-like sequences resulted in negatively skewed extreme value distributions. The selected BH3-like sequences from the extreme negative tail regions have highly favorable interaction energies with Mcl-1 or Bcl-XL. They are enriched in acidic and basic residues when they bind to Mcl-1 and Bcl-XL, respectively. With the charged residues often away from the binding interface, the overall electric field generated by the charged residues results in strong long-range electrostatic interaction energies between the peptide and the protein giving rise to high specificity. Cell viability studies of representative BH3-like peptides further validated the predicted specificity. This study has revealed the importance of non-hot spot residues in BH3-mimetic peptides in providing specificity to a particular anti-apoptotic protein.
Collapse
|
7
|
Predicted Hotspot Residues Involved in Allosteric Signal Transmission in Pro-Apoptotic Peptide-Mcl1 Complexes. Biomolecules 2020; 10:biom10081114. [PMID: 32731448 PMCID: PMC7463671 DOI: 10.3390/biom10081114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 11/30/2022] Open
Abstract
Mcl1 is a primary member of the Bcl–2 family—anti–apoptotic proteins (AAP)—that is overexpressed in several cancer pathologies. The apoptotic regulation is mediated through the binding of pro-apoptotic peptides (PAPs) (e.g., Bak and Bid) at the canonical hydrophobic binding groove (CBG) of Mcl1. Although all PAPs form amphipathic α-helices, their amino acid sequences vary to different degree. This sequence variation exhibits a central role in the binding partner selectivity towards different AAPs. Thus, constructing a novel peptide or small organic molecule with the ability to mimic the natural regulatory process of PAP is essential to inhibit various AAPs. Previously reported experimental binding free energies (BFEs) were utilized in the current investigation aimed to understand the mechanistic basis of different PAPs targeted to mMcl1. Molecular dynamics (MD) simulations used to estimate BFEs between mMcl1—PAP complexes using Molecular Mechanics-Generalized Born Solvent Accessible (MMGBSA) approach with multiple parameters. Predicted BFE values showed an excellent agreement with the experiment (R2 = 0.92). The van–der Waals (ΔGvdw) and electrostatic (ΔGele) energy terms found to be the main energy components that drive heterodimerization of mMcl1—PAP complexes. Finally, the dynamic network analysis predicted the allosteric signal transmission pathway involves more favorable energy contributing residues. In total, the results obtained from the current investigation may provide valuable insights for the synthesis of a novel peptide or small organic inhibitor targeting Mcl1.
Collapse
|
8
|
Targeting cancer's Achilles’ heel: role of BCL-2 inhibitors in cellular senescence and apoptosis. Future Med Chem 2019; 11:2287-2312. [DOI: 10.4155/fmc-2018-0366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Members of the antiapoptotic BCL-2 proteins are involved in tumor growth, progression and survival, and are also responsible for chemoresistance to conventional anticancer agents. Early efforts to target these proteins yielded some active compounds; however, newer methodologies involving structure-based drug design, Nuclear Magnetic Resonance (NMR)-based screening and fragment-based screening yielded more potent compounds. Discovery of specific as well as nonspecific inhibitors of this class of proteins has resulted in great advances in targeted chemotherapy and decrease in chemoresistance. Here, we review the history and current progress in direct as well as selective targeting of the BCL-2 proteins for anticancer therapy.
Collapse
|
9
|
Zhang TY, Chen HY, Cao JL, Xiong HL, Mo XB, Li TL, Kang XZ, Zhao JH, Yin B, Zhao X, Huang CH, Yuan Q, Xue D, Xia NS, Yuan YA. Structural and functional analyses of hepatitis B virus X protein BH3-like domain and Bcl-xL interaction. Nat Commun 2019; 10:3192. [PMID: 31324803 PMCID: PMC6642116 DOI: 10.1038/s41467-019-11173-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) X protein, HBx, interacts with anti-apoptotic Bcl-2 and Bcl-xL proteins through its BH3-like motif to promote HBV replication and cytotoxicity. Here we report the crystal structure of HBx BH3-like motif in complex with Bcl-xL where the BH3-like motif adopts a short α-helix to snuggle into a hydrophobic pocket in Bcl-xL via its noncanonical Trp120 residue and conserved Leu123 residue. This binding pocket is ~2 Å away from the canonical BH3-only binding pocket in structures of Bcl-xL with proapoptotic BH3-only proteins. Mutations altering Trp120 and Leu123 in HBx impair its binding to Bcl-xL in vitro and HBV replication in vivo, confirming the importance of this motif to HBV. A HBx BH3-like peptide, HBx-aa113-135, restores HBV replication from a HBx-null HBV replicon, while a shorter peptide, HBx-aa118-127, inhibits HBV replication. These results provide crucial structural and functional insights into drug designs for inhibiting HBV replication and treating HBV patients.
Collapse
Affiliation(s)
- Tian-Ying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Hong-Ying Chen
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, 215123, Jiangsu, China
| | - Jia-Li Cao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Hua-Long Xiong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Xiao-Bing Mo
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, 215123, Jiangsu, China
| | - Tian-Liang Li
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Xiao-Zhen Kang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Jing-Hua Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Bo Yin
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, 215123, Jiangsu, China
| | - Xiang Zhao
- School of Life Sciences and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, 100084, Beijing, China
| | - Cheng-Hao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China.
| | - Ding Xue
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA. .,School of Life Sciences and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, 100084, Beijing, China.
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China.
| | - Y Adam Yuan
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, 215123, Jiangsu, China.,Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
10
|
Anuradha, Patel S, Patle R, Parameswaran P, Jain A, Shard A. Design, computational studies, synthesis and biological evaluation of thiazole-based molecules as anticancer agents. Eur J Pharm Sci 2019; 134:20-30. [PMID: 30965082 DOI: 10.1016/j.ejps.2019.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Abolition of cancer warrants effective treatment modalities directed towards specific pathways dysregulated in tumor proliferation and survival. The antiapoptotic Bcl-2 proteins are significantly altered in several tumor types which position them as striking targets for therapeutic intervention. Here we designed, computationally evaluated, synthesized, and biologically tested structurally optimized thiazole-based small molecules as anticancer agents. METHODS The virtually designed 200 molecules were subjected to rigorous docking and in silico ADME-Toxicity studies. Out of this, 23 skeletally diverse thiazole-based molecules which passed pan assay interference compounds (PAINS) filter and were synthetically feasible were synthesized in 3 steps using cheap and readily available reagents. The molecules were in vitro evaluated against Bcl-2-Jurkat, A-431 cancerous cell lines and ARPE-19 cell lines. Molecular Dynamics (MD) simulation studies were performed to analyse conformational changes induced by ligand 32 in Bcl-2. Flow cytometry analysis of compound 32 treated Bcl-2 cells was done to check apoptosis. RESULTS The molecules exhibited appreciable interactions with Bcl-2 and were having acceptable drug like properties as tested in silico. The multi step synthesis yielded 23 skeletally diverse thiazole-based molecules in up to 80% yield. The molecules simultaneously inhibited Bcl-2 Jurkat cells in vitro without causing detectable toxicity to normal cells (ARPE-19 cells). Among them molecules 32, 50, 53, 57 and 59 showed considerable activities against Bcl-2 Jurkat and A-431cell lines at concentrations ranging from 32-46 μM and 34-52 μM, respectively. The standard doxorubicin exhibited IC50 in Bcl-2 Jurkat and A-431cell lines at 45.87 μM and 42.37 μM, respectively. The molecule 32, almost equipotent in both the cell lines was subjected to molecular dynamics (MD) simulation with Bcl-2 protein (4IEH). It was shown that 32 interacted with protein majorly via hydrophobic interactions and few H-bonding interactions. Fluorescence-activated cell sorting (FACS) analysis established that molecule is dragging cancerous cells towards apoptosis. DISCUSSION AND CONCLUSION The chemical intuition was checked by computation coupled with biological results confirmed that thiazole-based hits have the potential to be developed downstream into potent and safer leads against antiapoptotic Bcl-2 cells.
Collapse
Affiliation(s)
- Anuradha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Sagarkumar Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Rajkumar Patle
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Preethi Parameswaran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat 382355, India.
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
11
|
Anantram A, Kundaikar H, Degani M, Prabhu A. Molecular dynamic simulations on an inhibitor of anti-apoptotic Bcl-2 proteins for insights into its interaction mechanism for anti-cancer activity. J Biomol Struct Dyn 2018; 37:3109-3121. [DOI: 10.1080/07391102.2018.1508371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Aarti Anantram
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Harish Kundaikar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Mariam Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Arati Prabhu
- Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
12
|
Identification of molecular features necessary for selective inhibition of B cell lymphoma proteins using machine learning techniques. Mol Divers 2018; 23:55-73. [DOI: 10.1007/s11030-018-9856-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/30/2018] [Indexed: 11/30/2022]
|
13
|
Modi V, Sankararamakrishnan R. Binding affinity of pro-apoptotic BH3 peptides for the anti-apoptotic Mcl-1 and A1 proteins: Molecular dynamics simulations of Mcl-1 and A1 in complex with six different BH3 peptides. J Mol Graph Model 2017; 73:115-128. [PMID: 28279820 DOI: 10.1016/j.jmgm.2016.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/29/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023]
Abstract
The anti-apoptotic members of Bcl-2 family of proteins bind to their pro-apoptotic counterparts to induce or prevent cell death.Based on the distinct binding profiles for specific pro-apoptotic BH3 peptides, the anti-apoptotic Bcl-2 proteins can be divided into at least two subclasses. The subclass that includes Bcl-XL binds strongly to Bad BH3 peptide while it has weak binding affinity for the second subclass of Bcl-2 proteins such as Mcl-1 and A1. Anti-apoptotic Bcl-2 proteins are considered to be attractive drug targets for anti-cancer drugs. BH3-mimetic inhibitors such as ABT-737 have been shown to be specific to Bcl-XL subclass while Mcl-1 and A1 show resistance to the same drug. An efficacious inhibitor should target all the anti-apoptotic Bcl-2 proteins. Hence, development of inhibitors selective to Mcl-1 and A1 is of prime importance for targeted cancer therapeutics. The first step to achieve this goal is to understand the molecular basis of high binding affinities of specific pro-apoptotic BH3 peptides for Mcl-1 and A1. To understand the interactions between the BH3 peptides and Mcl-1/A1, we performed multi-nanosecond molecular dynamics (MD) simulations of six complex structures of Mcl-1 and A1. With the exception of Bad, all complex structures were experimentally determined. Bad complex structures were modeled. Our simulation studies identified specific pattern of polar interactions between Mcl-1/A1 and high-affinity binding BH3 peptides. The lack of such polar interactions in Bad peptide complex is attributed to specific basic residues present before and after the highly conserved Leu residue. The close approach of basic residues in Bad and Mcl-1/A1 is hypothesized to be the cause of weak binding affinity. To test this hypothesis, we generated in silico mutants of these basic residues in Bad peptide and Mcl-1/A1 proteins. MD simulations of the mutant systems established the pattern of stable polar interactions observed in high-affinity binding BH3 peptides. We have thus identified specific residue positions in Bad and Mcl-1/A1 responsible for the weak binding affinity. Results from these simulation studies will aid in the development of inhibitors specific to Mcl-1 and A1 proteins.
Collapse
Affiliation(s)
- Vivek Modi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | | |
Collapse
|
14
|
Guo Z, Thorarensen A, Che J, Xing L. Target the More Druggable Protein States in a Highly Dynamic Protein--Protein Interaction System. J Chem Inf Model 2015; 56:35-45. [PMID: 26650754 DOI: 10.1021/acs.jcim.5b00503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The proteins of the Bcl-2 family play key roles in the regulation of programmed cell death by controlling the integrity of the outer mitochondrial membrane and the initiation of the apoptosis process. We performed extensive molecular dynamics simulations to investigate the conformational flexibility of the Bcl-xL protein in both the apo and holo (with Bad peptide and ABT-737) states. The accelerated molecular dynamics method implemented in Amber 14 was used to produce broader conformational sampling of 200 ns simulations. The pocket mining method based on the variational implicit-solvent model tracks the dynamic evolution of the ligand binding site with a druggability score characterizing the maximal affinity achievable by a drug-like molecule. Major movements were observed around the α3-helical domain and the loop region connecting the α1 and α2 helices, reshaping the ligand interaction in the BH3 binding groove. Starting with the apo crystal structure, which is recognized as "closed" and undruggable, the BH3 groove transitioned between the "open" and "closed" states during equilibrium simulation. Further analysis revealed a small percentage of the trajectory frames (∼10%) with a moderate degree of druggability that mimic the ligand-bound states. The ability to attain and detect by computer simulation the most suitable conformational states for ligand binding in advance of compound synthesis and crystal structure solution is of immense value to the application and success of structure-based drug design.
Collapse
Affiliation(s)
- Zuojun Guo
- Worldwide Medicinal Chemistry, Pfizer Inc. , Cambridge, Massachusetts 02139, United States
| | - Atli Thorarensen
- Worldwide Medicinal Chemistry, Pfizer Inc. , Cambridge, Massachusetts 02139, United States
| | - Jianwei Che
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Li Xing
- Worldwide Medicinal Chemistry, Pfizer Inc. , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Campbell ST, Carlson KJ, Buchholz CJ, Helmers MR, Ghosh I. Mapping the BH3 Binding Interface of Bcl-xL, Bcl-2, and Mcl-1 Using Split-Luciferase Reassembly. Biochemistry 2015; 54:2632-43. [PMID: 25844633 DOI: 10.1021/bi501505y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The recognition of helical BH3 domains by Bcl-2 homology (BH) receptors plays a central role in apoptosis. The residues that determine specificity or promiscuity in this interactome are difficult to predict from structural and computational data. Using a cell free split-luciferase system, we have generated a 276 pairwise interaction map for 12 alanine mutations at the binding interface for three receptors, Bcl-xL, Bcl-2, and Mcl-1, and interrogated them against BH3 helices derived from Bad, Bak, Bid, Bik, Bim, Bmf, Hrk, and Puma. This panel, in conjunction with previous structural and functional studies, starts to provide a more comprehensive portrait of this interactome, explains promiscuity, and uncovers surprising details; for example, the Bcl-xL R139A mutation disrupts binding to all helices but the Bad-BH3 peptide, and Mcl-1 binding is particularly perturbed by only four mutations of the 12 tested (V220A, N260A, R263A, and F319A), while Bcl-xL and Bcl-2 have a more diverse set of important residues depending on the bound helix.
Collapse
Affiliation(s)
- Sean T Campbell
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Kevin J Carlson
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Carl J Buchholz
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Mark R Helmers
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Indraneel Ghosh
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| |
Collapse
|
16
|
Nogami K, Takahama K, Okushima A, Oyoshi T, Fujimoto K, Inouye M. Tailor-made designer helical peptides that induce mitochondrion-mediated cell death without necrosis. Chembiochem 2014; 15:2571-6. [PMID: 25234153 DOI: 10.1002/cbic.201402437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Indexed: 02/02/2023]
Abstract
Managing protein-protein interactions is essential for resolving unknown biological events at the molecular level and developing drugs. We have designed and synthesized a side-chain-crosslinked helical peptides based on the binding domain of a pro-apoptotic protein (Bad) that induces programmed cell death. The peptide showed high helical content and bound to its target, Bcl-XL, more strongly than its non-crosslinked counterparts. When HeLa cells were incubated with the crosslinked peptide, the peptide entered the cytosol across the plasma membrane. The peptide formed a stable complex with Bcl-XL localized at the outer mitochondrial membrane, and this binding event caused the release of cytochrome c from the intermembrane space of mitochondria into the cytosol. This activated the caspase cascade: 70% of HeLa cells died by the apoptosis pathway (without evidence of necrosis).
Collapse
Affiliation(s)
- Kagayaki Nogami
- Graduate School of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, 930-0194 (Japan)
| | | | | | | | | | | |
Collapse
|
17
|
Zhao RN, Fan S, Han JG, Liu G. Molecular dynamics study of segment peptides of Bax, Bim, and Mcl-1 BH3 domain of the apoptosis-regulating proteins bound to the anti-apoptotic Mcl-1 protein. J Biomol Struct Dyn 2014; 33:1067-81. [PMID: 24865469 DOI: 10.1080/07391102.2014.929028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mcl-1 has emerged as a potential therapeutic target in the treatment of several malignancies. Peptides representing BH3 region of pro-apoptotic proteins have been shown to bind the hydrophobic cleft of anti-apoptotic Mcl-1 and this segment is responsible for modulating the apoptotic pathways in living cells. Understanding the molecular basis of protein-peptide interaction is required to develop potent inhibitors specific for Mcl-1. Molecular dynamics simulations were performed for Mcl-1 in complex with three different BH3 peptides derived from Mcl-1, Bax, and Bim. Accordingly, the calculated binding free energies using MM-PBSA method are obtained and comparison with the experimentally determined binding free energies is made. The interactions involving two conserved charged residues (Aspi, and Arg/Lysi-4) and three upstream conserved hydrophobic residues (Leui-5, Ile/Vali-2, and Glyi-1, respectively) of BH3 peptides play the important roles in the structural stability of the complexes. The calculated results exhibit that the interactions of Bim BH3 peptides to Mcl-1 is stronger than the complex with Bax 19BH3 peptides. The hydrophobic residues (position i - 9, i - 8 and i + 2) of BH3 peptides can be involved in their inhibitory specificity. The calculated results can be used for designing more effective MCL-1 inhibitors.
Collapse
Affiliation(s)
- Run-Ning Zhao
- a Institute of Applied Mathematics and Physics , Shanghai Dianji University , Shanghai 201306 , P.R. China
| | | | | | | |
Collapse
|
18
|
Liu SJ, Zou Y, Belegu V, Lv LY, Lin N, Wang TY, McDonald JW, Zhou X, Xia QJ, Wang TH. Co-grafting of neural stem cells with olfactory en sheathing cells promotes neuronal restoration in traumatic brain injury with an anti-inflammatory mechanism. J Neuroinflammation 2014; 11:66. [PMID: 24690089 PMCID: PMC3977666 DOI: 10.1186/1742-2094-11-66] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 03/24/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND We sought to investigate the effects of co-grafting neural stem cells (NSCs) with olfactory ensheathing cells (OECs) on neurological behavior in rats subjected to traumatic brain injury (TBI) and explore underlying molecular mechanisms. METHODS TBI was established by percussion device made through a weight drop (50 g) from a 30 cm height. Cultured NSCs and OECs isolated from rats were labeled by Hoechst 33342 (blue) and chloromethyl-benzamidodialkyl carbocyanine (CM-Dil) (red), respectively. Then, NSCs and/or OECs, separately or combined, were transplanted into the area surrounding the injury site. Fourteen days after transplantation, neurological severity score (NSS) were recorded. The brain tissue was harvested and processed for immunocytochemistry, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Significant neurological function improvement was observed in the three transplant groups, compared to the TBI group, and co-transplantation gave rise to the best improvement. Morphological evaluation showed that the number of neurons in cortex from combination implantation was more than for other groups (P <0.05); conversely, the number of apoptotic cells showed a significant decrease by TUNEL staining. Transplanted NSCs and OECs could survive and migrate in the brain, and the number of neurons differentiating from NSCs in the co-transplantation group was significantly greater than in the NSCs group. At the molecular level, the expressions of IL-6 and BAD in the co-graft group were found to be down regulated significantly, when compared to either the NSC or OEC alone groups. CONCLUSION The present study demonstrates for the first time the optimal effects of co-grafting NSCs and OECs as a new strategy for the treatment of TBI via an anti-inflammation mechanism.
Collapse
Affiliation(s)
- Su-Juan Liu
- Department of Histology, Embryology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Zou
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Visar Belegu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Long-Yun Lv
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650031, China
| | - Na Lin
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650031, China
| | - Ting-Yong Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650031, China
| | - John W McDonald
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xue Zhou
- Department of Histology, Embryology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qing-Jie Xia
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ting-Hua Wang
- Department of Histology, Embryology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650031, China
| |
Collapse
|
19
|
Han E, Lee H. Effect of the structural difference between Bax-α5 and Bcl-xL-α5 on their interactions with lipid bilayers. Phys Chem Chem Phys 2014; 16:981-8. [DOI: 10.1039/c3cp53486c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Badaboina S, Bai HW, Park CH, Jang DM, Choi BY, Chung BY. Molecular mechanism of apoptosis induction in skin cancer cells by the centipedegrass extract. Altern Ther Health Med 2013; 13:350. [PMID: 24325618 PMCID: PMC3880216 DOI: 10.1186/1472-6882-13-350] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 11/29/2013] [Indexed: 01/07/2023]
Abstract
Background Centipedegrass extract (CGE) is mainly composed of maysin and its derivatives, which are recognized internationally as natural compounds. Compared to other flavonoids, maysin has a unique structure in that mannose is bound to the flavonoid backbone. CGE exhibits some biological properties in that it can function as an anti-oxidant, anti-inflammatory, anti-adipogenic, and insecticidal. Whether CGE has other biological functions, such as anti-cancer activity, is unknown. Methods B16F1 (mouse) and SKMEL-5 (human) cells were treated with CGE, and their subsequent survival was determined using MTT assay. We performed a cell cycle analysis using propidium iodide (PI), and detected apoptosis using double staining with annexin V-FITC/PI. In addition, we examined mitochondrial membrane potentials using flow cytometry, as well as signaling mechanisms with an immunoblotting analysis. Results CGE inhibited skin cancer cell growth by arresting the cell cycle in the G2/M phase, and increased both early and late apoptotic cell populations without affecting normal cells. Furthermore, we observed mitochondrial transmembrane depolarization, increased cytochrome-c release, caspase-3 and caspase-7 activation, and increased poly ADP-ribose polymerase degradation. CGE also downregulated activation of p-AKT, p-glycogen synthase kinase-3β (GSK-3β), and p-BAD in a time-dependent manner. LY294002 inhibition of phosphoinositide 3-kinase (PI3K) significantly sensitized skin cancer cells, which led to an increase in CGE-induced apoptosis. Conclusions CGE controlled skin cancer cell growth by inhibiting the PI3K/AKT/GSK-3β signaling pathway and activating the effector caspases. This study is the first to demonstrate anti-cancer properties for CGE, and that CGE may be an effective therapeutic agent for treating skin cancer.
Collapse
|
21
|
Modi V, Sankararamakrishnan R. Antiapoptotic Bcl-2 homolog CED-9 in Caenorhabditis elegans
: Dynamics of BH3 and CED-4 binding regions and comparison with mammalian antiapoptotic Bcl-2 proteins. Proteins 2013; 82:1035-47. [DOI: 10.1002/prot.24476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 10/16/2013] [Accepted: 11/04/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Vivek Modi
- Department of Biological Sciences & Bioengineering; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | | |
Collapse
|
22
|
Maity A, Yadav S, Verma CS, Ghosh Dastidar S. Dynamics of Bcl-xL in water and membrane: molecular simulations. PLoS One 2013; 8:e76837. [PMID: 24116174 PMCID: PMC3792877 DOI: 10.1371/journal.pone.0076837] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/28/2013] [Indexed: 11/18/2022] Open
Abstract
The Bcl2 family of proteins is capable of switching the apoptotic machinery by directly controlling the release of apoptotic factors from the mitochondrial outer membrane. They have 'pro' and 'anti'-apoptotic subgroups of proteins which antagonize each other's function; however a detailed atomistic understanding of their mechanisms based on the dynamical events, particularly in the membrane, is lacking. Using molecular dynamics simulations totaling 1.6µs we outline the major differences between the conformational dynamics in water and in membrane. Using implicit models of solvent and membrane, the simulated results reveal a picture that is in agreement with the 'hit-and run' concept which states that BH3-only peptides displace the tail (which acts as a pseudo substrate of the protein itself) from its binding pocket; this helps the membrane association of the protein after which the BH3 peptide becomes free. From simulations, Bcl-xL appears to be auto-inhibited by its C-terminal tail that embeds into and covers the hydrophobic binding pocket. However the tail is unable to energetically compete with BH3-peptides in water. In contrast, in the membrane, neither the tail nor the BH3-peptides are stable in the binding pocket and appear to be easily dissociated off as the pocket expands in response to the hydrophobic environment. This renders the binding pocket large and open, thus receptive to interactions with other protein partners. Principal components of the motions are dramatically different in the aqueous and in the membrane environments and provide clues regarding the conformational transitions that Bcl-xL undergoes in the membrane, in agreement with the biochemical data.
Collapse
Affiliation(s)
- Atanu Maity
- Bioinformatics Centre, Bose Institute, Kolkata, West Bengal, India
| | - Seema Yadav
- Bioinformatics Centre, Bose Institute, Kolkata, West Bengal, India
| | - Chandra S. Verma
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | |
Collapse
|
23
|
Sivakumar D, Gorai B, Sivaraman T. Screening efficient BH3-mimetics to hBcl-B by means of peptidodynmimetic method. MOLECULAR BIOSYSTEMS 2013; 9:700-12. [PMID: 23385522 DOI: 10.1039/c2mb25195g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crucial residues of hBaxBH3 peptide for interaction with hBcl-B, an anti-apoptotic protein, were identified using molecular docking studies on the polypeptides and temperature-specific molecular dynamic simulations performed for the protein-peptide complex at near-physiological conditions (pH 7.0, 1 atmospheric pressure and 0.1 M NaCl). The data from the methods were examined by a 'strong residue contacts' filter strategy and the data analyses of the former and latter methods identified 10 (Q52, K57, S60, L63, K64, R65, G67, D68, D71 & S72) and 3 (S60, E61 & K64) crucial residues of the hBaxBH3 peptide for interacting with the protein, respectively. We have herein demonstrated that BH3-chemical mimetics screened using the pharmacophoric residues of hBaxBH3 obtained from the 'peptidodynmimetic method' were superior in terms of ligand efficiencies, bioavailability and pharmacokinetic properties vis-à-vis that of small molecule BH3-mimetics retrieved using the conventional 'peptidomimetic method'. The unique advantages of the 'peptidodynmimetic method' to identify efficient BH3-mimetics for modulating interfaces (composed of a large number of amino acids) of other anti-apoptotic proteins-BH3-only peptides have also been discussed in detail.
Collapse
Affiliation(s)
- Dakshinamurthy Sivakumar
- Structural Biology Lab, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur-613 401, TN, India.
| | | | | |
Collapse
|
24
|
Delgado-Soler L, Del Mar Orzaez M, Rubio-Martinez J. Structure-based approach to the design of BakBH3 mimetic peptides with increased helical propensity. J Mol Model 2013; 19:4305-18. [PMID: 23900856 DOI: 10.1007/s00894-013-1944-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 07/11/2013] [Indexed: 11/24/2022]
Abstract
The Bcl-2 family of proteins are well-characterized regulators of the intrinsic apoptotic pathway. Proteins within this family can be classified as either prosurvival or prodeath members and the balance between them present at the mitochondrial membrane is what determines if the cell lives or dies. Specific interactions among Bcl-2 family proteins play a crucial role in regulating programmed cell death. Structural studies have established a conserved interaction pattern among Bcl-2 family members. This interaction is mediated by the binding of the hydrophobic face of the amphipathic α-helical BH3 domain into a conserved hydrophobic groove on the prosurvival partners. It has been reported that an increase in the helical content of BH3 mimetic peptides considerably improves the binding affinity. In this context, this work states for designing peptides derived from the BH3 domain of the proapoptotic protein Bak by substitution of some non-interacting residues by the helical inducing residue Aib. Different synthetic peptides preserving BakBH3 relevant interactions were proposed and simulated presenting a better predicted binding energy and higher helical content than the wild type Bak peptide.
Collapse
Affiliation(s)
- Laura Delgado-Soler
- Department of Physical Chemistry, University of Barcelona (UB) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C/Martí i Franquès 1, 08028, Barcelona, Spain
| | | | | |
Collapse
|
25
|
Lama D, Modi V, Sankararamakrishnan R. Behavior of solvent-exposed hydrophobic groove in the anti-apoptotic Bcl-XL protein: clues for its ability to bind diverse BH3 ligands from MD simulations. PLoS One 2013; 8:e54397. [PMID: 23468841 PMCID: PMC3585337 DOI: 10.1371/journal.pone.0054397] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/13/2012] [Indexed: 11/19/2022] Open
Abstract
Bcl-XL is a member of Bcl-2 family of proteins involved in the regulation of intrinsic pathway of apoptosis. Its overexpression in many human cancers makes it an important target for anti-cancer drugs. Bcl-XL interacts with the BH3 domain of several pro-apoptotic Bcl-2 partners. This helical bundle protein has a pronounced hydrophobic groove which acts as a binding region for the BH3 domains. Eight independent molecular dynamics simulations of the apo/holo forms of Bcl-XL were carried out to investigate the behavior of solvent-exposed hydrophobic groove. The simulations used either a twin-range cut-off or particle mesh Ewald (PME) scheme to treat long-range interactions. Destabilization of the BH3 domain-containing helix H2 was observed in all four twin-range cut-off simulations. Most of the other major helices remained stable. The unwinding of H2 can be related to the ability of Bcl-XL to bind diverse BH3 ligands. The loss of helical character can also be linked to the formation of homo- or hetero-dimers in Bcl-2 proteins. Several experimental studies have suggested that exposure of BH3 domain is a crucial event before they form dimers. Thus unwinding of H2 seems to be functionally very important. The four PME simulations, however, revealed a stable helix H2. It is possible that the H2 unfolding might occur in PME simulations at longer time scales. Hydrophobic residues in the hydrophobic groove are involved in stable interactions among themselves. The solvent accessible surface areas of bulky hydrophobic residues in the groove are significantly buried by the loop LB connecting the helix H2 and subsequent helix. These observations help to understand how the hydrophobic patch in Bcl-XL remains stable in the solvent-exposed state. We suggest that both the destabilization of helix H2 and the conformational heterogeneity of loop LB are important factors for binding of diverse ligands in the hydrophobic groove of Bcl-XL.
Collapse
Affiliation(s)
- Dilraj Lama
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Vivek Modi
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| | | |
Collapse
|
26
|
Modi V, Lama D, Sankararamakrishnan R. Relationship between helix stability and binding affinities: molecular dynamics simulations of Bfl-1/A1-binding pro-apoptotic BH3 peptide helices in explicit solvent. J Biomol Struct Dyn 2013; 31:65-77. [DOI: 10.1080/07391102.2012.691363] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Delgado-Soler L, Pinto M, Tanaka-Gil K, Rubio-Martinez J. Molecular determinants of Bim(BH3) peptide binding to pro-survival proteins. J Chem Inf Model 2012; 52:2107-18. [PMID: 22794663 DOI: 10.1021/ci3001666] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteins of the Bcl-2 family regulate apoptosis through the formation of heterodimers between antiapoptotic or pro-survival proteins and proapoptotic or pro-death proteins. Overexpression of antiapoptotic proteins not only contributes to the progression of many cancers, but also confers resistance to the chemo- and radiotherapeutic treatments. It has been demonstrated that peptides containing the BH3 domain of proapoptotic Bcl-2 family members are able to bind and inhibit antiapoptotic proteins. For this reason, the design of small molecules mimicking the BH3 domain of proapoptotic proteins has emerged as a promising therapeutic strategy for cancer treatment during the last years. However, BH3 domains exhibit different affinities for binding to antiapoptotic proteins; whereas Bim(BH3) and Puma(BH3) are able to bind all antiapoptotic proteins, others like Bad(BH3) and Bmf(BH3) show preference for some proteins over others. Consequently, the ability of a BH3-mimetic to kill tumor cells will depend on the BH3 peptide used as template and thus will have a selective or pan-inhibition effect. Recently, it has been suggested that this last approach could be interesting. Therefore, the present work is aimed to elucidate how the nonselective peptide Bim(BH3) is able to bind to all of the Bcl-2 family antiapoptotic proteins. To unravel the molecular determinants of this pan-inhibition, we used the MM-PB/GBSA approaches to calculate the binding free energy of the different complexes studied and to determine which residues of the peptide have the largest contribution to complex formation. Results obtained in the present work show that the binding of Bim(BH3) to pro-survival proteins is mainly hydrophobic and that specific interactions are fully distributed along the peptide sequence.
Collapse
Affiliation(s)
- Laura Delgado-Soler
- Department of Physical Chemistry, University of Barcelona and the Institut de Recerca en Quimica Teorica i Computacional, Barcelona, Spain
| | | | | | | |
Collapse
|
28
|
Hawley RG, Chen Y, Riz I, Zeng C. An Integrated Bioinformatics and Computational Biology Approach Identifies New BH3-Only Protein Candidates. ACTA ACUST UNITED AC 2012; 5:6-16. [PMID: 22754595 DOI: 10.2174/1874196701205010006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, we utilized an integrated bioinformatics and computational biology approach in search of new BH3-only proteins belonging to the BCL2 family of apoptotic regulators. The BH3 (BCL2 homology 3) domain mediates specific binding interactions among various BCL2 family members. It is composed of an amphipathic α-helical region of approximately 13 residues that has only a few amino acids that are highly conserved across all members. Using a generalized motif, we performed a genome-wide search for novel BH3-containing proteins in the NCBI Consensus Coding Sequence (CCDS) database. In addition to known pro-apoptotic BH3-only proteins, 197 proteins were recovered that satisfied the search criteria. These were categorized according to α-helical content and predictive binding to BCL-xL (encoded by BCL2L1) and MCL-1, two representative anti-apoptotic BCL2 family members, using position-specific scoring matrix models. Notably, the list is enriched for proteins associated with autophagy as well as a broad spectrum of cellular stress responses such as endoplasmic reticulum stress, oxidative stress, antiviral defense, and the DNA damage response. Several potential novel BH3-containing proteins are highlighted. In particular, the analysis strongly suggests that the apoptosis inhibitor and DNA damage response regulator, AVEN, which was originally isolated as a BCL-xL-interacting protein, is a functional BH3-only protein representing a distinct subclass of BCL2 family members.
Collapse
Affiliation(s)
- Robert G Hawley
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
29
|
Terada T, Kidera A. Comparative molecular dynamics simulation study of crystal environment effect on protein structure. J Phys Chem B 2012; 116:6810-8. [PMID: 22397704 DOI: 10.1021/jp2125558] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Crystal structures of proteins are under the influence from the crystal environment. In this study, we used molecular dynamics (MD) simulations to explore the possibility of eliminating the effect of the crystal packing and recovering the structure in solution. Ten representative proteins were chosen from the Protein Structural Change Database as the target systems, and 50 ns MD stimulations starting from two crystal structures having different domain arrangements were performed for each. The MD trajectories of the relaxation processes upon the release from the crystal environment revealed that the behaviors of the proteins were classified into three groups: "single domain linker", "harmonic motion", and "large barrier". We discuss the structural features common to the proteins in each group.
Collapse
Affiliation(s)
- Tohru Terada
- Molecular Scale Team, Computational Science Research Program, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.
| | | |
Collapse
|
30
|
Rosas-Trigueros JL, Correa-Basurto J, Benítez-Cardoza CG, Zamorano-Carrillo A. Insights into the structural stability of Bax from molecular dynamics simulations at high temperatures. Protein Sci 2011; 20:2035-46. [PMID: 21936009 DOI: 10.1002/pro.740] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 09/05/2011] [Accepted: 09/08/2011] [Indexed: 01/05/2023]
Abstract
Bax is a member of the Bcl-2 protein family that participates in mitochondrion-mediated apoptosis. In the early stages of the apoptotic pathway, this protein migrates from the cytosol to the outer mitochondrial membrane, where it is inserted and usually oligomerizes, making cytochrome c-compatible pores. Although several cellular and structural studies have been reported, a description of the stability of Bax at the molecular level remains elusive. This article reports molecular dynamics simulations of monomeric Bax at 300, 400, and 500 K, focusing on the most relevant structural changes and relating them to biological experimental results. Bax gradually loses its α-helices when it is submitted to high temperatures, yet it maintains its globular conformation. The resistance of Bax to adopt an extended conformation could be due to several interactions that were found to be responsible for maintaining the structural stability of this protein. Among these interactions, we found salt bridges, hydrophobic interactions, and hydrogen bonds. Remarkably, salt bridges were the most relevant to prevent the elongation of the structure. In addition, the analysis of our results suggests which conformational movements are implicated in the activation/oligomerization of Bax. This atomistic description might have important implications for understanding the functionality and stability of Bax in vitro as well as within the cellular environment.
Collapse
Affiliation(s)
- Jorge Luis Rosas-Trigueros
- SEPI de la ESCOM del Instituto Politécnico Nacional, Juan de Dios Bátiz y Miguel Othón de Mendizábal s/n, México DF, México
| | | | | | | |
Collapse
|
31
|
Bharatham N, Chi SW, Yoon HS. Molecular basis of Bcl-X(L)-p53 interaction: insights from molecular dynamics simulations. PLoS One 2011; 6:e26014. [PMID: 22039431 PMCID: PMC3198449 DOI: 10.1371/journal.pone.0026014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/15/2011] [Indexed: 02/07/2023] Open
Abstract
Bcl-XL, an antiapoptotic Bcl-2 family protein, plays a central role in the regulation of the apoptotic pathway. Heterodimerization of the antiapoptotic Bcl-2 family proteins with the proapoptotic family members such as Bad, Bak, Bim and Bid is a crucial step in the apoptotic regulation. In addition to these conventional binding partners, recent evidences reveal that the Bcl-2 family proteins also interact with noncanonical binding partners such as p53. Our previous NMR studies showed that Bcl-XL: BH3 peptide and Bcl-XL: SN15 peptide (a peptide derived from residues S15-N29 of p53) complex structures share similar modes of bindings. To further elucidate the molecular basis of the interactions, here we have employed molecular dynamics simulations coupled with MM/PBSA approach. Bcl-XL and other Bcl-2 family proteins have 4 hydrophobic pockets (p1–p4), which are occupied by four systematically spaced hydrophobic residues (h1–h4) of the proapoptotic Bad and Bak BH3 peptides. We observed that three conserved hydrophobic residues (F19, W23 and L26) of p53 (SN15) peptide anchor into three hydrophobic pockets (p2–p4) of Bcl-XL in a similar manner as BH3 peptide. Our results provide insights into the novel molecular recognition by Bcl-XL with p53.
Collapse
Affiliation(s)
- Nagakumar Bharatham
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Seung-Wook Chi
- Medical Proteomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Ho Sup Yoon
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore
- * E-mail:
| |
Collapse
|
32
|
Structural changes in the BH3 domain of SOUL protein upon interaction with the anti-apoptotic protein Bcl-xL. Biochem J 2011; 438:291-301. [PMID: 21639858 PMCID: PMC3174058 DOI: 10.1042/bj20110257] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The SOUL protein is known to induce apoptosis by provoking the mitochondrial permeability transition, and a sequence homologous with the BH3 (Bcl-2 homology 3) domains has recently been identified in the protein, thus making it a potential new member of the BH3-only protein family. In the present study, we provide NMR, SPR (surface plasmon resonance) and crystallographic evidence that a peptide spanning residues 147–172 in SOUL interacts with the anti-apoptotic protein Bcl-xL. We have crystallized SOUL alone and the complex of its BH3 domain peptide with Bcl-xL, and solved their three-dimensional structures. The SOUL monomer is a single domain organized as a distorted β-barrel with eight anti-parallel strands and two α-helices. The BH3 domain extends across 15 residues at the end of the second helix and eight amino acids in the chain following it. There are important structural differences in the BH3 domain in the intact SOUL molecule and the same sequence bound to Bcl-xL.
Collapse
|
33
|
Acoca S, Cui Q, Shore GC, Purisima EO. Molecular dynamics study of small molecule inhibitors of the Bcl-2 family. Proteins 2011; 79:2624-36. [DOI: 10.1002/prot.23083] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 04/29/2011] [Accepted: 05/04/2011] [Indexed: 02/07/2023]
|
34
|
Pinto M, Orzaez MDM, Delgado-Soler L, Perez JJ, Rubio-Martinez J. Rational design of new class of BH3-mimetics as inhibitors of the Bcl-xL protein. J Chem Inf Model 2011; 51:1249-58. [PMID: 21528891 DOI: 10.1021/ci100501d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Bcl-2 family of proteins plays an important role in the intrinsic pathway of cell apoptosis. Overexpression of pro-survival members of this family of proteins is often associated with the development of many types of cancer and confers resistance against conventional therapeutic treatments. Accordingly, antagonism of its protective function has emerged as an encouraging anticancer strategy. In the present work, we use a pharmacophore for describing interaction between the BH3 domain of different pro-apoptotic members and the pro-survival protein Bcl-x(L) in order to identify new lead compounds. In the strategy followed in the present work, the pharmacophore was derived from molecular dynamics studies of different Bcl-x(L)/BH3 complexes. This pharmacophore was later used as query for 3D database screening. Hits obtained from the search were computationally assessed, and a subset proposed for in vitro testing. Two of the 15 compounds assayed were found able to disrupt the Bcl-x(L)/Bak(BH3) complex with IC(50) values in the lower micromolar range. Finally, docking studies were performed to explore the binding mode of these compounds to Bcl-x(L) for further modifications.
Collapse
Affiliation(s)
- Marta Pinto
- Department of Physical Chemistry, University of Barcelona (UB), Barcelona, Spain
| | | | | | | | | |
Collapse
|
35
|
Molecular dynamics simulations of pro-apoptotic BH3 peptide helices in aqueous medium: relationship between helix stability and their binding affinities to the anti-apoptotic protein Bcl-X(L). J Comput Aided Mol Des 2011; 25:413-26. [PMID: 21523491 DOI: 10.1007/s10822-011-9428-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 04/11/2011] [Indexed: 01/28/2023]
Abstract
The B-cell lymphoma 2 (Bcl-2) family of proteins regulates the intrinsic pathway of apoptosis. Interactions between specific anti- and pro-apoptotic Bcl-2 proteins determine the fate of a cell. Anti-apoptotic Bcl-2 proteins have been shown to be over-expressed in certain cancers and they are attractive targets for developing anti-cancer drugs. Peptides from the BH3 region of pro-apoptotic proteins have been shown to interact with anti-apoptotic Bcl-2 proteins and induce biological activity similar to that observed in parent proteins. However, the specificity of BH3 peptides derived from different pro-apoptotic proteins differ for different anti-apoptotic Bcl-2 proteins. In this study, we have investigated the relationship between the stable helical nature of BH3 peptides and their affinities to Bcl-X(L), an anti-apoptotic Bcl-2 protein. We have carried out molecular dynamics simulations of six BH3 peptides derived from Bak, Bad and Bim pro-apoptotic proteins for a period of 50 ns each in aqueous medium. Due to the amphipathic nature of BH3 peptides, the hydrophobic residues on the hydrophobic face tend to cluster together in all BH3 peptides. While this process resulted in a complete loss of helical structure in 16-mer Bak and 16-mer Bad wild type peptides, stabilizing interactions in the hydrophilic face of the BH3 peptides and capping interactions helped to maintain partial helical character in 16-mer Bad mutant and 16-mer Bim peptides. The latter two 16-mer peptides exhibit higher affinity for Bcl-X(L). Similarly the longer BH3 peptides, 25-mer Bad and 33-mer Bim, also resulted in smaller and stable helical fragments and their helical conformation is stabilized by interactions between residues in the solvent-exposed hydrophilic half of the peptide. The stable nature of helical segment in a BH3 peptide can be directly correlated to its binding affinity and the helical region encompassed the highly conserved Leu residue. We propose that upon approaching the hydrophobic groove of anti-apoptotic proteins, a longer helix will be induced in high affinity BH3 peptides by extending the smaller stable helical segments around the conserved Leu residue in both N- and C-terminal regions. The results reported in this study will have implications in developing peptide-based inhibitors for anti-apoptotic Bcl-2 proteins.
Collapse
|
36
|
Gerasimenko J, Ferdek P, Fischer L, Gukovskaya AS, Pandol SJ. Inhibitors of Bcl-2 protein family deplete ER Ca2+ stores in pancreatic acinar cells. Pflugers Arch 2010; 460:891-900. [PMID: 20617337 PMCID: PMC2937140 DOI: 10.1007/s00424-010-0859-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 06/11/2010] [Accepted: 06/17/2010] [Indexed: 11/30/2022]
Abstract
Physiological stimulation of pancreatic acinar cells by cholecystokinin and acetylcholine activate a spatial-temporal pattern of cytosolic [Ca+2] changes that are regulated by a coordinated response of inositol 1,4,5-trisphosphate receptors (IP3Rs), ryanodine receptors (RyRs) and calcium-induced calcium release (CICR). For the present study, we designed experiments to determine the potential role of Bcl-2 proteins in these patterns of cytosolic [Ca+2] responses. We used small molecule inhibitors that disrupt the interactions between prosurvival Bcl-2 proteins (i.e. Bcl-2 and Bcl-xl) and proapoptotic Bcl-2 proteins (i.e. Bax) and fluorescence microfluorimetry techniques to measure both cytosolic [Ca+2] and endoplasmic reticulum [Ca+2]. We found that the inhibitors of Bcl-2 protein interactions caused a slow and complete release of intracellular agonist-sensitive stores of calcium. The release was attenuated by inhibitors of IP3Rs and RyRs and substantially reduced by strong [Ca2+] buffering. Inhibition of IP3Rs and RyRs also dramatically reduced activation of apoptosis by BH3I-2′. CICR induced by different doses of BH3I-2′ in Bcl-2 overexpressing cells was markedly decreased compared with control. The results suggest that Bcl-2 proteins regulate calcium release from the intracellular stores and suggest that the spatial-temporal patterns of agonist-stimulated cytosolic [Ca+2] changes are regulated by differential cellular distribution of interacting pairs of prosurvival and proapoptotic Bcl-2 proteins.
Collapse
Affiliation(s)
- Julia Gerasimenko
- The Physiological Laboratory, University of Liverpool, Liverpool, L69 3BX, UK
| | | | | | | | | |
Collapse
|
37
|
Münz M, Lyngsø R, Hein J, Biggin PC. Dynamics based alignment of proteins: an alternative approach to quantify dynamic similarity. BMC Bioinformatics 2010; 11:188. [PMID: 20398246 PMCID: PMC2868010 DOI: 10.1186/1471-2105-11-188] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 04/14/2010] [Indexed: 11/15/2022] Open
Abstract
Background The dynamic motions of many proteins are central to their function. It therefore follows that the dynamic requirements of a protein are evolutionary constrained. In order to assess and quantify this, one needs to compare the dynamic motions of different proteins. Comparing the dynamics of distinct proteins may also provide insight into how protein motions are modified by variations in sequence and, consequently, by structure. The optimal way of comparing complex molecular motions is, however, far from trivial. The majority of comparative molecular dynamics studies performed to date relied upon prior sequence or structural alignment to define which residues were equivalent in 3-dimensional space. Results Here we discuss an alternative methodology for comparative molecular dynamics that does not require any prior alignment information. We show it is possible to align proteins based solely on their dynamics and that we can use these dynamics-based alignments to quantify the dynamic similarity of proteins. Our method was tested on 10 representative members of the PDZ domain family. Conclusions As a result of creating pair-wise dynamics-based alignments of PDZ domains, we have found evolutionarily conserved patterns in their backbone dynamics. The dynamic similarity of PDZ domains is highly correlated with their structural similarity as calculated with Dali. However, significant differences in their dynamics can be detected indicating that sequence has a more refined role to play in protein dynamics than just dictating the overall fold. We suggest that the method should be generally applicable.
Collapse
Affiliation(s)
- Márton Münz
- Structural Bioinformatics and Computational Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | | | | |
Collapse
|
38
|
Lama D, Sankararamakrishnan R. Identification of Core Structural Residues in the Sequentially Diverse and Structurally Homologous Bcl-2 Family of Proteins. Biochemistry 2010; 49:2574-84. [DOI: 10.1021/bi100029k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Dilraj Lama
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur, Kanpur 208016, India
| | | |
Collapse
|
39
|
Matsumura N, Tsuji T, Sumida T, Kokubo M, Onimaru M, Doi N, Takashima H, Miyamoto-Sato E, Yanagawa H. mRNA display selection of a high-affinity, Bcl-X(L)-specific binding peptide. FASEB J 2010; 24:2201-10. [PMID: 20181936 DOI: 10.1096/fj.09-143008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bcl-X(L), an antiapoptotic member of the Bcl-2 family, is a mitochondrial protein that inhibits activation of Bax and Bak, which commit the cell to apoptosis, and it therefore represents a potential target for drug discovery. Peptides have potential as therapeutic molecules because they can be designed to engage a larger portion of the target protein with higher specificity. In the present study, we selected 16-mer peptides that interact with Bcl-X(L) from random and degenerate peptide libraries using mRNA display. The selected peptides have sequence similarity with the Bcl-2 family BH3 domains, and one of them has higher affinity (IC(50)=0.9 microM) than Bak BH3 (IC(50)=11.8 microM) for Bcl-X(L) in vitro. We also found that GFP fusions of the selected peptides specifically interact with Bcl-X(L), localize in mitochondria, and induce cell death. Further, a chimeric molecule, in which the BH3 domain of Bak protein was replaced with a selected peptide, retained the ability to bind specifically to Bcl-X(L). These results demonstrate that this selected peptide specifically antagonizes the function of Bcl-X(L) and overcomes the effects of Bcl-X(L) in intact cells. We suggest that mRNA display is a powerful technique to identify peptide inhibitors with high affinity and specificity for disease-related proteins.
Collapse
Affiliation(s)
- Nobutaka Matsumura
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Krishnamoorthy J, Yu VCK, Mok YK. Auto-FACE: an NMR based binding site mapping program for fast chemical exchange protein-ligand systems. PLoS One 2010; 5:e8943. [PMID: 20174626 PMCID: PMC2823773 DOI: 10.1371/journal.pone.0008943] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 01/07/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Nuclear Magnetic Resonance (NMR) spectroscopy offers a variety of experiments to study protein-ligand interactions at atomic resolution. Among these experiments, 15N Heteronuclear Single Quantum Correlation (HSQC)experiment is simple, less time consuming and highly informative in mapping the binding site of the ligand. The interpretation of 15N HSQC becomes ambiguous when the chemical shift perturbations are caused by non-specific interactions like allosteric changes and local structural rearrangement. Under such cases, detailed chemical exchange analysis based on chemical shift perturbation will assist in locating the binding site accurately. METHODOLOGY/PRINCIPAL FINDINGS We have automated the mapping of binding sites for fast chemical exchange systems using information obtained from 15N HSQC spectra of protein serially titrated with ligand of increasing concentrations. The automated program Auto-FACE (Auto-FAst Chemical Exchange analyzer) determines the parameters, e.g. rate of change of perturbation, binding equilibrium constant and magnitude of chemical shift perturbation to map the binding site residues.Interestingly, the rate of change of perturbation at lower ligand concentration is highly sensitive in differentiating the binding site residues from the non-binding site residues. To validate this program, the interaction between the protein hBcl(XL) and the ligand BH3I-1 was studied. Residues in the hydrophobic BH3 binding groove of hBcl(XL) were easily identified to be crucial for interaction with BH3I-1 from other residues that also exhibited perturbation. The geometrically averaged equilibrium constant (3.0 x 10(4)) calculated for the residues present at the identified binding site is consistent with the values obtained by other techniques like isothermal calorimetry and fluorescence polarization assays (12.8 x 10(4)). Adjacent to the primary site, an additional binding site was identified which had an affinity of 3.8 times weaker than the former one. Further NMR based model fitting for individual residues suggest single site model for residues present at these binding sites and two site model for residues present between these sites. This implies that chemical shift perturbation can represent the local binding event much more accurately than the global binding event. CONCLUSION/SIGNIFICANCE Detail NMR chemical shift perturbation analysis enabled binding site residues to be distinguished from non-binding site residues for accurate mapping of interaction site in complex fast exchange system between small molecule and protein. The methodology is automated and implemented in a program called "Auto-FACE", which also allowed quantitative information of each interaction site and elucidation of binding mechanism.
Collapse
Affiliation(s)
| | - Victor C. K. Yu
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Yu-Keung Mok
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
41
|
García-Sáez AJ, Fuertes G, Suckale J, Salgado J. Permeabilization of the Outer Mitochondrial Membrane by Bcl-2 Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 677:91-105. [DOI: 10.1007/978-1-4419-6327-7_8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Katz SI, Zhou L, Chao G, Smith CD, Ferrara T, Wang W, Dicker DT, El-Deiry WS. Sorafenib inhibits ERK1/2 and MCL-1(L) phosphorylation levels resulting in caspase-independent cell death in malignant pleural mesothelioma. Cancer Biol Ther 2009; 8:2406-16. [PMID: 20038816 DOI: 10.4161/cbt.8.24.10824] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive, rapidly progressive malignancy without effective therapy. We evaluate sorafenib efficacy and impact on the cellular pro-survival machinery in vitro, efficacy of sorafenib as monotherapy and in combination with the naturally occurring death receptor agonist, TRAIL using human MPM cell lines, MSTO-211H, M30, REN, H28, H2052 and H2452. In vitro studies of the six MPM lines demonstrated single agent sensitivity to the multikinase inhibitor sorafenib and resistance to TRAIL. H28 and H2452 demonstrated augmented apoptosis with the addition of TRAIL to sorafenib in vitro. Treated cell lines demonstrated sorafenib-induced rapid dephosphorylation of AKT followed shortly by near complete dephosphorylation of the constitutively phosphorylated ERK1/2. Sorafenib therapy also decreased phosphorylation of B-Raf and mTOR in several cell lines. Within 3 h of sorafenib treatment, a number of known pro-survival molecules were dephosphorylated and/or downregulated in expression including MCL-1(L), c-FLIP(L), survivin and cIAP(1). These changes and eventual cell death did not elicit significant caspase-3 activation or PARP cleavage and pretreatment with the pan-caspase inhibitor, Z-VAD-FMK, did not block sorafenib efficacy but did block the effect of TRAIL monotherapy. Pre-treatment with Z-VAD-FMK did not block the synergistic effect of TRAIL and sorafenib in H28. In summary, single agent treatment with sorafenib results in widespread inhibition of the pro-survival machinery in vitro leading to cell death via a primarily caspase-independent mechanism. Combining sorafenib therapy with TRAIL, may be useful in order to provide a more efficient death signal and this synergistic effect appears to be caspase-independent. Pilot in vivo data demonstrates promising evidence of therapeutic efficacy in human tumor bearing xenograft nu/nu mice. We document single agent activity of sorafenib against MPM, unravel novel effects of sorafenib on anti-apoptotic signaling mediators, and suggest the combination of sorafenib plus TRAIL as possible therapy for clinical testing in MPM.
Collapse
Affiliation(s)
- Sharyn I Katz
- Laboratory of Molecular Oncology and Cell Cycle Regulation, Department of Medicine (Hematology/Oncology), University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Raucher D, Moktan S, Massodi I, Bidwell GL. Therapeutic peptides for cancer therapy. Part II - cell cycle inhibitory peptides and apoptosis-inducing peptides. Expert Opin Drug Deliv 2009; 6:1049-64. [PMID: 19743895 DOI: 10.1517/17425240903158909] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Therapeutic peptides have great potential as anticancer agents owing to their ease of rational design and target specificity. However, their utility in vivo is limited by low stability and poor tumor penetration. OBJECTIVE The authors review the development of peptide inhibitors with potential for cancer therapy. Peptides that arrest the cell cycle by mimicking CDK inhibitors or induce apoptosis directly are discussed. METHODS The authors searched Medline for articles concerning the development of therapeutic peptides and their delivery. RESULTS/CONCLUSION Inhibition of cancer cell proliferation directly using peptides that arrest the cell cycle or induce apoptosis is a promising strategy. Peptides can be designed that interact very specifically with cyclins and/or cyclin-dependent kinases and with members of apoptotic cascades. Use of these peptides is not limited by their design, as a rational approach to peptide design is much less challenging than the design of small molecule inhibitors of specific protein-protein interactions. However, the limitations of peptide therapy lie in the poor pharmacokinetic properties of these large, often charged molecules. Therefore, overcoming the drug delivery hurdles could open the door for effective peptide therapy, thus making an entirely new class of molecules useful as anticancer drugs.
Collapse
Affiliation(s)
- Drazen Raucher
- The University of Mississippi Medical Center, Department of Biochemistry, Jackson, 39216, USA.
| | | | | | | |
Collapse
|
44
|
Lomonosova E, Chinnadurai G. BH3-only proteins in apoptosis and beyond: an overview. Oncogene 2009; 27 Suppl 1:S2-19. [PMID: 19641503 DOI: 10.1038/onc.2009.39] [Citation(s) in RCA: 317] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BH3-only BCL-2 family proteins are effectors of canonical mitochondrial apoptosis. They discharge their pro-apoptotic functions through BH1-3 pro-apoptotic proteins such as BAX and BAK, while their activity is suppressed by BH1-4 anti-apoptotic BCL-2 family members. The precise mechanism by which BH3-only proteins mediate apoptosis remains unresolved. The existing data are consistent with three mutually non-exclusive models (1) displacement of BH1-3 proteins from complexes with BH1-4 proteins; (2) direct interaction with and conformational activation of BH1-3 proteins; and (3) membrane insertion and membrane remodeling. The BH3-only proteins appear to play critical roles in restraining cancer and inflammatory diseases such as rheumatoid arthritis. Molecules that mimic the effect of BH3-only proteins are being used in treatments against these diseases. The cell death activity of a subclass of BH3-only members (BNIP3 and BNIP3L) is linked to cardiomyocyte loss during heart failure. In addition to their established role in apoptosis, several BH3-only members also regulate diverse cellular functions in cell-cycle regulation, DNA repair and metabolism. Several members are implicated in the induction of autophagy and autophagic cell death, possibly through unleashing of the BH3-only autophagic effector Beclin 1 from complexes with BCL-2/BCL-xL. The Chapters included in the current Oncogene Review issues provide in-depth discussions on various aspects of major BH3-only proteins.
Collapse
Affiliation(s)
- E Lomonosova
- Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy Research Center, St Louis, MO 63104, USA
| | | |
Collapse
|