1
|
Husain S, Mohamed R, Abd Halim KB, Mohd Mutalip SS. Homology modeling of human BAP1 and analysis of its binding properties through molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 2023; 41:7158-7173. [PMID: 36039769 DOI: 10.1080/07391102.2022.2117244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
BRCA1-associated protein 1 (BAP1) is a nuclear-localized Ubiquitin C-terminal hydrolase (UCH) that functions as a tumour suppressor, and although BAP1 has been linked to cancer, the molecular mechanism by which BAP1 regulates cancer and its crystal structure have not been elucidated. In this study, computational approaches were used to identify the protein model of BAP1 and its potential inhibitors. The structure of the BAP1 model was constructed through homology modeling and the generated BAP1 model was observed to exhibit good quality protein model as the distribution of its amino acids in the Ramachandran's plot corresponded to 87.7% in the most favoured regions. Docking and simulating of the ubiquitin on the BAP1 model structure revealed the rearrangement of F228, F50, and H169 residues of the BAP1 and switching of BAP1's conformation into a productive state. Our screening results of potential BAP1 inhibitors against the FDA approved drugs shortlisted two potential inhibitors, which are FDA1065 and FDA755. We then performed molecular dynamics simulations and Molecular mechanics Poisson-Boltzmann surface area (MMPBSA) analysis on both inhibitors and found that only the BAP1-FDA755 formed a stable complex and the FDA755 ligand remained its position inside the active site of the BAP1 with a total binding energy of (-51.77 ± 3.49 kcal/mol). We speculate that the presence of methyl group in FDA755 play an important role in stabilizing the BAP1-FDA755 complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Syarifuddin Husain
- Bioinformatics Unit, Faculty of Pharmacy, UiTM Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
| | - Ruzianisra Mohamed
- Bioinformatics Unit, Faculty of Pharmacy, UiTM Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, UiTM Puncak Alam Campus, Bandar Puncak Alam, Selangor, Malaysia
| | - Khairul Bariyyah Abd Halim
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Siti Syairah Mohd Mutalip
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, UiTM Puncak Alam Campus, Bandar Puncak Alam, Selangor, Malaysia
| |
Collapse
|
2
|
Yang X, Wang C, Zhu G, Guo Z, Fan L. METTL14/YTHDF1 axis-modified UCHL5 aggravates atherosclerosis by activating the NLRP3 inflammasome. Exp Cell Res 2023; 427:113587. [PMID: 37044315 DOI: 10.1016/j.yexcr.2023.113587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Vascular smooth muscle cell (VSMC) phenotypic switching contributes to VSMC proliferation and migration in atherosclerosis (AS). Nevertheless, the regulatory mechanism of VSMC phenotypic switching during AS progression is unclear. Here, the role and regulatory mechanism of UCHL5 in VSMC phenotypic switching during AS progression were investigated. METHODS ApoE-/- mice were fed with high fat diet to establish AS model in vivo. VSMCs stimulated by ox-LDL were used as AS cellular model. VSMC proliferation and migration were examined by CCK8 assay and transwell assay, respectively. The levels of pro-inflammatory cytokines were assessed using ELISA. The interactions between METTL14/YTHDF1, UCHL5 and NLRP3 were analyzed using RIP and/or dual-luciferase reporter gene and/or Co-IP assays. NLRP3 ubiquitination was analyzed by ubiquitination analysis. RESULTS UCHL5 was significantly upregulated in AS patients and ox-LDL-treated VSMCs. UCHL5 silencing ameliorated plaque formation and vascular remodeling in vivo and suppressed ox-LDL-induced VSMC proliferation, migration, inflammation and phenotypic switching in vitro. Moreover, METTL14 could increase UCHL5 mRNA m6A level and promoted UCHL5 expression by recruiting YTHDF1. Moreover, UCHL5 overexpression enhanced protein stability by deubiquitinating NLRP3. Rescue studies revealed that NLRP3 overexpression abrogated UCHL5 silencing-mediated biological effects in ox-LDL-treated VSMCs. CONCLUSION UCHL5 modified by METTL14/YTHDF1 axis could facilitate the inflammation and vascular remodeling in atherosclerosis by activating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Xiaohu Yang
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China
| | - Chen Wang
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China
| | - Guanglang Zhu
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China
| | - Zhenyu Guo
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China
| | - Longhua Fan
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201700, China.
| |
Collapse
|
3
|
Zhao J, Guo J, Wang Y, Ma Q, Shi Y, Cheng F, Lu Q, Fu W, Ouyang G, Zhang J, Xu Q, Hu X. Research Progress of DUB Enzyme in Hepatocellular Carcinoma. Front Oncol 2022; 12:920287. [PMID: 35875077 PMCID: PMC9303014 DOI: 10.3389/fonc.2022.920287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
According to GLOBOCAN 2021 cancer incidence and mortality statistics compiled by the International Agency for Research on Cancer, hepatocellular carcinoma (HCC) is the most common malignancy in the human liver and one of the leading causes of cancer death worldwide. Although there have been great advances in the treatment of HCC, such as regofenib, sorafenib, and lomvatinib, which have been developed and approved for the clinical treatment of advanced or metastatic HCC. However, they only prolong survival by a few months, and patients with advanced liver cancer are susceptible to tumor invasion metastasis and drug resistance. Ubiquitination modification is a type of post-translational modification of proteins. It can affect the physiological activity of cells by regulating the localization, stability and activity of proteins, such as: gene transcription, DNA damage signaling and other pathways. The reversible process of ubiquitination is called de-ubiquitination: it is the process of re-releasing ubiquitinated substrates with the participation of de-ubiquitinases (DUBs) and other active substances. There is growing evidence that many dysregulations of DUBs are associated with tumorigenesis. Although dysregulation of deuquitinase function is often found in HCC and other cancers, The mechanisms of action of many DUBs in HCC have not been elucidated. In this review, we focused on several deubiquitinases (DUBs) associated with hepatocellular carcinoma, including their structure, function, and relationship to hepatocellular carcinoma. hepatocellular carcinoma was highlighted, as well as the latest research reports. Among them, we focus on the USP family and OTU family which are more studied in the HCC. In addition, we discussed the prospects and significance of targeting DUBs as a new strategy for the treatment of hepatocellular carcinoma. It also briefly summarizes the research progress of some DUB-related small molecule inhibitors and their clinical application significance as a treatment for HCC in the future.
Collapse
Affiliation(s)
- Jie Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jinhui Guo
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yanan Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiancheng Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu Shi
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Feng Cheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiliang Lu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wen Fu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | | | - Ji Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiuran Xu
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Xiaoge Hu, ; Qiuran Xu,
| | - Xiaoge Hu
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical CollegeHangzhou, China
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Xiaoge Hu, ; Qiuran Xu,
| |
Collapse
|
4
|
D'Souza L, Channakkar AS, Muralidharan B. Chromatin remodelling complexes in cerebral cortex development and neurodevelopmental disorders. Neurochem Int 2021; 147:105055. [PMID: 33964373 PMCID: PMC7611358 DOI: 10.1016/j.neuint.2021.105055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/11/2021] [Accepted: 04/24/2021] [Indexed: 12/19/2022]
Abstract
The diverse number of neurons in the cerebral cortex are generated during development by neural stem cells lining the ventricle, and they continue maturing postnatally. Dynamic chromatin regulation in these neural stem cells is a fundamental determinant of the emerging property of the functional neural network, and the chromatin remodellers are critical determinants of this process. Chromatin remodellers participate in several steps of this process from proliferation, differentiation, migration leading to complex network formation which forms the basis of higher-order functions of cognition and behaviour. Here we review the role of these ATP-dependent chromatin remodellers in cortical development in health and disease and highlight several key mouse mutants of the subunits of the complexes which have revealed how the remodelling mechanisms control the cortical stem cell chromatin landscape for expression of stage-specific transcripts. Consistent with their role in cortical development, several putative risk variants in the subunits of the remodelling complexes have been identified as the underlying causes of several neurodevelopmental disorders. A basic understanding of the detailed molecular mechanism of their action is key to understating how mutations in the same networks lead to disease pathologies and perhaps pave the way for therapeutic development for these complex multifactorial disorders.
Collapse
Affiliation(s)
- Leora D'Souza
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India
| | - Asha S Channakkar
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India
| | - Bhavana Muralidharan
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India.
| |
Collapse
|
5
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Synthesis and evaluation of tiaprofenic acid-derived UCHL5 deubiquitinase inhibitors. Bioorg Med Chem 2020; 30:115931. [PMID: 33341501 DOI: 10.1016/j.bmc.2020.115931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/31/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays an important role in maintaining protein homeostasis by degrading intracellular proteins. In the proteasome, poly-ubiquitinated proteins are deubiquitinated by three deubiquitinases (DUBs) associated with 19S regulatory particle before degradation via 20S core particle. Ubiquitin carboxyl-terminal hydrolase L5 (UCHL5) is one of three proteasome-associated DUBs that control the fate of ubiquitinated substrates implicated in cancer survival and progression. In this study, we have performed virtual screening of an FDA approved drug library with UCHL5 and discovered tiaprofenic acid (TA) as a potential binder. With molecular docking analysis and in-vitro DUB assay, we have designed, synthesized, and evaluated a series of TA derivatives for inhibition of UCHL5 activity. We demonstrate that one TA derivative, TAB2, acts as an inhibitor of UCHL5.
Collapse
|
7
|
Reddington CJ, Fellner M, Burgess AE, Mace PD. Molecular Regulation of the Polycomb Repressive-Deubiquitinase. Int J Mol Sci 2020; 21:ijms21217837. [PMID: 33105797 PMCID: PMC7660087 DOI: 10.3390/ijms21217837] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Post-translational modification of histone proteins plays a major role in histone–DNA packaging and ultimately gene expression. Attachment of ubiquitin to the C-terminal tail of histone H2A (H2AK119Ub in mammals) is particularly relevant to the repression of gene transcription, and is removed by the Polycomb Repressive-Deubiquitinase (PR-DUB) complex. Here, we outline recent advances in the understanding of PR-DUB regulation, which have come through structural studies of the Drosophila melanogaster PR-DUB, biochemical investigation of the human PR-DUB, and functional studies of proteins that associate with the PR-DUB. In humans, mutations in components of the PR-DUB frequently give rise to malignant mesothelioma, melanomas, and renal cell carcinoma, and increase disease risk from carcinogens. Diverse mechanisms may underlie disruption of the PR-DUB across this spectrum of disease. Comparing and contrasting the PR-DUB in mammals and Drosophila reiterates the importance of H2AK119Ub through evolution, provides clues as to how the PR-DUB is dysregulated in disease, and may enable new treatment approaches in cancers where the PR-DUB is disrupted.
Collapse
|
8
|
Zhang J, Xu H, Yang X, Zhao Y, Xu X, Zhang L, Xuan X, Ma C, Qian W, Li D. Deubiquitinase UCHL5 is elevated and associated with a poor clinical outcome in lung adenocarcinoma (LUAD). J Cancer 2020; 11:6675-6685. [PMID: 33046988 PMCID: PMC7545677 DOI: 10.7150/jca.46146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/06/2020] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is one of the most common malignant tumors in the world, with a high rate of malignancy and mortality. Seeking new biomarkers and potential drug targets is urgent for effective treatment of the disease. Deubiquitinase UCHL5/UCH37, as an important component of the 26S proteasome, plays critical roles in ubiquitinated substrate degradation. Although previous studies have shown that UCHL5 promotes tumorigenesis, its role in lung cancer remains largely unknown. In this study, we evaluated the expression and clinical significance of UCHL5 in non-small cell lung cancer (NSCLC). The results demonstrated that the UCHL5 expression level was significantly upregulated in NSCLC tissues compared with the adjacent noncancerous tissues. The level of UCHL5 was associated with tumor size, lymph node invasion, TNM stage and malignant tumor history in patients with lung adenocarcinoma (LUAD). Importantly, high UCHL5 expression predicted a poor overall survival (OS) and a poor disease-free survival (DFS) in patients with LUAD. Univariate regression analysis showed that tumor size, lymph node invasion, TNM stage and UCHL5 expression were associated with OS and DFS in patients with LUAD. The multivariate analysis indicated that the UCHL5 expression level was an independent prognostic factor for OS (HR=1.171, 95% CI=1.052-1.303) and DFS (HR=1.143, 95% CI=1.031-1.267) in these patients. UCHL5 knockdown in LUAD cells significantly inhibited cell proliferation and reduced the expression of key cell cycle proteins. These findings indicate that UCHL5 may serve as a potential prognostic marker and a new therapeutic target for patients with LUAD.
Collapse
Affiliation(s)
- Jieru Zhang
- Department of Respiratory & Critical Care Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Hui Xu
- Department of Thoracic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Xiaomei Yang
- Department of Emergency, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Yuanjie Zhao
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Xinchun Xu
- Department of Ultrasound, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Ling Zhang
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Xiaofeng Xuan
- Department of Respiratory & Critical Care Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Chunping Ma
- Department of Thoracic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Wenxia Qian
- Department of Respiratory & Critical Care Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Dawei Li
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| |
Collapse
|
9
|
Chadchankar J, Korboukh V, Conway LC, Wobst HJ, Walker CA, Doig P, Jacobsen SJ, Brandon NJ, Moss SJ, Wang Q. Inactive USP14 and inactive UCHL5 cause accumulation of distinct ubiquitinated proteins in mammalian cells. PLoS One 2019; 14:e0225145. [PMID: 31703099 PMCID: PMC6839854 DOI: 10.1371/journal.pone.0225145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
USP14 is a cysteine protease deubiquitinase associated with the proteasome and plays important catalytic and allosteric roles in proteasomal degradation. USP14 inhibition has been considered a therapeutic strategy for accelerating degradation of aggregation-prone proteins in neurodegenerative diseases and for inhibiting proteasome function to induce apoptotic cell death in cancers. Here we studied the effects of USP14 inhibition in mammalian cells using small molecule inhibitors and an inactive USP14 mutant C114A. Neither the inhibitors nor USP14 C114A showed consistent or significant effects on the level of TDP-43, tau or α-synuclein in HEK293T cells. However, USP14 C114A led to a robust accumulation of ubiquitinated proteins, which were isolated by ubiquitin immunoprecipitation and identified by mass spectrometry. Among these proteins we confirmed that ubiquitinated β-catenin accumulated in the cells expressing USP14 C114A with immunoblotting and immunoprecipitation experiments. The proteasome binding domain of USP14 C114A is required for its effect on ubiquitinated proteins. UCHL5 is the other cysteine protease deubiquitinase associated with the proteasome. Interestingly, the inactive mutant of UCHL5 C88A also caused an accumulation of ubiquitinated proteins in HEK293T cells but did not affect β-catenin, demonstrating USP14 but not UCHL5 has a specific effect on β-catenin. We used ubiquitin immunoprecipitation and mass spectrometry to identify the accumulated ubiquitinated proteins in UCHL5 C88A expressing cells which are mostly distinct from those identified in USP14 C114A expressing cells. Among the identified proteins are well established proteasome substrates and proteasome subunits. Besides β-catenin, we also verified with immunoblotting that UCHL5 C88A inhibits its own deubiquitination and USP14 C114A inhibits deubiquitination of two proteasomal subunits PSMC1 and PSMD4. Together our data suggest that USP14 and UCHL5 can deubiquitinate distinct substrates at the proteasome and regulate the ubiquitination of the proteasome itself which is tightly linked to its function.
Collapse
Affiliation(s)
- Jayashree Chadchankar
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University, Boston, MA, United States of America
| | - Victoria Korboukh
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, United States of America
| | - Leslie C. Conway
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University, Boston, MA, United States of America
| | - Heike J. Wobst
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, United States of America
| | - Chandler A. Walker
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, United States of America
| | - Peter Doig
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, United States of America
| | - Steve J. Jacobsen
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, United States of America
| | - Nicholas J. Brandon
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, United States of America
| | - Stephen J. Moss
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, United States of America
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States of America
- Department of Neuroscience, Physiology and Pharmacology, University College, London, United Kingdom
| | - Qi Wang
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, United States of America
- * E-mail:
| |
Collapse
|
10
|
Kudriaeva AA, Belogurov AA. Proteasome: a Nanomachinery of Creative Destruction. BIOCHEMISTRY (MOSCOW) 2019; 84:S159-S192. [PMID: 31213201 DOI: 10.1134/s0006297919140104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the middle of the 20th century, it was postulated that degradation of intracellular proteins is a stochastic process. More than fifty years of intense studies have finally proven that protein degradation is a very complex and tightly regulated in time and space process that plays an incredibly important role in the vast majority of metabolic pathways. Degradation of more than a half of intracellular proteins is controlled by a hierarchically aligned and evolutionarily perfect system consisting of many components, the main ones being ubiquitin ligases and proteasomes, together referred to as the ubiquitin-proteasome system (UPS). The UPS includes more than 1000 individual components, and most of them are critical for the cell functioning and survival. In addition to the well-known signaling functions of ubiquitination, such as modification of substrates for proteasomal degradation and DNA repair, polyubiquitin (polyUb) chains are involved in other important cellular processes, e.g., cell cycle regulation, immunity, protein degradation in mitochondria, and even mRNA stability. This incredible variety of ubiquitination functions is related to the ubiquitin ability to form branching chains through the ε-amino group of any of seven lysine residues in its sequence. Deubiquitination is accomplished by proteins of the deubiquitinating enzyme family. The second main component of the UPS is proteasome, a multisubunit proteinase complex that, in addition to the degradation of functionally exhausted and damaged proteins, regulates many important cellular processes through controlled degradation of substrates, for example, transcription factors and cyclins. In addition to the ubiquitin-dependent-mediated degradation, there is also ubiquitin-independent degradation, when the proteolytic signal is either an intrinsic protein sequence or shuttle molecule. Protein hydrolysis is a critically important cellular function; therefore, any abnormalities in this process lead to systemic impairments further transforming into serious diseases, such as diabetes, malignant transformation, and neurodegenerative disorders (multiple sclerosis, Alzheimer's disease, Parkinson's disease, Creutzfeldt-Jakob disease and Huntington's disease). In this review, we discuss the mechanisms that orchestrate all components of the UPS, as well as the plurality of the fine-tuning pathways of proteasomal degradation.
Collapse
Affiliation(s)
- A A Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - A A Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia. .,Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
11
|
Castro I, Ekinci E, Huang X, Cheaito HA, Ahn YH, Olivero-Verbel J, Dou QP. Proteasome-associated cysteine deubiquitinases are molecular targets of environmental optical brightener compounds. J Cell Biochem 2019; 120:14065-14075. [PMID: 30963630 DOI: 10.1002/jcb.28682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 11/06/2022]
Abstract
The levels of organic pollutants, such as optical brightener (OB) compounds, in the global environment have been increasing in recent years. The toxicological effects and signal transduction systems associated with OB toxicity have not been thoroughly studied. The ubiquitin-proteasome system (UPS) plays a crucial role in regulating multiple essential cellular processes, and proteasome-associated cysteine deubiquitinases (DUBs), ubiquitin C-terminal hydrolase L5 (UCHL5) and USP14, are two major regulators for (de)ubiquitination and stability of many important target proteins. Therefore, potential inhibition of UCHL5 and USP14 activities by some environmental chemicals might cause in vivo toxicity. In the current study we hypothesize that electrophilic OB compounds, such as 4,4'-diamino-2,2'-stilbenedisulfonic acid(DAST), fluorescent brightener 28 (FB-28) and FB-71, can interact with the catalytic triads (CYS, HIS, and ASP) of UCHL5 and USP14 and inhibit their enzymatic activities, leading to cell growth suppression. This hypothesis is supported by our findings presented in this study. Results from in silico computational docking and ubiquitin vinyl sulfone assay confirmed the UCHL5/USP14-inhibitory activities of these OB compounds that have potencies in an order of: FB-71 > FB-28 > DAST. Furthermore, inhibition of these two proteasomal DUBs by OBs resulted in cell growth inhibition and apoptosis induction in two human breast cancer cell models. In addition, we found that OB-mediated DUB inhibition triggers a feedback reaction in which expression of UCHL5 and USP14 proteins is increased to compromise the suppressed activities. Our study suggests that these commonly used OB compounds may target and inhibit proteasomal cysteine DUBs, which should contribute to their toxicological effects in vivo.
Collapse
Affiliation(s)
- Isel Castro
- Departments of Oncology, Pharmacology and Pathology, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan.,Environmental and Computational Chemistry Group, Faculty of Pharmaceutical Sciences, University of Cartagena, Campus of Zaragocilla, Cartagena, Colombia
| | - Elmira Ekinci
- Departments of Oncology, Pharmacology and Pathology, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan
| | - Xuemei Huang
- Departments of Oncology, Pharmacology and Pathology, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan
| | - Hassan Ali Cheaito
- Departments of Oncology, Pharmacology and Pathology, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan
| | - Young-Hoon Ahn
- Department of Chemistry, Wayne State University, Detroit, Michigan
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, Faculty of Pharmaceutical Sciences, University of Cartagena, Campus of Zaragocilla, Cartagena, Colombia
| | - Q Ping Dou
- Departments of Oncology, Pharmacology and Pathology, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan
| |
Collapse
|
12
|
De I, Chittock EC, Grötsch H, Miller TCR, McCarthy AA, Müller CW. Structural Basis for the Activation of the Deubiquitinase Calypso by the Polycomb Protein ASX. Structure 2019; 27:528-536.e4. [PMID: 30639226 DOI: 10.1016/j.str.2018.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/12/2018] [Accepted: 11/28/2018] [Indexed: 11/16/2022]
Abstract
Ubiquitin C-terminal hydrolase deubiquitinase BAP1 is an essential tumor suppressor involved in cell growth control, DNA damage response, and transcriptional regulation. As part of the Polycomb repression machinery, BAP1 is activated by the deubiquitinase adaptor domain of ASXL1 mediating gene repression by cleaving ubiquitin (Ub) from histone H2A in nucleosomes. The molecular mechanism of BAP1 activation by ASXL1 remains elusive, as no structures are available for either BAP1 or ASXL1. Here, we present the crystal structure of the BAP1 ortholog from Drosophila melanogaster, named Calypso, bound to its activator, ASX, homolog of ASXL1. Based on comparative structural and functional analysis, we propose a model for Ub binding by Calypso/ASX, uncover decisive structural elements responsible for ASX-mediated Calypso activation, and characterize the interaction with ubiquitinated nucleosomes. Our results give molecular insight into Calypso function and its regulation by ASX and provide the opportunity for the rational design of mechanism-based therapeutics to treat human BAP1/ASXL1-related tumors.
Collapse
Affiliation(s)
- Inessa De
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Emily C Chittock
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Helga Grötsch
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Thomas C R Miller
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Andrew A McCarthy
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, BP 181, 38042 Grenoble, France
| | - Christoph W Müller
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
13
|
Abstract
As the endpoint for the ubiquitin-proteasome system, the 26S proteasome is the principal proteolytic machine responsible for regulated protein degradation in eukaryotic cells. The proteasome's cellular functions range from general protein homeostasis and stress response to the control of vital processes such as cell division and signal transduction. To reliably process all the proteins presented to it in the complex cellular environment, the proteasome must combine high promiscuity with exceptional substrate selectivity. Recent structural and biochemical studies have shed new light on the many steps involved in proteasomal substrate processing, including recognition, deubiquitination, and ATP-driven translocation and unfolding. In addition, these studies revealed a complex conformational landscape that ensures proper substrate selection before the proteasome commits to processive degradation. These advances in our understanding of the proteasome's intricate machinery set the stage for future studies on how the proteasome functions as a major regulator of the eukaryotic proteome.
Collapse
Affiliation(s)
- Jared A M Bard
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA;
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, California 94720, USA
| | - Ellen A Goodall
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA;
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, California 94720, USA
| | - Eric R Greene
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA;
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, California 94720, USA
| | - Erik Jonsson
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA;
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94720, USA
| | - Ken C Dong
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA;
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94720, USA
| | - Andreas Martin
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA;
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
14
|
Jiang TX, Zhao M, Qiu XB. Substrate receptors of proteasomes. Biol Rev Camb Philos Soc 2018; 93:1765-1777. [DOI: 10.1111/brv.12419] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Tian-Xia Jiang
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences; Beijing Normal University, 19 Xinjiekouwai Avenue; Beijing 100875 China
| | - Mei Zhao
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences; Beijing Normal University, 19 Xinjiekouwai Avenue; Beijing 100875 China
| | - Xiao-Bo Qiu
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences; Beijing Normal University, 19 Xinjiekouwai Avenue; Beijing 100875 China
| |
Collapse
|
15
|
Fang Y, Shen X. Ubiquitin carboxyl-terminal hydrolases: involvement in cancer progression and clinical implications. Cancer Metastasis Rev 2018; 36:669-682. [PMID: 29080080 DOI: 10.1007/s10555-017-9702-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein ubiquitination and deubiquitination participate in a number of biological processes, including cell growth, differentiation, transcriptional regulation, and oncogenesis. Ubiquitin C-terminal hydrolases (UCHs), a subfamily of deubiquitinating enzymes (DUBs), includes four members: UCH-L1/PGP9.5 (protein gene product 9.5), UCH-L3, UCHL5/UCH37, and BRCA1-associated protein-1 (BAP1). Recently, more attention has been paid to the relationship between the UCH family and malignancies, which play different roles in the progression of different tumors. It remains controversial whether UCHL1 is a tumor promoter or suppressor. UCHL3 and UCH37 are considered to be tumor promoters, while BAP1 is considered to be a tumor suppressor. Studies have showed that UCH enzymes influence several signaling pathways that play crucial roles in oncogenesis, tumor invasion, and migration. In addition, UCH families are associated with tumor cell sensitivity to therapeutic modalities. Here, we reviewed the roles of UCH enzymes in the development of tumors, highlighting the potential consideration of UCH enzymes as new interesting targets for the development of anticancer drugs.
Collapse
Affiliation(s)
- Ying Fang
- The Department of Gastroenterology of Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, People's Republic of China
| | - Xizhong Shen
- The Department of Gastroenterology of Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, People's Republic of China. .,Key Laboratory of Medical Molecule Virology, Ministry of Education and Health, Shanghai Institute of Liver Diseases Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
16
|
Peng H, Prokop J, Karar J, Park K, Cao L, Harbour JW, Bowcock AM, Malkowicz SB, Cheung M, Testa JR, Rauscher FJ. Familial and Somatic BAP1 Mutations Inactivate ASXL1/2-Mediated Allosteric Regulation of BAP1 Deubiquitinase by Targeting Multiple Independent Domains. Cancer Res 2017; 78:1200-1213. [PMID: 29284740 DOI: 10.1158/0008-5472.can-17-2876] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/16/2017] [Accepted: 12/19/2017] [Indexed: 11/16/2022]
Abstract
Deleterious mutations of the ubiquitin carboxy-terminal hydrolase BAP1 found in cancers are predicted to encode inactive truncated proteins, suggesting that loss of enzyme function is a primary tumorigenic mechanism. However, many tumors exhibit missense mutations or in-frame deletions or insertions, often outside the functionally critical UCH domain in this tumor suppressor protein. Thus, precisely how these mutations inactivate BAP1 is unknown. Here, we show how these mutations affect BAP1 interactions with the Polycomb group-like protein, ASXL2, using combinations of computational modeling technology, molecular biology, and in vitro reconstitution biochemistry. We found that the BAP1-ASXL2 interaction is direct and high affinity, occurring through the ASXH domain of ASXL2, an obligate partner for BAP1 enzymatic activity. The ASXH domain was the minimal domain for binding the BAP1 ULD domain, and mutations on the surfaces of predicted helices of ASXH abolished BAP1 association and stimulation of BAP1 enzymatic activity. The BAP1-UCH, BAP1-ULD, and ASXH domains formed a cooperative stable ternary complex required for deubiquitination. We defined four classes of alterations in BAP1 outside the UCH domain, each failing to productively recruit ASXH to the wild-type BAP1 catalytic site via the ULD, resulting in loss of BAP1 ubiquitin hydrolase activity. Our results indicate that many BAP1 mutations act allosterically to inhibit ASXH binding, thereby leading to loss of enzyme activity. Small-molecule approaches to reactivate latent wild-type UCH activity of these mutants might be therapeutically viable.Significance: Combined computational and biochemical approaches demonstrate that the BAP1-ASXL2 interaction is direct and high affinity and that many BAP1 mutations act allosterically to inhibit BAP1-ASXL2 binding. Cancer Res; 78(5); 1200-13. ©2017 AACR.
Collapse
Affiliation(s)
| | - Jeremy Prokop
- HudsonAlpha Genome Sequencing Center, Huntsville, Alabama
| | | | - Kyewon Park
- Wistar Institute, Philadelphia, Pennsylvania
| | - Li Cao
- Washington University in St Louis, St. Louis, Missouri
| | | | - Anne M Bowcock
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - S Bruce Malkowicz
- University of Pennsylvania and Veterans Affairs Medical Center Philadelphia, Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
17
|
Ubiquitin recognition of BAP1: understanding its enzymatic function. Biosci Rep 2017; 37:BSR20171099. [PMID: 28935764 PMCID: PMC5665613 DOI: 10.1042/bsr20171099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 09/01/2017] [Accepted: 09/19/2017] [Indexed: 01/10/2023] Open
Abstract
BRCA1-associated protein 1 (BAP1) is a nuclear localizing UCH, having tumor suppressor activity and is widely involved in many crucial cellular processes. BAP1 has garnered attention for its links with cancer, however, the molecular mechanism in the regulation of cancer by BAP1 has not been established. Amongst the four UCHs, only BAP1 and UCHL5 are able to hydrolyze small and large ubiquitin adducts but UCHL5 hydrolyzes only when it is present in the PA700 complex of the proteasome. The ability of BAP1 to cleave large ubiquitin derivatives is because of its relatively longer active-site crossover loop than other UCHs. The mechanism of ubiquitin recognition has not been studied for BAP1. The comparative enzymatic analysis of ubiquitin C-terminal hydrolase L1 (UCHL1), ubiquitin C-terminal hydrolase L3 (UCHL3), ubiquitin C-terminal hydrolase L5 (UCHL5N), and BAP1N has confirmed that enzymatically BAP1 is similar to UCHL5, which corroborates with the bioinformatics analysis done earlier. We have undertaken extensive mutational approaches to gain mechanistic insight into BAP1–ubiquitin interaction. Based on the homology-modeled BAP1 structure, we have identified a few BAP1 residues which possibly play a crucial role in ubiquitin interaction of which a few mutations have been identified in many cancers. Our comparative thermodynamic analysis reveals that BAP1–ubiquitin interaction is majorly driven by entropy factor which is unique amongst UCHs. Our study sheds light on BAP1 interaction with ubiquitin, which will be useful in understanding its enzymatic function.
Collapse
|
18
|
de Poot SAH, Tian G, Finley D. Meddling with Fate: The Proteasomal Deubiquitinating Enzymes. J Mol Biol 2017; 429:3525-3545. [PMID: 28988953 DOI: 10.1016/j.jmb.2017.09.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/20/2017] [Accepted: 09/26/2017] [Indexed: 01/06/2023]
Abstract
Three deubiquitinating enzymes-Rpn11, Usp14, and Uch37-are associated with the proteasome regulatory particle. These enzymes allow proteasomes to remove ubiquitin from substrates before they are translocated into the core particle to be degraded. Although the translocation channel is too narrow for folded proteins, the force of translocation unfolds them mechanically. As translocation proceeds, ubiquitin chains bound to substrate are drawn to the channel's entry port, where they can impede further translocation. Rpn11, situated over the port, can remove these chains without compromising degradation because substrates must be irreversibly committed to degradation before Rpn11 acts. This coupling between deubiquitination and substrate degradation is ensured by the Ins-1 loop of Rpn11, which controls ubiquitin access to its catalytic site. In contrast to Rpn11, Usp14 and Uch37 can rescue substrates from degradation by promoting substrate dissociation from the proteasome prior to the commitment step. Uch37 is unique in being a component of both the proteasome and a second multisubunit assembly, the INO80 complex. However, only recruitment into the proteasome activates Uch37. Recruitment to the proteasome likewise activates Usp14. However, the influence of Usp14 on the proteasome depends on the substrate, due to its marked preference for proteins that carry multiple ubiquitin chains. Usp14 exerts complex control over the proteasome, suppressing proteasome activity even when inactive in deubiquitination. A major challenge for the field will be to elucidate the specificities of Rpn11, Usp14, and Uch37 in greater depth, employing not only model in vitro substrates but also their endogenous targets.
Collapse
Affiliation(s)
- Stefanie A H de Poot
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Geng Tian
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Molecular architecture of polycomb repressive complexes. Biochem Soc Trans 2017; 45:193-205. [PMID: 28202673 PMCID: PMC5310723 DOI: 10.1042/bst20160173] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/24/2016] [Accepted: 12/02/2016] [Indexed: 01/05/2023]
Abstract
The polycomb group (PcG) proteins are a large and diverse family that epigenetically repress the transcription of key developmental genes. They form three broad groups of polycomb repressive complexes (PRCs) known as PRC1, PRC2 and Polycomb Repressive DeUBiquitinase, each of which modifies and/or remodels chromatin by distinct mechanisms that are tuned by having variable compositions of core and accessory subunits. Until recently, relatively little was known about how the various PcG proteins assemble to form the PRCs; however, studies by several groups have now allowed us to start piecing together the PcG puzzle. Here, we discuss some highlights of recent PcG structures and the insights they have given us into how these complexes regulate transcription through chromatin.
Collapse
|
20
|
Structure of the Rpn13-Rpn2 complex provides insights for Rpn13 and Uch37 as anticancer targets. Nat Commun 2017; 8:15540. [PMID: 28598414 PMCID: PMC5494190 DOI: 10.1038/ncomms15540] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/07/2017] [Indexed: 12/16/2022] Open
Abstract
Proteasome-ubiquitin receptor hRpn13/Adrm1 binds and activates deubiquitinating enzyme Uch37/UCHL5 and is targeted by bis-benzylidine piperidone RA190, which restricts cancer growth in mice xenografts. Here, we solve the structure of hRpn13 with a segment of hRpn2 that serves as its proteasome docking site; a proline-rich C-terminal hRpn2 extension stretches across a narrow canyon of the ubiquitin-binding hRpn13 Pru domain blocking an RA190-binding surface. Biophysical analyses in combination with cell-based assays indicate that hRpn13 binds preferentially to hRpn2 and proteasomes over RA190. hRpn13 also exists outside of proteasomes where it may be RA190 sensitive. RA190 does not affect hRpn13 interaction with Uch37, but rather directly binds and inactivates Uch37. hRpn13 deletion from HCT116 cells abrogates RA190-induced accumulation of substrates at proteasomes. We propose that RA190 targets hRpn13 and Uch37 through parallel mechanisms and at proteasomes, RA190-inactivated Uch37 cannot disassemble hRpn13-bound ubiquitin chains.
Collapse
|
21
|
Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. Biochem J 2017; 473:2453-62. [PMID: 27515257 PMCID: PMC4980807 DOI: 10.1042/bcj20160082] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022]
Abstract
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is an extremely abundant protein in the brain where, remarkably, it is estimated to make up 1–5% of total neuronal protein. Although it comprises only 223 amino acids it has one of the most complicated 3D knotted structures yet discovered. Beyond its expression in neurons UCH-L1 has only very limited expression in other healthy tissues but it is highly expressed in several forms of cancer. Although UCH-L1 is classed as a deubiquitinating enzyme (DUB) the direct functions of UCH-L1 remain enigmatic and a wide array of alternative functions has been proposed. UCH-L1 is not essential for neuronal development but it is absolutely required for the maintenance of axonal integrity and UCH-L1 dysfunction is implicated in neurodegenerative disease. Here we review the properties of UCH-L1, and how understanding its complex structure can provide new insights into its roles in neuronal function and pathology.
Collapse
|
22
|
Xu X, Qiu L, Yan C, Ma Z, Grinter SZ, Zou X. Performance of MDockPP in CAPRI rounds 28-29 and 31-35 including the prediction of water-mediated interactions. Proteins 2016; 85:424-434. [PMID: 27802576 DOI: 10.1002/prot.25203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 01/01/2023]
Abstract
Protein-protein interactions are either through direct contacts between two binding partners or mediated by structural waters. Both direct contacts and water-mediated interactions are crucial to the formation of a protein-protein complex. During the recent CAPRI rounds, a novel parallel searching strategy for predicting water-mediated interactions is introduced into our protein-protein docking method, MDockPP. Briefly, a FFT-based docking algorithm is employed in generating putative binding modes, and an iteratively derived statistical potential-based scoring function, ITScorePP, in conjunction with biological information is used to assess and rank the binding modes. Up to 10 binding modes are selected as the initial protein-protein complex structures for MD simulations in explicit solvent. Water molecules near the interface are clustered based on the snapshots extracted from independent equilibrated trajectories. Then, protein-ligand docking is employed for a parallel search for water molecules near the protein-protein interface. The water molecules generated by ligand docking and the clustered water molecules generated by MD simulations are merged, referred to as the predicted structural water molecules. Here, we report the performance of this protocol for CAPRI rounds 28-29 and 31-35 containing 20 valid docking targets and 11 scoring targets. In the docking experiments, we predicted correct binding modes for nine targets, including one high-accuracy, two medium-accuracy, and six acceptable predictions. Regarding the two targets for the prediction of water-mediated interactions, we achieved models ranked as "excellent" in accordance with the CAPRI evaluation criteria; one of these two targets is considered as a difficult target for structural water prediction. Proteins 2017; 85:424-434. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xianjin Xu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Liming Qiu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Chengfei Yan
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, 65211, USA.,Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, 65211, USA
| | - Zhiwei Ma
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, 65211, USA.,Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, 65211, USA
| | - Sam Z Grinter
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, 65211, USA.,Informatics Institute, University of Missouri, Columbia, Missouri, 65211, USA
| | - Xiaoqin Zou
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, 65211, USA.,Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, 65211, USA.,Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA.,Informatics Institute, University of Missouri, Columbia, Missouri, 65211, USA
| |
Collapse
|
23
|
Vreven T, Pierce BG, Borrman TM, Weng Z. Performance of ZDOCK and IRAD in CAPRI rounds 28-34. Proteins 2016; 85:408-416. [PMID: 27718275 DOI: 10.1002/prot.25186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 11/11/2022]
Abstract
We report the performance of our protein-protein docking pipeline, including the ZDOCK rigid-body docking algorithm, on 19 targets in CAPRI rounds 28-34. Following the docking step, we reranked the ZDOCK predictions using the IRAD scoring function, pruned redundant predictions, performed energy landscape analysis, and utilized our interface prediction approach RCF. In addition, we applied constraints to the search space based on biological information that we culled from the literature, which increased the chance of making a correct prediction. For all but two targets we were able to find and apply biological information and we found the information to be highly accurate, indicating that effective incorporation of biological information is an important component for protein-protein docking. Proteins 2017; 85:408-416. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thom Vreven
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605
| | - Brian G Pierce
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605
| | - Tyler M Borrman
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605
| |
Collapse
|
24
|
Abstract
Conjugation and deconjugation of ubiquitin and ubiquitin-like proteins (Ubls) to cellular proteins are highly regulated processes integral to cellular homeostasis. Most often, the C-termini of these small polypeptides are attached to lysine side chains of target proteins by an amide (isopeptide) linkage. Deubiquitinating enzymes (DUBs) and Ubl-specific proteases (ULPs) comprise a diverse group of proteases that recognize and remove ubiquitin and Ubls from their substrates. How DUBs and ULPs distinguish among different modifiers, or different polymeric forms of these modifiers, remains poorly understood. The specificity of ubiquitin/Ubl-deconjugating enzymes for particular substrates depends on multiple factors, ranging from the topography of specific substrate features, as in different polyubiquitin chain types, to structural elements unique to each enzyme. Here we summarize recent structural and biochemical studies that provide insights into mechanisms of substrate specificity among various DUBs and ULPs. We also discuss the unexpected specificities of non-eukaryotic proteases in these families.
Collapse
Affiliation(s)
- Judith A Ronau
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - John F Beckmann
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| |
Collapse
|
25
|
Nickerson ML, Dancik GM, Im KM, Edwards MG, Turan S, Brown J, Ruiz-Rodriguez C, Owens C, Costello JC, Guo G, Tsang SX, Li Y, Zhou Q, Cai Z, Moore LE, Lucia MS, Dean M, Theodorescu D. Concurrent alterations in TERT, KDM6A, and the BRCA pathway in bladder cancer. Clin Cancer Res 2015; 20:4935-48. [PMID: 25225064 DOI: 10.1158/1078-0432.ccr-14-0330] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Genetic analysis of bladder cancer has revealed a number of frequently altered genes, including frequent alterations of the telomerase (TERT) gene promoter, although few altered genes have been functionally evaluated. Our objective is to characterize alterations observed by exome sequencing and sequencing of the TERT promoter, and to examine the functional relevance of histone lysine (K)-specific demethylase 6A (KDM6A/UTX), a frequently mutated histone demethylase, in bladder cancer. EXPERIMENTAL DESIGN We analyzed bladder cancer samples from 54 U.S. patients by exome and targeted sequencing and confirmed somatic variants using normal tissue from the same patient. We examined the biologic function of KDM6A using in vivo and in vitro assays. RESULTS We observed frequent somatic alterations in BRCA1 associated protein-1 (BAP1) in 15% of tumors, including deleterious alterations to the deubiquitinase active site and the nuclear localization signal. BAP1 mutations contribute to a high frequency of tumors with breast cancer (BRCA) DNA repair pathway alterations and were significantly associated with papillary histologic features in tumors. BAP1 and KDM6A mutations significantly co-occurred in tumors. Somatic variants altering the TERT promoter were found in 69% of tumors but were not correlated with alterations in other bladder cancer genes. We examined the function of KDM6A, altered in 24% of tumors, and show depletion in human bladder cancer cells, enhanced in vitro proliferation, in vivo tumor growth, and cell migration. CONCLUSIONS This study is the first to identify frequent BAP1 and BRCA pathway alterations in bladder cancer, show TERT promoter alterations are independent of other bladder cancer gene alterations, and show KDM6A loss is a driver of the bladder cancer phenotype.
Collapse
Affiliation(s)
- Michael L Nickerson
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | | | - Kate M Im
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Michael G Edwards
- Division of Pulmonary Sciences and Critical Care, Department of Medicine, University of Colorado, Denver, Aurora, Colorado
| | - Sevilay Turan
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | | | - Christina Ruiz-Rodriguez
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Charles Owens
- Department of Surgery, University of Colorado, Aurora, Colorado
| | - James C Costello
- Department of Pharmacology, University of Colorado, Aurora, Colorado
| | | | | | | | | | - Zhiming Cai
- Shenzhen Second People's Hospital, Shenzhen, China
| | - Lee E Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - M Scott Lucia
- Department of Pathology, University of Colorado, Aurora, Colorado
| | - Michael Dean
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Dan Theodorescu
- Department of Surgery, University of Colorado, Aurora, Colorado. Department of Pharmacology, University of Colorado, Aurora, Colorado. University of Colorado Comprehensive Cancer Center, Aurora, Colorado.
| |
Collapse
|
26
|
Wang X, D'Arcy P, Caulfield TR, Paulus A, Chitta K, Mohanty C, Gullbo J, Chanan-Khan A, Linder S. Synthesis and evaluation of derivatives of the proteasome deubiquitinase inhibitor b-AP15. Chem Biol Drug Des 2015; 86:1036-48. [PMID: 25854145 DOI: 10.1111/cbdd.12571] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/16/2015] [Accepted: 04/03/2015] [Indexed: 12/20/2022]
Abstract
The ubiquitin-proteasome system (UPS) is increasingly recognized as a therapeutic target for the development of anticancer therapies. The success of the 20S proteasome core particle (20S CP) inhibitor bortezomib in the clinical management of multiple myeloma has raised the possibility of identifying other UPS components for therapeutic intervention. We previously identified the small molecule b-AP15 as an inhibitor of 19S proteasome deubiquitinase (DUB) activity. Building upon our previous data, we performed a structure-activity relationship (SAR) study on b-AP15 and identified VLX1570 as an analog with promising properties, including enhanced potency and improved solubility in aqueous solution. In silico modeling was consistent with interaction of VLX1570 with key cysteine residues located at the active sites of the proteasome DUBs USP14 and UCHL5. VLX1570 was found to inhibit proteasome deubiquitinase activity in vitro in a manner consistent with competitive inhibition. Furthermore, using active-site-directed probes, VLX1570 also inhibited proteasome DUB activity in exposed cells. Importantly, VLX1570 did not show inhibitory activity on a panel of recombinant non-proteasome DUBs, on recombinant kinases, or on caspase-3 activity, suggesting that VLX1570 is not an overtly reactive general enzyme inhibitor. Taken together, our data shows the chemical and biological properties of VLX1570 as an optimized proteasome DUB inhibitor.
Collapse
Affiliation(s)
- Xin Wang
- Department of Medical and Health Sciences, Linköping University, S-581 83, Linköping, Sweden
| | - Pádraig D'Arcy
- Department of Medical and Health Sciences, Linköping University, S-581 83, Linköping, Sweden
| | - Thomas R Caulfield
- Department of Molecular Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Aneel Paulus
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Kasyapa Chitta
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Chitralekha Mohanty
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institute, S-171 76, Stockholm, Sweden
| | - Joachim Gullbo
- Department of Immunology, Genetics and Pathology, Section of Oncology, Uppsala University, S-75185, Uppsala, Sweden
| | - Asher Chanan-Khan
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Stig Linder
- Department of Medical and Health Sciences, Linköping University, S-581 83, Linköping, Sweden.,Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institute, S-171 76, Stockholm, Sweden
| |
Collapse
|
27
|
Vander Linden RT, Hemmis CW, Schmitt B, Ndoja A, Whitby FG, Robinson H, Cohen RE, Yao T, Hill CP. Structural basis for the activation and inhibition of the UCH37 deubiquitylase. Mol Cell 2015; 57:901-911. [PMID: 25702872 DOI: 10.1016/j.molcel.2015.01.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/15/2014] [Accepted: 01/06/2015] [Indexed: 10/24/2022]
Abstract
The UCH37 deubiquitylase functions in two large and very different complexes, the 26S proteasome and the INO80 chromatin remodeler. We have performed biochemical characterization and determined crystal structures of UCH37 in complexes with RPN13 and NFRKB, which mediate its recruitment to the proteasome and INO80, respectively. RPN13 and NFRKB make similar contacts to the UCH37 C-terminal domain but quite different contacts to the catalytic UCH domain. RPN13 can activate UCH37 by disrupting dimerization, although physiologically relevant activation likely results from stabilization of a surface competent for ubiquitin binding and modulation of the active-site crossover loop. In contrast, NFRKB inhibits UCH37 by blocking the ubiquitin-binding site and by disrupting the enzyme active site. These findings reveal remarkable commonality in mechanisms of recruitment, yet very different mechanisms of regulating enzyme activity, and provide a foundation for understanding the roles of UCH37 in the unrelated proteasome and INO80 complexes.
Collapse
Affiliation(s)
- Ryan T Vander Linden
- Department of Biochemistry University of Utah School of Medicine, Salt Lake City, UT 84112-5650 USA
| | - Casey W Hemmis
- Department of Biochemistry University of Utah School of Medicine, Salt Lake City, UT 84112-5650 USA
| | - Benjamin Schmitt
- Department of Biochemistry and Molecular Biology Colorado State University, Fort Collins, CO 80523 USA
| | - Ada Ndoja
- Department of Biochemistry and Molecular Biology Colorado State University, Fort Collins, CO 80523 USA
| | - Frank G Whitby
- Department of Biochemistry University of Utah School of Medicine, Salt Lake City, UT 84112-5650 USA
| | - Howard Robinson
- Biology Department Brookhaven National Laboratory, Upton, NY, 11973 USA
| | - Robert E Cohen
- Department of Biochemistry and Molecular Biology Colorado State University, Fort Collins, CO 80523 USA
| | - Tingting Yao
- Department of Biochemistry and Molecular Biology Colorado State University, Fort Collins, CO 80523 USA
| | - Christopher P Hill
- Department of Biochemistry University of Utah School of Medicine, Salt Lake City, UT 84112-5650 USA
| |
Collapse
|
28
|
Sahtoe DD, van Dijk WJ, El Oualid F, Ekkebus R, Ovaa H, Sixma TK. Mechanism of UCH-L5 activation and inhibition by DEUBAD domains in RPN13 and INO80G. Mol Cell 2015; 57:887-900. [PMID: 25702870 PMCID: PMC4352763 DOI: 10.1016/j.molcel.2014.12.039] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/16/2014] [Accepted: 12/24/2014] [Indexed: 12/15/2022]
Abstract
Deubiquitinating enzymes (DUBs) control vital processes in eukaryotes by hydrolyzing ubiquitin adducts. Their activities are tightly regulated, but the mechanisms remain elusive. In particular, the DUB UCH-L5 can be either activated or inhibited by conserved regulatory proteins RPN13 and INO80G, respectively. Here we show how the DEUBAD domain in RPN13 activates UCH-L5 by positioning its C-terminal ULD domain and crossover loop to promote substrate binding and catalysis. The related DEUBAD domain in INO80G inhibits UCH-L5 by exploiting similar structural elements in UCH-L5 to promote a radically different conformation, and employs molecular mimicry to block ubiquitin docking. In this process, large conformational changes create small but highly specific interfaces that mediate activity modulation of UCH-L5 by altering the affinity for substrates. Our results establish how related domains can exploit enzyme conformational plasticity to allosterically regulate DUB activity. These allosteric sites may present novel insights for pharmaceutical intervention in DUB activity. The RPN13 DEUBAD domain activates UCH-L5 by positioning its CL and ULD domain The INO80G DEUBAD domain inhibits UCH-L5 by blocking ubiquitin binding The FRF hairpin in the DEUBAD domain of INO80G drives UCH-L5 inhibition DEUBAD domains regulate UCH-L5 activity by tuning UCH-L5 substrate affinity
Collapse
Affiliation(s)
- Danny D Sahtoe
- Division of Biochemistry and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Willem J van Dijk
- Division of Biochemistry and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Farid El Oualid
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; UbiQ, Science Park 408, 1098XH Amsterdam, the Netherlands
| | - Reggy Ekkebus
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Huib Ovaa
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
29
|
Mashtalir N, Daou S, Barbour H, Sen N, Gagnon J, Hammond-Martel I, Dar H, Therrien M, Affar E. Autodeubiquitination Protects the Tumor Suppressor BAP1 from Cytoplasmic Sequestration Mediated by the Atypical Ubiquitin Ligase UBE2O. Mol Cell 2014; 54:392-406. [DOI: 10.1016/j.molcel.2014.03.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 01/21/2014] [Accepted: 02/13/2014] [Indexed: 11/26/2022]
|
30
|
Jiao L, Ouyang S, Shaw N, Song G, Feng Y, Niu F, Qiu W, Zhu H, Hung LW, Zuo X, Eleonora Shtykova V, Zhu P, Dong YH, Xu R, Liu ZJ. Mechanism of the Rpn13-induced activation of Uch37. Protein Cell 2014; 5:616-30. [PMID: 24752541 PMCID: PMC4130924 DOI: 10.1007/s13238-014-0046-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 02/25/2014] [Indexed: 01/22/2023] Open
Abstract
Uch37 is a de-ubiquitinating enzyme that is activated by Rpn13 and involved in the proteasomal degradation of proteins. The full-length Uch37 was shown to exhibit low iso-peptidase activity and is thought to be auto-inhibited. Structural comparisons revealed that within a homo-dimer of Uch37, each of the catalytic domains was blocking the other's ubiquitin (Ub)-binding site. This blockage likely prevented Ub from entering the active site of Uch37 and might form the basis of auto-inhibition. To understand the mode of auto-inhibition clearly and shed light on the activation mechanism of Uch37 by Rpn13, we investigated the Uch37-Rpn13 complex using a combination of mutagenesis, biochemical, NMR, and small-angle X-ray scattering (SAXS) techniques. Our results also proved that Uch37 oligomerized in solution and had very low activity against the fluorogenic substrate ubiquitin-7-amino-4-methylcoumarin (Ub-AMC) of de-ubiquitinating enzymes. Uch37Δ(Hb,Hc,KEKE), a truncation removal of the C-terminal extension region (residues 256-329) converted oligomeric Uch37 into a monomeric form that exhibited iso-peptidase activity comparable to that of a truncation-containing the Uch37 catalytic domain only. We also demonstrated that Rpn13C (Rpn13 residues 270-407) could disrupt the oligomerization of Uch37 by sequestering Uch37 and forming a Uch37-Rpn13 complex. Uch37 was activated in such a complex, exhibiting 12-fold-higher activity than Uch37 alone. Time-resolved SAXS (TR-SAXS) and FRET experiments supported the proposed mode of auto-inhibition and the activation mechanism of Uch37 by Rpn13. Rpn13 activated Uch37 by forming a 1:1 stoichiometric complex in which the active site of Uch37 was accessible to Ub.
Collapse
Affiliation(s)
- Lianying Jiao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Songying Ouyang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Neil Shaw
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Gaojie Song
- iHuman Institute, ShanghaiTech University, Shanghai, 201210 China
| | - Yingang Feng
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| | - Fengfeng Niu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Weicheng Qiu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Hongtao Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Li-Wei Hung
- Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545 USA
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 USA
| | - V. Eleonora Shtykova
- Institute of Crystallography, Russian Academy of Sciences, 59 Leninsky Pr., 117333 Moscow, Russian Federation
| | - Ping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yu-Hui Dong
- Center for Multi-disciplinary Research, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
| | - Ruxiang Xu
- Department of Nerosurgery, The Military General Hospital of Beijing PLA, Beijing, 100700 China
| | - Zhi-Jie Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| |
Collapse
|
31
|
Pereira RV, Vieira HGS, de Oliveira VF, Gomes MDS, Passos LKJ, Borges WDC, Guerra-Sá R. Conservation and developmental expression of ubiquitin isopeptidases in Schistosoma mansoni. Mem Inst Oswaldo Cruz 2014; 109:1-8. [PMID: 24271000 PMCID: PMC4005531 DOI: 10.1590/0074-0276130107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 09/09/2013] [Indexed: 11/22/2022] Open
Abstract
Several genes related to the ubiquitin (Ub)-proteasome pathway, including those coding for proteasome subunits and conjugation enzymes, are differentially expressed during the Schistosoma mansoni life cycle. Although deubiquitinating enzymes have been reported to be negative regulators of protein ubiquitination and shown to play an important role in Ub-dependent processes, little is known about their role in S. mansoni . In this study, we analysed the Ub carboxyl-terminal hydrolase (UCHs) proteins found in the database of the parasite's genome. An in silico ana- lysis (GeneDB and MEROPS) identified three different UCH family members in the genome, Sm UCH-L3, Sm UCH-L5 and Sm BAP-1 and a phylogenetic analysis confirmed the evolutionary conservation of the proteins. We performed quantitative reverse transcription-polymerase chain reaction and observed a differential expression profile for all of the investigated transcripts between the cercariae and adult worm stages. These results were corroborated by low rates of Z-Arg-Leu-Arg-Gly-Gly-AMC hydrolysis in a crude extract obtained from cercariae in parallel with high Ub conjugate levels in the same extracts. We suggest that the accumulation of ubiquitinated proteins in the cercaria and early schistosomulum stages is related to a decrease in 26S proteasome activity. Taken together, our data suggest that UCH family members contribute to regulating the activity of the Ub-proteasome system during the life cycle of this parasite.
Collapse
Affiliation(s)
- Roberta Verciano Pereira
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de
Ouro Preto, Ouro Preto, MG, Brasil, Núcleo de Pesquisas em Ciências Biológicas,
Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| | - Helaine Graziele Santos Vieira
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de
Ouro Preto, Ouro Preto, MG, Brasil, Núcleo de Pesquisas em Ciências Biológicas,
Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| | - Victor Fernandes de Oliveira
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de
Ouro Preto, Ouro Preto, MG, Brasil, Núcleo de Pesquisas em Ciências Biológicas,
Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| | - Matheus de Souza Gomes
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia,
Patos de Minas, MG, Brasil, Instituto de Genética e Bioquímica, Universidade Federal de
Uberlândia, Campus Avançado Patos de Minas, MG, Brasil
| | | | - William de Castro Borges
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de
Ouro Preto, Ouro Preto, MG, Brasil, Núcleo de Pesquisas em Ciências Biológicas,
Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| | - Renata Guerra-Sá
- Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de
Ouro Preto, Ouro Preto, MG, Brasil, Núcleo de Pesquisas em Ciências Biológicas,
Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| |
Collapse
|
32
|
Eletr ZM, Wilkinson KD. Regulation of proteolysis by human deubiquitinating enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:114-28. [PMID: 23845989 DOI: 10.1016/j.bbamcr.2013.06.027] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/07/2013] [Accepted: 06/25/2013] [Indexed: 01/26/2023]
Abstract
The post-translational attachment of one or several ubiquitin molecules to a protein generates a variety of targeting signals that are used in many different ways in the cell. Ubiquitination can alter the activity, localization, protein-protein interactions or stability of the targeted protein. Further, a very large number of proteins are subject to regulation by ubiquitin-dependent processes, meaning that virtually all cellular functions are impacted by these pathways. Nearly a hundred enzymes from five different gene families (the deubiquitinating enzymes or DUBs), reverse this modification by hydrolyzing the (iso)peptide bond tethering ubiquitin to itself or the target protein. Four of these families are thiol proteases and one is a metalloprotease. DUBs of the Ubiquitin C-terminal Hydrolase (UCH) family act on small molecule adducts of ubiquitin, process the ubiquitin proprotein, and trim ubiquitin from the distal end of a polyubiquitin chain. Ubiquitin Specific Proteases (USPs) tend to recognize and encounter their substrates by interaction of the variable regions of their sequence with the substrate protein directly, or with scaffolds or substrate adapters in multiprotein complexes. Ovarian Tumor (OTU) domain DUBs show remarkable specificity for different Ub chain linkages and may have evolved to recognize substrates on the basis of those linkages. The Josephin family of DUBs may specialize in distinguishing between polyubiquitin chains of different lengths. Finally, the JAB1/MPN+/MOV34 (JAMM) domain metalloproteases cleave the isopeptide bond near the attachment point of polyubiquitin and substrate, as well as being highly specific for the K63 poly-Ub linkage. These DUBs regulate proteolysis by: directly interacting with and co-regulating E3 ligases; altering the level of substrate ubiquitination; hydrolyzing or remodeling ubiquitinated and poly-ubiquitinated substrates; acting in specific locations in the cell and altering the localization of the target protein; and acting on proteasome bound substrates to facilitate or inhibit proteolysis. Thus, the scope and regulation of the ubiquitin pathway is very similar to that of phosphorylation, with the DUBs serving the same functions as the phosphatase. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Ziad M Eletr
- Department of Biochemistry, Emory University, Atlanta GA 30322, USA
| | | |
Collapse
|
33
|
Morrow ME, Kim MI, Ronau JA, Sheedlo MJ, White RR, Chaney J, Paul LN, Lill MA, Artavanis-Tsakonas K, Das C. Stabilization of an unusual salt bridge in ubiquitin by the extra C-terminal domain of the proteasome-associated deubiquitinase UCH37 as a mechanism of its exo specificity. Biochemistry 2013; 52:3564-78. [PMID: 23617878 PMCID: PMC3898853 DOI: 10.1021/bi4003106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ubiquitination is countered by a group of enzymes collectively called deubiquitinases (DUBs); ∼100 of them can be found in the human genome. One of the most interesting aspects of these enzymes is the ability of some members to selectively recognize specific linkage types between ubiquitin in polyubiquitin chains and their endo and exo specificity. The structural basis of exo-specific deubiquitination catalyzed by a DUB is poorly understood. UCH37, a cysteine DUB conserved from fungi to humans, is a proteasome-associated factor that regulates the proteasome by sequentially cleaving polyubiquitin chains from their distal ends, i.e., by exo-specific deubiquitination. In addition to the catalytic domain, the DUB features a functionally uncharacterized UCH37-like domain (ULD), presumed to keep the enzyme in an inhibited state in its proteasome-free form. Herein we report the crystal structure of two constructs of UCH37 from Trichinella spiralis in complex with a ubiquitin-based suicide inhibitor, ubiquitin vinyl methyl ester (UbVME). These structures show that the ULD makes direct contact with ubiquitin stabilizing a highly unusual intramolecular salt bridge between Lys48 and Glu51 of ubiquitin, an interaction that would be favored only with the distal ubiquitin but not with the internal ones in a Lys48-linked polyubiquitin chain. An inspection of 39 DUB-ubiquitin structures in the Protein Data Bank reveals the uniqueness of the salt bridge in ubiquitin bound to UCH37, an interaction that disappears when the ULD is deleted, as revealed in the structure of the catalytic domain alone bound to UbVME. The structural data are consistent with previously reported mutational data on the mammalian enzyme, which, together with the fact that the ULD residues that bind to ubiquitin are conserved, points to a similar mechanism behind the exo specificity of the human enzyme. To the best of our knowledge, these data provide the only structural example so far of how the exo specificity of a DUB can be determined by its noncatalytic domain. Thus, our data show that, contrary to its proposed inhibitory role, the ULD actually contributes to substrate recognition and could be a major determinant of the proteasome-associated function of UCH37. Moreover, our structures show that the unproductively oriented catalytic cysteine in the free enzyme is aligned correctly when ubiquitin binds, suggesting a mechanism for ubiquitin selectivity.
Collapse
Affiliation(s)
- Marie E. Morrow
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Myung-Il Kim
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Judith A. Ronau
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Michael J. Sheedlo
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Rhiannon R. White
- Division of Cell and Molecular Biology, Imperial College London, Sir Alexander Fleming Bldg, Imperial College Road, London, SW7 2AZ, UK
| | - Joseph Chaney
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Lake N. Paul
- Bindley Biosciences Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Markus A. Lill
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Katerina Artavanis-Tsakonas
- Division of Cell and Molecular Biology, Imperial College London, Sir Alexander Fleming Bldg, Imperial College Road, London, SW7 2AZ, UK
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA,To whom correspondence should be addressed: Chittaranjan Das, Brown Laboratory of Chemistry, 560 Oval Drive, West Lafayette, IN, 47907, (765)-494-5478, Fax: (765)-494-0239,
| |
Collapse
|
34
|
Abstract
The proteasome refers to a collection of complexes centered on the 20S proteasome core particle (20S CP), a complex of 28 subunits that houses proteolytic sites in its hollow interior. Proteasomes are found in eukaryotes, archaea, and some eubacteria, and their activity is critical for many cellular pathways. Important recent advances include inhibitor binding studies and the structure of the immunoproteasome, whose specificity is altered by the incorporation of inducible catalytic subunits. The inherent repression of the 20S CP is relieved by the ATP-independent activators 11S and Blm10/PA200, whose structures reveal principles of proteasome mechanism. The structure of the ATP-dependent 19S regulatory particle, which mediates degradation of polyubiquitylated proteins, is being revealed by a combination of crystal or NMR structures of individual subunits and electron microscopy reconstruction of the intact complex. Other recent structural advances inform us about mechanisms of assembly and the role of conformational changes in the functional cycle.
Collapse
Affiliation(s)
- Erik Kish-Trier
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650, USA
| | | |
Collapse
|