1
|
Chavan T, Kanabar D, Patel K, Laflamme TM, Riyazi M, Spratt DE, Muth A. Structural modification of the propyl linker of cjoc42 in combination with sulfonate ester and triazole replacements for enhanced gankyrin binding and anti-proliferative activity. Bioorg Med Chem 2024; 110:117836. [PMID: 39029437 PMCID: PMC11342405 DOI: 10.1016/j.bmc.2024.117836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024]
Abstract
Liver cancer is a complex disease that involves various oncoproteins and the inactivation of tumor suppressor proteins (TSPs). Gankyrin is one such oncoprotein, first identified in human hepatocellular carcinoma, that is known to inactivate multiple TSPs, leading to proliferation and metastasis of tumor cells. Despite this, there has been limited development of small molecule gankyrin binders for the treatment of liver cancer. In this study, we are reporting the structure-based design of gankyrin-binding small molecules which inhibit the proliferation of HuH6 and HepG2 cells while also increasing the levels of certain TSPs, such as Rb and p53. Interestingly the first molecule to exhibit inhibition by 3D structure stabilization is seen. These results suggest a possible mechanism for small-molecule inhibition of gankyrin and demonstrate that gankyrin is a viable therapeutic target for the treatment of liver cancer.
Collapse
Affiliation(s)
- Tejashri Chavan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, USA
| | - Dipti Kanabar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, USA
| | - Kinjal Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, USA
| | - Taylor M Laflamme
- Gustaf H. Carlson School of Chemistry & Biochemistry, Clark University, Worcester, MA 01610, USA
| | - Maryam Riyazi
- Gustaf H. Carlson School of Chemistry & Biochemistry, Clark University, Worcester, MA 01610, USA
| | - Donald E Spratt
- Gustaf H. Carlson School of Chemistry & Biochemistry, Clark University, Worcester, MA 01610, USA
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, USA.
| |
Collapse
|
2
|
Lei M, Zhang YL, Huang FY, Chen HY, Chen MH, Wu RH, Dai SZ, He GS, Tan GH, Zheng WP. Gankyrin inhibits ferroptosis through the p53/SLC7A11/GPX4 axis in triple-negative breast cancer cells. Sci Rep 2023; 13:21916. [PMID: 38081931 PMCID: PMC10713534 DOI: 10.1038/s41598-023-49136-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Gankyrin is found in high levels in triple-negative breast cancer (TNBC) and has been established to form a complex with the E3 ubiquitin ligase MDM2 and p53, resulting in the degradation of p53 in hepatocarcinoma cells. Therefore, this study sought to determine whether gankyrin could inhibit ferroptosis through this mechanism in TNBC cells. The expression of gankyrin was investigated in relation to the prognosis of TNBC using bioinformatics. Co-immunoprecipitation and GST pull-down assays were then conducted to determine the presence of a gankyrin and MDM2 complex. RT-qPCR and immunoblotting were used to examine molecules related to ferroptosis, such as gankyrin, p53, MDM2, SLC7A11, and GPX4. Additionally, cell death was evaluated using flow cytometry detection of 7-AAD and a lactate dehydrogenase release assay, as well as lipid peroxide C11-BODIPY. Results showed that the expression of gankyrin is significantly higher in TNBC tissues and cell lines, and is associated with a poor prognosis for patients. Subsequent studies revealed that inhibiting gankyrin activity triggered ferroptosis in TNBC cells. Additionally, silencing gankyrin caused an increase in the expression of the p53 protein, without altering its mRNA expression. Co-immunoprecipitation and GST pull-down experiments indicated that gankyrin and MDM2 form a complex. In mouse embryonic fibroblasts lacking both MDM2 and p53, this gankyrin/MDM2 complex was observed to ubiquitinate p53, thus raising the expression of molecules inhibited by ferroptosis, such as SLC7A11 and GPX4. Furthermore, silencing gankyrin in TNBC cells disrupted the formation of the gankyrin/MDM2 complex, hindered the degradation of p53, increased SLC7A11 expression, impeded cysteine uptake, and decreased GPX4 production. Our findings suggest that TNBC cells are able to prevent cell ferroptosis through the gankyrin/p53/SLC7A11/GPX4 signaling pathway, indicating that gankyrin may be a useful biomarker for predicting TNBC prognosis or a potential therapeutic target.
Collapse
Affiliation(s)
- Ming Lei
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Yun-Long Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Feng-Ying Huang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Heng-Yu Chen
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China
| | - Ming-Hui Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Ri-Hong Wu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Shu-Zhen Dai
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Gui-Sheng He
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
| | - Guang-Hong Tan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China.
| | - Wu-Ping Zheng
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
| |
Collapse
|
3
|
Christie J, Anthony CM, Harish M, Mudartha D, Ud Din Farooqee SB, Venkatraman P. The interaction network of the proteasome assembly chaperone PSMD9 regulates proteostasis. FEBS J 2023; 290:5581-5604. [PMID: 37665644 DOI: 10.1111/febs.16948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/09/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Functional networks in cells are created by physical, genetic, and regulatory interactions. Mapping them and annotating their functions by available methods remains a challenge. We use affinity purification mass spectrometry (AP-MS) coupled with SLiMFinder to discern such a network involving 26S proteasome non-ATPase regulatory subunit 9 (PSMD9), a chaperone of proteasome assembly. Approximately 20% of proteins within the PSMD9 interactome carry a short linear motif (SLiM) of the type 'EXKK'. The binding of purified PSMD9 with the peptide sequence ERKK, proteins heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNPA2B1; containing ERKK), and peroxiredoxin-6 (PRDX6; containing EAKK) provided proof of principle for this motif-driven network. The EXKK motif in the peptide primarily interacts with the coiled-coil N domain of PSMD9, a unique interaction not reported for any coiled-coil domain. PSMD9 knockout (KO) HEK293 cells experience endoplasmic reticulum (ER) stress and respond by increasing the unfolded protein response (UPR) and reducing the formation of aggresomes and lipid droplets. Trans-expression of PSMD9 in the KO cells rescues lipid droplet formation. Overexpression of PSMD9 in HEK293 cells results in reduced UPR, and increased lipid droplet and aggresome formation. The outcome argues for the prominent role of PSMD9 in maintaining proteostasis. Probable mechanisms involve the binding of PSMD9 to binding immunoglobulin protein (BIP/GRP78; containing EDKK), an endoplasmic reticulum chaperone and key regulator of the UPR, and fatty acid synthase (FASN; containing ELKK), involved in fatty acid synthesis/lipid biogenesis. We propose that PSMD9 acts as a buffer in the cellular milieu by moderating the UPR and enhancing aggresome formation to reduce stress-induced proteotoxicity. Akin to waves created in ponds that perpetuate to a distance, perturbing the levels of PSMD9 would cause ripples down the networks, affecting final reactions in the pathway, one of which is altered proteostasis.
Collapse
Affiliation(s)
- Joel Christie
- Protein Interactome Lab for Structural and Functional Biology, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - C Merlyn Anthony
- Protein Interactome Lab for Structural and Functional Biology, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Mahalakshmi Harish
- Protein Interactome Lab for Structural and Functional Biology, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Deepti Mudartha
- Protein Interactome Lab for Structural and Functional Biology, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Sheikh Burhan Ud Din Farooqee
- Protein Interactome Lab for Structural and Functional Biology, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Prasanna Venkatraman
- Protein Interactome Lab for Structural and Functional Biology, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
4
|
Medur Gurushankar MS, Dalvi S, Venkatraman P. Snapshots of urea-induced early structural changes and unfolding of an ankyrin repeat protein at atomic resolution. Protein Sci 2022; 31:e4515. [PMID: 36382986 PMCID: PMC9703593 DOI: 10.1002/pro.4515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
Protein folding and unfolding is a complex process, underscored by the many proteotoxic diseases associated with misfolded proteins. Mapping pathways from a native structure to an unfolded protein or vice versa, identifying the intermediates, and defining the role of sequence and structure en route remain outstanding problems in the field. It is even more challenging to capture the events at atomistic resolution. X-ray diffraction has so far been used to understand how urea interacts with and unfolds two stable globular proteins. Here, we present the case study on PSMD10Gankyrin , a prototype for a moderately stable, non-globular repeat protein, long and rigid, with its termini located at either end. We define structural changes in the time dimension using low urea concentrations to arrive at the following conclusions. (a) Unfolding is rapidly initiated at the C-terminus, slowly at the N-terminus, and proceeds inwards from both ends. (b) C-terminus undergoes an α to 310 helix transition, representing the structure of a potential early unfolding intermediate before disorder sets in. (c) Distinct and progressive changes in the electrostatic landscape of PSMD10Gankyrin were observed, indicative of conformational changes in the seemingly inflexible motif involved in protein-protein interaction. We believe this unique study will open up the field for better and bolder queries and increase the choice of model proteins for a better understanding of the challenging problems of protein folding, protein interactions, protein degradation, and diseases associated with misfolding.
Collapse
Affiliation(s)
- Mukund Sudharsan Medur Gurushankar
- Protein Interactome Laboratory for Structural and Functional BiologyAdvanced Centre for Treatment, Research and Education in CancerNavi MumbaiMaharashtraIndia
- Department of Biochemistry and PharmacologyBio21 Molecular Science and Biotechnology Institute, The University of MelbourneVictoriaAustralia
| | - Somavally Dalvi
- Protein Interactome Laboratory for Structural and Functional BiologyAdvanced Centre for Treatment, Research and Education in CancerNavi MumbaiMaharashtraIndia
- Department of Biochemistry and PharmacologyBio21 Molecular Science and Biotechnology Institute, The University of MelbourneVictoriaAustralia
- Present address:
Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneVictoriaAustralia
| | - Prasanna Venkatraman
- Protein Interactome Laboratory for Structural and Functional BiologyAdvanced Centre for Treatment, Research and Education in CancerNavi MumbaiMaharashtraIndia
- Homi Bhabha National InstituteMumbaiMaharashtraIndia
| |
Collapse
|
5
|
Kanabar D, Goyal M, Kane EI, Chavan T, Kabir A, Wang X, Shukla S, Almasri J, Goswami S, Osman G, Kokolis M, Spratt DE, Gupta V, Muth A. Small-Molecule Gankyrin Inhibition as a Therapeutic Strategy for Breast and Lung Cancer. J Med Chem 2022; 65:8975-8997. [PMID: 35758870 PMCID: PMC9524259 DOI: 10.1021/acs.jmedchem.2c00190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gankyrin is an oncoprotein responsible for the development of numerous cancer types. It regulates the expression levels of multiple tumor suppressor proteins (TSPs) in liver cancer; however, gankyrin's regulation of these TSPs in breast and lung cancers has not been thoroughly investigated. Additionally, no small-molecule gankyrin inhibitor has been developed which demonstrates potent anti-proliferative activity against gankyrin overexpressing breast and lung cancers. Herein, we are reporting the structure-based design of gankyrin-binding small molecules which potently inhibited the proliferation of gankyrin overexpressing A549 and MDA-MB-231 cancer cells, reduced colony formation, and inhibited the growth of 3D spheroids in an in vitro tumor simulation model. Investigations demonstrated that gankyrin inhibition occurs through either stabilization or destabilization of its 3D structure. These studies shed light on the mechanism of small-molecule inhibition of gankyrin and demonstrate that gankyrin is a viable therapeutic target for the treatment of breast and lung cancer.
Collapse
Affiliation(s)
- Dipti Kanabar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Mimansa Goyal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Emma I. Kane
- Gustaf H. Carlson School of Chemistry & Biochemistry, Clark University, Worcester MA 01610, USA
| | - Tejashri Chavan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Abbas Kabir
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Xuechun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Snehal Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Joseph Almasri
- Department of Chemistry, College of Liberal Arts and Sciences, St. John’s University, Queens NY 11439, USA
| | - Sona Goswami
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Gizem Osman
- Department of Biological Sciences, College of Liberal Arts and Sciences, St. John’s University, Queens NY 11439, USA
| | - Marino Kokolis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Donald E. Spratt
- Gustaf H. Carlson School of Chemistry & Biochemistry, Clark University, Worcester MA 01610, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences St. John’s University, Queens NY 11439, USA
| |
Collapse
|
6
|
Mulla SW, Venkatraman P. Novel Nexus with NFκB, β-catenin, and RB1 empowers PSMD10/Gankyrin to counteract TNF-α induced apoptosis establishing its oncogenic role. Int J Biochem Cell Biol 2022; 146:106209. [PMID: 35378311 DOI: 10.1016/j.biocel.2022.106209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/06/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022]
Abstract
NFκB is a critical rapid-acting transcription factor that protects cancer cells from programmed cell death induced by stress or therapy. While NFκB works in nexus with non-classical oncoproteins such as STAT3 and AKT under a variety of conditions, it is a major antiapoptotic factor activated by TNF-α of the tumor microenvironment. Therefore, it is surprising that PSMD10, an oncoprotein overexpressed in several cancers and a marker of poor prognosis, is reported to inhibit the NFκB pathway. In this study, we explore the role of PSMD10 in cancer cells exposed to TNF-α. We screen several breast and colon cancer cell lines and select SW480, a colon cancer cell line highly resistant to TNF-α, and demonstrate that PSMD10 knockdown sensitizes these cells to TNF-α induced cell death. One of the mechanisms involves transcriptional regulation of β-catenin and RB1, two key colon cancer cell specific anti-apoptotic factors. Surprisingly, we find that PSMD10 is required for optimal phosphorylation and transcriptional activation of NFκB (RELA). Thus, upon PSMD10 knockdown, there is significant downregulation of anti-apoptotic NFκB target genes TNFAIP3 (A20), BIRC2 (cIAP1), BIRC3 (cIAP2), and XIAP. Our study, for the first time, shows that PSMD10 is required for the activation of the pro-survival arm via NFκB transcriptional activation to prevent cancer cells from succumbing to TNF-induced cell death. In addition by transcriptional regulation of two major antiapoptotic players RB1 and β-catenin, PSMD10 proves to be a coveted oncoprotein with a key role in tumorigenesis.
Collapse
Affiliation(s)
- Saim Wasi Mulla
- Protein Interactome Lab for Structural and Functional Biology, Tata Memorial Centre -Advanced Centre for Treatment Research and Education in Cancer (TMC-ACTREC), Navi Mumbai, India; Homi Bhabha National Institute, Department of Atomic Energy, Mumbai, India
| | - Prasanna Venkatraman
- Protein Interactome Lab for Structural and Functional Biology, Tata Memorial Centre -Advanced Centre for Treatment Research and Education in Cancer (TMC-ACTREC), Navi Mumbai, India; Homi Bhabha National Institute, Department of Atomic Energy, Mumbai, India.
| |
Collapse
|
7
|
Gupta S, Azadvari N, Hosseinzadeh P. Design of Protein Segments and Peptides for Binding to Protein Targets. BIODESIGN RESEARCH 2022; 2022:9783197. [PMID: 37850124 PMCID: PMC10521657 DOI: 10.34133/2022/9783197] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/16/2022] [Indexed: 10/19/2023] Open
Abstract
Recent years have witnessed a rise in methods for accurate prediction of structure and design of novel functional proteins. Design of functional protein fragments and peptides occupy a small, albeit unique, space within the general field of protein design. While the smaller size of these peptides allows for more exhaustive computational methods, flexibility in their structure and sparsity of data compared to proteins, as well as presence of noncanonical building blocks, add additional challenges to their design. This review summarizes the current advances in the design of protein fragments and peptides for binding to targets and discusses the challenges in the field, with an eye toward future directions.
Collapse
Affiliation(s)
- Suchetana Gupta
- Knight Campus Center for Accelerating Scientific Impact, University of Oregon, Eugene OR 97403, USA
| | - Noora Azadvari
- Knight Campus Center for Accelerating Scientific Impact, University of Oregon, Eugene OR 97403, USA
| | - Parisa Hosseinzadeh
- Knight Campus Center for Accelerating Scientific Impact, University of Oregon, Eugene OR 97403, USA
| |
Collapse
|
8
|
M G MS, Chikhale R, Nanaware PP, Dalvi S, Venkatraman P. A druggable pocket on PSMD10 Gankyrin that can accommodate an interface peptide and doxorubicin. Eur J Pharmacol 2022; 915:174718. [PMID: 34953804 DOI: 10.1016/j.ejphar.2021.174718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND PSMD10Gankyrin, a proteasomal chaperone is also an oncoprotein. Overexpression of PSMD10Gankyrin is associated with poor prognosis and survival in many cancers. Therefore, PSMD10Gankyrin is a sought-after drug target in many hard-to-treat cancers. However, its surface appears flat and undruggable. Here, we build on our earlier discovery of a common hot spot region that defined the interface of multiple interacting partners of PSMD10Gankyrin to expose vulnerable spots for a peptide and a small molecule inhibitor. METHODS High throughput virtual screening was used to screen compounds against PSMD10Gankyrin. Interaction of PSMD10Gankyrin with the drug or protein (CLIC1) or peptide was studied using any one or more of these techniques; Microscale Thermophoresis, limited trypsinolysis, SPR and ITC. Cytotoxic effect of doxorubicin was evaluated using MTT assay. RESULTS We identified doxorubicin as the first-generation small molecule inhibitor of PSMD10Gankyrin. K116 and to a lesser extent R41 on PSMD10Gankyrin contribute to the bulk of binding energy for the peptide EEVD, CLIC1 and doxorubicin. We further demonstrate that PSMD10Gankyrin is an intended target for doxorubicin in cells. GENERAL SIGNIFICANCE Drug design against protein interactions in general and PSMD10Gankyrin in particular, remains a challenge. We provide consolidated biophysical evidence for the use of a shared interface motif EEVD as a possible inhibitor of interaction network in cancers driven by PSMD10Gankyrin. We identify a chemical scaffold for designing novel inhibitors of PSMD10Gankyrin. These findings will impact the field of protein interactions in the context of disease biology/drug discovery.
Collapse
Affiliation(s)
- Mukund Sudharsan M G
- Protein Interaction Laboratory for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 41210, India; Homi Bhabha National Institute, 2nd Floor, BARC Training School Complex, Anushaktinagar, Mumbai, Maharashtra, 400094, India
| | - Rupesh Chikhale
- Protein Interaction Laboratory for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 41210, India
| | - Padma P Nanaware
- Protein Interaction Laboratory for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 41210, India
| | - Somavally Dalvi
- Protein Interaction Laboratory for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 41210, India
| | - Prasanna Venkatraman
- Protein Interaction Laboratory for Structural and Functional Biology, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, 41210, India; Homi Bhabha National Institute, 2nd Floor, BARC Training School Complex, Anushaktinagar, Mumbai, Maharashtra, 400094, India.
| |
Collapse
|
9
|
Evolution of biophysical tools for quantitative protein interactions and drug discovery. Emerg Top Life Sci 2021; 5:1-12. [PMID: 33739398 DOI: 10.1042/etls20200258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
With millions of signalling events occurring simultaneously, cells process a continuous flux of information. The genesis, processing, and regulation of information are dictated by a huge network of protein interactions. This is proven by the fact that alterations in the levels of proteins, single amino acid changes, post-translational modifications, protein products arising out of gene fusions alter the interaction landscape leading to diseases such as congenital disorders, deleterious syndromes like cancer, and crippling diseases like the neurodegenerative disorders which are often fatal. Needless to say, there is an immense effort to understand the biophysical basis of such direct interactions between any two proteins, the structure, domains, and sequence motifs involved in tethering them, their spatio-temporal regulation in cells, the structure of the network, and their eventual manipulation for intervention in diseases. In this chapter, we will deliberate on a few techniques that allow us to dissect the thermodynamic and kinetic aspects of protein interaction, how innovation has rendered some of the traditional techniques applicable for rapid analysis of multiple samples using small amounts of material. These advances coupled with automation are catching up with the genome-wide or proteome-wide studies aimed at identifying new therapeutic targets. The chapter will also summarize how some of these techniques are suited either in the standalone mode or in combination with other biophysical techniques for the drug discovery process.
Collapse
|
10
|
Kanabar D, Kabir A, Chavan T, Kong J, Yoganathan S, Muth A. Identification of novel gankyrin binding scaffolds by high throughput virtual screening. Bioorg Med Chem Lett 2021; 43:128043. [PMID: 33865970 DOI: 10.1016/j.bmcl.2021.128043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Dipti Kanabar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Abbas Kabir
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Tejashri Chavan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jing Kong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Sabesan Yoganathan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
11
|
Maresh ME, Zerfas BL, Wuthrich BS, Trader DJ. Identification of a covalent binder to the oncoprotein gankyrin using a NIR-Based OBOC screening method. RSC Adv 2021; 11:12794-12801. [PMID: 35423814 PMCID: PMC8697547 DOI: 10.1039/d0ra10976b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/23/2021] [Indexed: 11/29/2022] Open
Abstract
Despite huge advancements in the process of synthesizing small molecules as part of one-bead-one-compound (OBOC) libraries, progress lags in the ability to screen these libraries against proteins of interest. Recently, we developed a method to screen OBOC libraries in which a target protein is labeled with a near-infrared (NIR) range fluorophore. The labeled protein incubates with beads of a library in a 96-well plate, then the plate is imaged for fluorescence. Fluorescence intensities produced by the labeled protein binding the bead can be quantitated and provide a basis to rank hits. Here, we present an application of this technique by screening the oncoprotein gankyrin against a 343-member peptoid library. The library was composed of four positions occupied by one of seven amines. In the third position, an amine that facilitates covalent binding via a sulfonyl fluoride moiety was incorporated. After screening for gankyrin binders twice, ten structures showed overlap in the types of amines present at each position. These initial hits were validated with an in-gel fluorescence assay in which the labeled ligands covalently interacted with purified gankyrin. Excitingly, one peptoid was validated from this analysis. This hit was also shown to bind gankyrin in the presence of HEK 293T lysate. Results from this study demonstrate successful use of our screening method to quickly identify quality binders to a target protein of interest.
Collapse
Affiliation(s)
- Marianne E Maresh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette Indiana 47907 USA
| | - Breanna L Zerfas
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette Indiana 47907 USA
| | - Brice S Wuthrich
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette Indiana 47907 USA
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette Indiana 47907 USA
| |
Collapse
|
12
|
Exploring gankyrin's role in cancer development and its potential as a therapeutic target. Future Med Chem 2020; 12:1603-1606. [PMID: 32892644 DOI: 10.4155/fmc-2020-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Kanabar D, Farrales P, Kabir A, Juang D, Gnanmony M, Almasri J, Torrents N, Shukla S, Gupta V, Dukhande VV, D'Souza A, Muth A. Optimizing the aryl-triazole of cjoc42 for enhanced gankyrin binding and anti-cancer activity. Bioorg Med Chem Lett 2020; 30:127372. [PMID: 32738965 DOI: 10.1016/j.bmcl.2020.127372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 01/19/2023]
Abstract
Gankyrin is an oncoprotein overexpressed in numerous cancer types and appears to play a key role in regulating cell proliferation, cell growth, and cell migration. These roles are largely due to gankyrin's protein-protein interaction with the 26S proteasome. We previously published a study exploring the aryl sulfonate ester of cjoc42 in an effort to enhance gankyrin binding and inhibit cancer cell proliferation. In order to further improve the gankyrin binding ability of the cjoc42 scaffold, an extensive SAR for the aryl-triazole moiety of cjoc42 was developed. Our cjoc42 derivatives exhibited enhanced gankyrin binding, as well as enhanced antiproliferative activity against Hep3B, HepG2, A549, and MDA-MB-231 cancer cell lines.
Collapse
Affiliation(s)
- Dipti Kanabar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Pamela Farrales
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Abbas Kabir
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Daniel Juang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Manu Gnanmony
- Department of Pediatrics, Hematology and Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Joseph Almasri
- Department of Chemistry, College of Liberal Arts and Sciences, St. John's University, Queens, NY 11439, USA
| | - Nicolas Torrents
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Snehal Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Vikas V Dukhande
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Amber D'Souza
- Department of Pediatrics, Hematology and Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| |
Collapse
|
14
|
Singh AK, Wadsworth PA, Tapia CM, Aceto G, Ali SR, Chen H, D'Ascenzo M, Zhou J, Laezza F. Mapping of the FGF14:Nav1.6 complex interface reveals FLPK as a functionally active peptide modulating excitability. Physiol Rep 2020; 8:e14505. [PMID: 32671946 PMCID: PMC7363588 DOI: 10.14814/phy2.14505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
The voltage-gated sodium (Nav) channel complex is comprised of pore-forming α subunits (Nav1.1-1.9) and accessory regulatory proteins such as the intracellular fibroblast growth factor 14 (FGF14). The cytosolic Nav1.6 C-terminal tail binds directly to FGF14 and this interaction modifies Nav1.6-mediated currents with effects on intrinsic excitability in the brain. Previous studies have identified the FGF14V160 residue within the FGF14 core domain as a hotspot for the FGF14:Nav1.6 complex formation. Here, we used three short amino acid peptides around FGF14V160 to probe for the FGF14 interaction with the Nav1.6 C-terminal tail and to evaluate the activity of the peptide on Nav1.6-mediated currents. In silico docking predicts FLPK to bind to FGF14V160 with the expectation of interfering with the FGF14:Nav1.6 complex formation, a phenotype that was confirmed by the split-luciferase assay (LCA) and surface plasmon resonance (SPR), respectively. Whole-cell patch-clamp electrophysiology studies demonstrate that FLPK is able to prevent previously reported FGF14-dependent phenotypes of Nav1.6 currents, but that its activity requires the FGF14 N-terminal tail, a domain that has been shown to contribute to Nav1.6 inactivation independently from the FGF14 core domain. In medium spiny neurons in the nucleus accumbens, where both FGF14 and Nav1.6 are abundantly expressed, FLPK significantly increased firing frequency by a mechanism consistent with the ability of the tetrapeptide to interfere with Nav1.6 inactivation and potentiate persistent Na+ currents. Taken together, these results indicate that FLPK might serve as a probe for characterizing molecular determinants of neuronal excitability and a peptide scaffold to develop allosteric modulators of Nav channels.
Collapse
Affiliation(s)
- Aditya K. Singh
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
| | - Paul A. Wadsworth
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
- M.D.‐Ph.D. Combined Degree ProgramUniversità Cattolica del Sacro CuoreRomeItaly
- Biochemistry and Molecular Biology Graduate ProgramUniversità Cattolica del Sacro CuoreRomeItaly
| | - Cynthia M. Tapia
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
- NIEHS Environmental Toxicology Training ProgramUniversità Cattolica del Sacro CuoreRomeItaly
| | - Giuseppe Aceto
- Institute of Human PhysiologyUniversità Cattolica del Sacro CuoreRomeItaly
- Department of NeuroscienceUniversità Cattolica del Sacro CuoreRomeItaly
- Fondazione Policlinico Universitario A. GemelliIRCCSRomeItaly
| | - Syed R. Ali
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
| | - Haiying Chen
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
| | - Marcello D'Ascenzo
- Institute of Human PhysiologyUniversità Cattolica del Sacro CuoreRomeItaly
- Department of NeuroscienceUniversità Cattolica del Sacro CuoreRomeItaly
- Fondazione Policlinico Universitario A. GemelliIRCCSRomeItaly
| | - Jia Zhou
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
- Center for Addiction ResearchUniversity of Texas Medical BranchGalvestonTXUSA
| | - Fernanda Laezza
- Department of Pharmacology & ToxicologyUniversità Cattolica del Sacro CuoreRomeItaly
- Center for Addiction ResearchUniversity of Texas Medical BranchGalvestonTXUSA
- Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTXUSA
| |
Collapse
|
15
|
Kanabar D, Farrales P, Gnanamony M, Almasri J, Abo-Ali EM, Otmankel Y, Shah H, Nguyen D, El Menyewi M, Dukhande VV, D'Souza A, Muth A. Structural modification of the aryl sulfonate ester of cjoc42 for enhanced gankyrin binding and anti-cancer activity. Bioorg Med Chem Lett 2020; 30:126889. [DOI: 10.1016/j.bmcl.2019.126889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022]
|
16
|
Sahu I, Nanaware P, Mane M, Mulla SW, Roy S, Venkatraman P. Role of a 19S Proteasome Subunit- PSMD10 Gankyrin in Neurogenesis of Human Neural Progenitor Cells. Int J Stem Cells 2019; 12:463-473. [PMID: 31474027 PMCID: PMC6881037 DOI: 10.15283/ijsc19007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/21/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
PSMD10Gankyrin, a proteasome assembly chaperone, is a widely known oncoprotein which aspects many hall mark properties of cancer. However, except proteasome assembly chaperon function its role in normal cell function remains unknown. To address this issue, we induced PSMD10Gankyrin overexpression in HEK293 cells and the resultant large-scale changes in gene expression profile were analyzed. We constituted networks from microarray data of these differentially expressed genes and carried out extensive topological analyses. The overrecurring yet consistent theme that appeared throughout analysis using varied network metrics is that all genes and interactions identified as important would be involved in neurogenesis and neuronal development. Intrigued we tested the possibility that PSMD10Gankyrin may be strongly associated with cell fate decisions that commit neural stem cells to differentiate into neurons. Overexpression of PSMD10Gankyrin in human neural progenitor cells facilitated neuronal differentiation via β-catenin Ngn1 pathway. Here for the first time we provide preliminary and yet compelling experimental evidence for the involvement of a potential oncoprotein – PSMD10Gankyrin, in neuronal differentiation.
Collapse
Affiliation(s)
- Indrajit Sahu
- Advance Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India.,Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel.,Homi Bhabha National Institute, BARC Training School Complex, Mumbai, Maharashtra, India
| | - Padma Nanaware
- Advance Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India.,Homi Bhabha National Institute, BARC Training School Complex, Mumbai, Maharashtra, India.,Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Minal Mane
- Advance Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Saim Wasi Mulla
- Advance Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India.,Homi Bhabha National Institute, BARC Training School Complex, Mumbai, Maharashtra, India
| | - Soumen Roy
- Department of Physics, Bose Institute, Kolkata, India
| | - Prasanna Venkatraman
- Advance Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India.,Homi Bhabha National Institute, BARC Training School Complex, Mumbai, Maharashtra, India
| |
Collapse
|
17
|
Muli CS, Tian W, Trader DJ. Small-Molecule Inhibitors of the Proteasome's Regulatory Particle. Chembiochem 2019; 20:1739-1753. [PMID: 30740849 PMCID: PMC6765334 DOI: 10.1002/cbic.201900017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Indexed: 12/11/2022]
Abstract
Cells need to synthesize and degrade proteins consistently. Maintaining a balanced level of protein in the cell requires a carefully controlled system and significant energy. Degradation of unwanted or damaged proteins into smaller peptide units can be accomplished by the proteasome. The proteasome is composed of two main subunits. The first is the core particle (20S CP), and within this core particle are three types of threonine proteases. The second is the regulatory complex (19S RP), which has a myriad of activities including recognizing proteins marked for degradation and shuttling the protein into the 20S CP to be degraded. Small-molecule inhibitors of the 20S CP have been developed and are exceptional treatments for multiple myeloma (MM). 20S CP inhibitors disrupt the protein balance, leading to cellular stress and eventually to cell death. Unfortunately, the 20S CP inhibitors currently available have dose-limiting off-target effects and resistance can be acquired rapidly. Herein, we discuss small molecules that have been discovered to interact with the 19S RP subunit or with a protein closely associated with 19S RP activity. These molecules still elicit their toxicity by preventing the proteasome from degrading proteins, but do so through different mechanisms of action.
Collapse
Affiliation(s)
- Christine S. Muli
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Wenzhi Tian
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Darci J. Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
18
|
Xu Y, Xu J, Feng J, Li J, Jiang C, Li X, Zou S, Wang Q, Li Y. Expression of CLIC1 as a potential biomarker for oral squamous cell carcinoma: a preliminary study. Onco Targets Ther 2018; 11:8073-8081. [PMID: 30519049 PMCID: PMC6239106 DOI: 10.2147/ott.s181936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose CLIC1, a member of the highly conserved class ion-channel protein family, is frequently upregulated in multiple human malignancies and has been demonstrated to play a critical role in cell proliferation, apoptosis, and invasion. However, limited is known about its expression, biological functions, and action mechanism in oral malignancies. We aimed to evaluate whether CLIC1 could be a biomarker for oral squamous cell carcinoma (OSCC). Methods Immunohistochemistry was used to analyze the expression of CLIC1 in tissue. CLIC1 protein and mRNA were measured through Western immunoblotting and quantitative real-time PCR. CLIC1 protein expression in plasma was detected via ELISA. A total of 72 OSCC specimens were recruited in this study for evaluation of correlations of CLIC1 with clinicopathological features and survival. Results CLIC1 was significantly overexpressed in tissue and plasma of OSCC patients. It was found that upregulated CLIC1 was distinctly correlated with histological grade, TNM stage, and tumor size. Meanwhile, Kaplan–Meier survival analysis showed that OSCC patients with high CLIC1 expression had remarkably poorer overall survival rate than those with low CLIC1 expression. Multivariate Cox regression analysis revealed that CLIC1 was the independent prognostic factor for overall survival rate of OSCC patients. In addition, Pearson correlation analysis showed that CLIC1 was associated with multiple tumor-associated genes. Conclusion These results indicated that CLIC1 acts as a molecular target in OSCC and may present a novel diagnostic marker and therapeutic target for OSCC.
Collapse
Affiliation(s)
- Ying Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Jie Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Jiali Feng
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Chao Jiang
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Xian Li
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Sihai Zou
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Qian Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| | - Yong Li
- College of Stomatology, Chongqing Medical University, Chongqing, China, .,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China, .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,
| |
Collapse
|
19
|
Sun Y, Tan YJ, Lu ZZ, Li BB, Sun CH, Li T, Zhao LL, Liu Z, Zhang GM, Yao JC, Li J. Arctigenin Inhibits Liver Cancer Tumorigenesis by Inhibiting Gankyrin Expression via C/EBPα and PPARα. Front Pharmacol 2018; 9:268. [PMID: 29636686 PMCID: PMC5880935 DOI: 10.3389/fphar.2018.00268] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/09/2018] [Indexed: 01/19/2023] Open
Abstract
Burdock (Arctium lappa) is a popular vegetable in China and Japan that is consumed for its general health benefits. The principal active component of burdock is arctigenin, which shows a range of bioactivities in vivo and in vitro. Here, we investigated the potential anti-tumor effects of arctigenin using two human hepatocellular carcinoma (HCC) cell lines, HepG2 and Hep3B, and sought to elucidate its potential mechanisms of action. Our results showed that arctigenin treatment inhibited cell growth in both HepG2 and Hep3B cell lines (IC50 of 4.74 nM for HepG2 cells, and of 59.27 nM for Hep3B cells). In addition, migration, invasion, and colony formation by HepG2 cells were significantly inhibited by arctigenin. By contrast, treatment of Hep3B cells with arctigenin did not alter these parameters. Arctigenin also significantly reduced the levels of gankyrin mRNA and protein in HepG2 cells, but not in Hep3B cells. A luciferase assay indicated that arctigenin targeted the -450 to -400 region of the gankyrin promoter. This region is also the potential binding site for both C/EBPα and PPARα, as predicted and confirmed by an online software analysis and ChIP assay. Additionally, a co-immunoprecipitation (Co-IP) assay showed that binding between C/EBPα and PPARα was increased in the presence of arctigenin. However, arctigenin did not increase the expression of C/EBPα or PPARα protein. A binding screening assay and liquid chromatography-mass spectrometry (LC-MS) were performed to identify the mechanisms by which arctigenin regulates gankyrin expression. The results suggested that arctigenin could directly increase C/EBPα binding to the gankyrin promoter (-432 to -422 region), but did not affect PPARα binding. Expression of gankyrin, C/EBPα, and PPARα were analyzed in tumor tissues of patients using real-time PCR. Both C/EBPα and PPARα showed negative correlations with gankyrin. In tumor-bearing mice, arctigenin had a significant inhibitory effect on HCC growth. In conclusion, our results suggested that arctigenin could inhibit liver cancer growth by directly recruiting C/EBPα to the gankyrin promoter. PPARα subsequently bound to C/EBPα, and both had a negative regulatory effect on gankyrin expression. This study has identified a new mechanism of action of arctigenin against liver cancer growth.
Collapse
Affiliation(s)
- Ying Sun
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Yu-Jun Tan
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Zhan-Zhao Lu
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Bing-Bing Li
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Cheng-Hong Sun
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Tao Li
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Li-Li Zhao
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Zhong Liu
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Gui-Min Zhang
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Jing-Chun Yao
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Jie Li
- Shandong New Time Pharmaceutical Co., Ltd., Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| |
Collapse
|
20
|
Wang C, Cheng L. Gankyrin as a potential therapeutic target for cancer. Invest New Drugs 2017; 35:655-661. [PMID: 28527132 DOI: 10.1007/s10637-017-0474-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023]
Abstract
Gankyrin is an oncoprotein that plays a central role in the development of cancer. Although researchers have increasingly focused on the relationships of gankyrin with carcinogenesis, metastasis and prognosis of different cancers, the molecular mechanisms are still unclear. In recent years, several interacting partners of gankyrin and cell signaling pathways regulated by gankyrin have been elucidated. In addition, accumulating evidence has indicated the contribution of microRNAs to regulating gankyrin expression in tumor cells. In this review, we summarize the major known roles of gankyrin in cancer cells and highlight the potential clinical relevance of targeting gankyrin. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Chongchong Wang
- Department of Oncology, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Li Cheng
- Department of Orthopaedics, the Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China.
| |
Collapse
|
21
|
Sedan Y, Marcu O, Lyskov S, Schueler-Furman O. Peptiderive server: derive peptide inhibitors from protein-protein interactions. Nucleic Acids Res 2016; 44:W536-41. [PMID: 27141963 PMCID: PMC4987930 DOI: 10.1093/nar/gkw385] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 02/05/2023] Open
Abstract
The Rosetta Peptiderive protocol identifies, in a given structure of a protein-protein interaction, the linear polypeptide segment suggested to contribute most to binding energy. Interactions that feature a 'hot segment', a linear peptide with significant binding energy compared to that of the complex, may be amenable for inhibition and the peptide sequence and structure derived from the interaction provide a starting point for rational drug design. Here we present a web server for Peptiderive, which is incorporated within the ROSIE web interface for Rosetta protocols. A new feature of the protocol also evaluates whether derived peptides are good candidates for cyclization. Fast computation times and clear visualization allow users to quickly assess the interaction of interest. The Peptiderive server is available for free use at http://rosie.rosettacommons.org/peptiderive.
Collapse
Affiliation(s)
- Yuval Sedan
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel Department of Chemical and Biomolecular Engineering, John Hopkins University, Baltimore, MD 21218, USA
| | - Orly Marcu
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Sergey Lyskov
- Racah Institute of Physics, Hebrew University of Jerusalem, Israel
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
22
|
Chattopadhyay A, O’Connor CJ, Zhang F, Galvagnion C, Galloway WRJD, Tan YS, Stokes JE, Rahman T, Verma C, Spring DR, Itzhaki LS. Discovery of a small-molecule binder of the oncoprotein gankyrin that modulates gankyrin activity in the cell. Sci Rep 2016; 6:23732. [PMID: 27046077 PMCID: PMC4820706 DOI: 10.1038/srep23732] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/04/2016] [Indexed: 01/04/2023] Open
Abstract
Gankyrin is an ankyrin-repeat oncoprotein whose overexpression has been implicated in the development of many cancer types. Elevated gankyrin levels are linked to aberrant cellular events including enhanced degradation of tumour suppressor protein p53, and inhibition of gankyrin activity has therefore been identified as an attractive anticancer strategy. Gankyrin interacts with several partner proteins, and a number of these protein-protein interactions (PPIs) are of relevance to cancer. Thus, molecules that bind the PPI interface of gankyrin and interrupt these interactions are of considerable interest. Herein, we report the discovery of a small molecule termed cjoc42 that is capable of binding to gankyrin. Cell-based experiments demonstrate that cjoc42 can inhibit gankyrin activity in a dose-dependent manner: cjoc42 prevents the decrease in p53 protein levels normally associated with high amounts of gankyrin, and it restores p53-dependent transcription and sensitivity to DNA damage. The results represent the first evidence that gankyrin is a "druggable" target with small molecules.
Collapse
Affiliation(s)
| | | | - Fengzhi Zhang
- Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | - Yaw Sing Tan
- Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Jamie E. Stokes
- Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK
| | - Taufiq Rahman
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Chandra Verma
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - David R. Spring
- Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK
| | - Laura S. Itzhaki
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
23
|
Chapman AM, McNaughton BR. Synthetic Proteins Potently and Selectively Bind the Oncoprotein Gankyrin, Modulate Its Interaction with S6 ATPase, and Suppress Gankyrin/MDM2-Dependent Ubiquitination of p53. ACS Chem Biol 2015; 10:1880-6. [PMID: 25955581 DOI: 10.1021/acschembio.5b00201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Overexpression of the ankyrin repeat oncoprotein gankyrin is directly linked to the onset, proliferation, and/or metastasis of many cancers. The role of gankyrin in multiple disease-relevant biochemical processes is profound. In addition to other cellular processes, gankyrin overexpression leads to decreased cellular levels of p53, through a complex that involves MDM2. Thus, inhibition of this interaction is an attractive strategy for modulating oncogenic phenotypes in gankyrin-overexpressing cells. However, the lack of well-defined, hydrophobic, small-molecule binding pockets on the putative ankyrin repeat binding face presents a challenge to traditional small-molecule drug discovery. In contrast, by virtue of their size and relatively high folding energies, synthetic gankyrin-binding proteins could, in principle, compete with physiologically relevant PPIs involving gankyrin. Previously, we showed that a shape-complementary protein scaffold can be resurfaced to bind gankyrin with moderate affinity (KD ∼6 μM). Here, we used yeast display high-throughput screening, error-prone PCR, DNA shuffling, and protein engineering to optimize this complex. The best of these proteins bind gankyrin with excellent affinity (KD ∼21 nM), selectively co-purifies with gankyrin from a complex cellular milieu, modulates an interaction between gankyrin and a physiological binding partner (S6 ATPase), and suppresses gankyrin/MDM2-dependent ubiquitination of p53.
Collapse
Affiliation(s)
- Alex M. Chapman
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Brian R. McNaughton
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
24
|
Chapman AM, Rogers BE, McNaughton BR. Characterization of the binding interaction between the oncoprotein gankyrin and a grafted S6 ATPase. Biochemistry 2014; 53:6857-9. [PMID: 25343477 PMCID: PMC4230329 DOI: 10.1021/bi5012354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A complex with the C-terminal portion of the proteosomal subunit S6 ATPase is the only available structure of a protein-protein interaction involving the oncoprotein gankyrin. However, difficulties associated with recombinant expression of S6 ATPase alone, or truncations thereof, have limited our understanding of this assembly. We replaced the C-terminal portion of FtsH from Escherichia coli with the structurally homologous C-terminal portion of S6 ATPase and used this grafted protein to characterize the gankyrin-S6 ATPase binding interaction by isothermal titration calorimetry.
Collapse
Affiliation(s)
- Alex M Chapman
- Department of Chemistry and ‡Department of Biochemistry & Molecular Biology, Colorado State University , Fort Collins, Colorado 80523, United States
| | | | | |
Collapse
|
25
|
Sangith N, Srinivasaraghavan K, Sahu I, Desai A, Medipally S, Somavarappu AK, Verma C, Venkatraman P. Discovery of novel interacting partners of PSMD9, a proteasomal chaperone: Role of an Atypical and versatile PDZ-domain motif interaction and identification of putative functional modules. FEBS Open Bio 2014; 4:571-83. [PMID: 25009770 PMCID: PMC4087146 DOI: 10.1016/j.fob.2014.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 12/21/2022] Open
Abstract
The structure and functions of PSMD9, a proteasomal chaperone, are uncharacterized. PDZ-like domain of PSMD9 may recognize C-terminal residues in proteins. Using conserved C-terminal motifs in human proteome, we identify novel binding partners. hnRNPA1, GH, IL6-receptor, S14 and E12 interact with PSMD9 via a specific C-terminal motif. We predict and confirm residues in the PDZ domain that are involved in this interaction.
PSMD9 (Proteasome Macropain non-ATPase subunit 9), a proteasomal assembly chaperone, harbors an uncharacterized PDZ-like domain. Here we report the identification of five novel interacting partners of PSMD9 and provide the first glimpse at the structure of the PDZ-domain, including the molecular details of the interaction. We based our strategy on two propositions: (a) proteins with conserved C-termini may share common functions and (b) PDZ domains interact with C-terminal residues of proteins. Screening of C-terminal peptides followed by interactions using full-length recombinant proteins, we discovered hnRNPA1 (an RNA binding protein), S14 (a ribosomal protein), CSH1 (a growth hormone), E12 (a transcription factor) and IL6 receptor as novel PSMD9-interacting partners. Through multiple techniques and structural insights, we clearly demonstrate for the first time that human PDZ domain interacts with the predicted Short Linear Sequence Motif (SLIM) at the C-termini of the client proteins. These interactions are also recapitulated in mammalian cells. Together, these results are suggestive of the role of PSMD9 in transcriptional regulation, mRNA processing and editing, hormone and receptor activity and protein translation. Our proof-of-principle experiments endorse a novel and quick method for the identification of putative interacting partners of similar PDZ-domain proteins from the proteome and for discovering novel functions.
Collapse
Affiliation(s)
- Nikhil Sangith
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Kannan Srinivasaraghavan
- Bioinformatics Institute ASTAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore ; Experimental Therapeutics Centre (A*STAR), 31 Biopolis Street, #03-01 Helios, Singapore 138669, Singapore
| | - Indrajit Sahu
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Ankita Desai
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Spandana Medipally
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Arun Kumar Somavarappu
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Chandra Verma
- Bioinformatics Institute ASTAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore ; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore ; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Prasanna Venkatraman
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| |
Collapse
|