1
|
Cheng F, Zhai QY, Gao XF, Liu HT, Qiu S, Wang YJ, Zheng YG. Tuning enzymatic properties by protein engineering toward catalytic tetrad of carbonyl reductase. Biotechnol Bioeng 2021; 118:4643-4654. [PMID: 34436762 DOI: 10.1002/bit.27925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/03/2021] [Accepted: 08/22/2021] [Indexed: 01/20/2023]
Abstract
Enzyme engineering toward catalytic-tetrad residues usually results in activity loss. Unexpectedly, we found that a directed evolution campaign yielded a beneficial residue A100 in KmCR (a carbonyl reductase from Kluyveromyces marxianus ZJB14056), which is a residue of catalytic tetrad and conserved according to multiple sequence alignment. Inspired by this finding, we performed saturation mutagenesis on all the four residues of catalytic tetrad of KmCR. A number of variants with improved enzymatic activities were obtained. Among them, the variant KmCR_A100S exhibited increased catalytic efficiency (kcat /KM = 47.3 s-1 ·mM-1 ), improved stereoselectivity (from moderate selectivity (deP = 66.7%) to strict (S)-selectivity (deP > 99.5%)), and extended substrate scope, compared to those of KmCR_WT. In silico analysis showed that a relay system was rebuilt in KmCR via the beneficial residue S100. Furthermore, comparison of 11 protein engineering campaigns indicated that the beneficial position is easily overlooked due to the long distance (>10 Å) from ketone substrates. Since CRs share similar catalytic mechanism, the knowledge gained from this study has universal significance to CR engineering.
Collapse
Affiliation(s)
- Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Qiu-Yao Zhai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Xiao-Fan Gao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Hua-Tao Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Shuai Qiu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
2
|
Satyaveanthan MV, Suhaimi SA, Ng CL, Muhd-Noor ND, Awang A, Lam KW, Hassan M. Purification, biochemical characterisation and bioinformatic analysis of recombinant farnesol dehydrogenase from Theobroma cacao. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:143-155. [PMID: 33588320 DOI: 10.1016/j.plaphy.2021.01.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
The juvenile hormones (JH) in plants are suggested to act as a form of plant defensive strategy especially against insect herbivory. The oxidation of farnesol to farnesoic acid is a key step in the juvenile hormone biosynthesis pathway. We herein present the purification and characterisation of the recombinant Theobroma cacao farnesol dehydrogenase enzyme that catalyses oxidation of farnesol to farnesal. The recombinant enzyme was purified to apparent homogeneity by affinity chromatography. The purified enzyme was characterised in terms of its deduced amino acid sequences, phylogeny, substrate specificity, kinetic parameters, structural modeling, and docking simulation. The phylogenetic analysis indicated that the T. cacao farnesol dehydrogenase (TcFolDH) showed a close relationship with A. thaliana farnesol dehydrogenase gene. The TcFolDH monomer had a large N-terminal domain which adopted a typical Rossmann-fold, harboring the GxxGxG motif (NADP(H)-binding domain) and a small C-terminal domain. The enzyme was a homotrimer comprised of subunits with molecular masses of 36 kDa. The TcFolDH was highly specific to NADP+ as coenzyme. The substrate specificity studies showed trans, trans-farnesol was the most preferred substrate for the TcFolDH, suggesting that the purified enzyme was a NADP+-dependent farnesol dehydrogenase. The docking of trans, trans-farnesol and NADP+ into the active site of the enzyme showed the important residues, and their interactions involved in the substrate and coenzyme binding of TcFolDH. Considering the extensive involvement of JH in both insects and plants, an in-depth knowledge on the recombinant production of intermediate enzymes of the JH biosynthesis pathway could help provide a potential method for insect control.
Collapse
Affiliation(s)
| | - Saidi-Adha Suhaimi
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Bangi, Selangor, 43600, Malaysia
| | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Bangi, Selangor, 43600, Malaysia
| | - Noor-Dina Muhd-Noor
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Bangi, Selangor, 43600, Malaysia; Enzyme & Microbial Technology Center (EMTech), Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, 43400, Malaysia
| | - Alias Awang
- Cocoa Research & Development Centre (Bagan Datuk), Malaysian Cocoa Board, P.O. Box 30, Sg. Dulang Road, Sg. Sumun, Perak, 36307, Malaysia
| | - Kok Wai Lam
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Maizom Hassan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Bangi, Selangor, 43600, Malaysia.
| |
Collapse
|
3
|
Kim DG, Cho S, Lee KY, Cheon SH, Yoon HJ, Lee JY, Kim D, Shin KS, Koh CH, Koo JS, Choi Y, Lee HH, Oh YK, Jeong YS, Chung SJ, Baek M, Jung KY, Lim HJ, Kim HS, Park SJ, Lee JY, Lee SJ, Lee BJ. Crystal structures of human NSDHL and development of its novel inhibitor with the potential to suppress EGFR activity. Cell Mol Life Sci 2021; 78:207-225. [PMID: 32140747 PMCID: PMC11068002 DOI: 10.1007/s00018-020-03490-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/29/2020] [Accepted: 02/17/2020] [Indexed: 02/03/2023]
Abstract
NAD(P)-dependent steroid dehydrogenase-like (NSDHL), an essential enzyme in human cholesterol synthesis and a regulator of epidermal growth factor receptor (EGFR) trafficking pathways, has attracted interest as a therapeutic target due to its crucial relevance to cholesterol-related diseases and carcinomas. However, the development of pharmacological agents for targeting NSDHL has been hindered by the absence of the atomic details of NSDHL. In this study, we reported two X-ray crystal structures of human NSDHL, which revealed a detailed description of the coenzyme-binding site and the unique conformational change upon the binding of a coenzyme. A structure-based virtual screening and biochemical evaluation were performed and identified a novel inhibitor for NSDHL harboring suppressive activity towards EGFR. In EGFR-driven human cancer cells, treatment with the potent NSDHL inhibitor enhanced the antitumor effect of an EGFR kinase inhibitor. Overall, these findings could serve as good platforms for the development of therapeutic agents against NSDHL-related diseases.
Collapse
Affiliation(s)
- Dong-Gyun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sujin Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyu-Yeon Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung-Ho Cheon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joo-Youn Lee
- Chemical Data-Driven Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Dongyoon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kwang-Soo Shin
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Choong-Hyun Koh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji Sung Koo
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yuri Choi
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yu-Kyoung Oh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoo-Seong Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suk-Jae Chung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Moonkyu Baek
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Kwan-Young Jung
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Hyo Jin Lim
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Hyoun Sook Kim
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Sung Jean Park
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, 13120, Republic of Korea
| | - Jeong-Yeon Lee
- Department of Medicine, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sang Jae Lee
- PAL-XFEL, Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk, 37673, Republic of Korea.
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Structure-guided design of Serratia marcescens short-chain dehydrogenase/reductase for stereoselective synthesis of (R)-phenylephrine. Sci Rep 2018; 8:2316. [PMID: 29396495 PMCID: PMC5797133 DOI: 10.1038/s41598-018-19235-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
Bioconversion is useful to produce optically pure enantiomers in the pharmaceutical industry, thereby avoiding problems with side reactions during organic synthesis processes. A short-chain dehydrogenase/reductase from Serratia marcescens BCRC 10948 (SmSDR) can stereoselectively convert 1-(3-hydroxyphenyl)-2-(methylamino) ethanone (HPMAE) into (R)-phenylephrine [(R)-PE], which is marketed medically as a nasal decongestant agent. The whole-cell conversion process for the synthesis of (R)-PE using SmSDR was reported to have an unexpectedly low conversion rate. We reported the crystal structure of the SmSDR and designed profitable variants to improve the enzymatic activity by structure-guided approach. Several important residues in the structure were observed to form hydrophobic clusters that stabilize the mobile loops surrounding the pocket. Of these, Phe98 and Phe202 face toward each other and connect the upper curvature from the two arms (i.e., the α7 helix and loopβ4-α4). The mutant structure of the double substitutions (F98YF202Y) exhibited a hydrogen bond between the curvatures that stabilizes the flexible arms. Site-directed mutagenesis characterization revealed that the mutations (F98Y, F98YF202Y, and F98YF202L) of the flexible loops that stabilize the region exhibited a higher transformation activity toward HPMAE. Together, our results suggest a robust structure-guided approach that can be used to generate a valuable engineered variant for pharmaceutical applications.
Collapse
|
5
|
Bizzarri C, Massimi A, Federici L, Cualbu A, Loche S, Bellincampi L, Bernardini S, Cappa M, Porzio O. A New Homozygous Frameshift Mutation in the HSD3B2 Gene in an Apparently Nonconsanguineous Italian Family. Horm Res Paediatr 2017; 86:53-61. [PMID: 27082427 DOI: 10.1159/000444712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/16/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND 3β-Hydroxysteroid dehydrogenase (3β-HSD) deficiency is a rare cause of congenital adrenal hyperplasia (CAH) caused by inactivating mutations in the HSD3B2 gene. PATIENT AND METHODS We report the molecular and structural analysis of the HSD3B2 gene in a 46,XY child born to apparently nonconsanguineous parents and presenting ambiguous genitalia and salt wasting. The steroid profile showed elevated concentrations of 17-hydroxyprogesterone, androstenedione, ACTH and plasma renin, but normal values of cortisol and dehydroepiandrosterone sulfate. Unexpectedly, plasma aldosterone was high. For structural and functional analyses, the three-dimensional structure of 3β-HSD2 was modeled using the crystal structure of the short-chain dehydrogenase Gox2253 from Gluconobacter oxydans as a template. RESULTS The direct DNA sequence of the child revealed a new homozygous frameshift mutation in exon 4 of the HSD3B2 gene, a single nucleotide deletion at codon 319 [GTC(Val)x2192;GC], yielding premature stop codon in position 367. Molecular homology modeling and secondary structure predictions suggested that the variant sequence might both alter the substrate-binding cleft and compromise the overall stability of the enzyme. CONCLUSION We have described the first HSD3B2 gene mutation in the Italian population and analyzed its effect in the context of the 3β-HSD2 structure and function.
Collapse
|
6
|
Jibran R, Sullivan KL, Crowhurst R, Erridge ZA, Chagné D, McLachlan ARG, Brummell DA, Dijkwel PP, Hunter DA. Staying green postharvest: how three mutations in the Arabidopsis chlorophyll b reductase gene NYC1 delay degreening by distinct mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6849-6862. [PMID: 26261268 DOI: 10.1093/jxb/erv390] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Stresses such as energy deprivation, wounding and water-supply disruption often contribute to rapid deterioration of harvested tissues. To uncover the genetic regulation behind such stresses, a simple assessment system was used to detect senescence mutants in conjunction with two rapid mapping techniques to identify the causal mutations. To demonstrate the power of this approach, immature inflorescences of Arabidopsis plants that contained ethyl methanesulfonate-induced lesions were detached and screened for altered timing of dark-induced senescence. Numerous mutant lines displaying accelerated or delayed timing of senescence relative to wild type were discovered. The underlying mutations in three of these were identified using High Resolution Melting analysis to map to a chromosomal arm followed by a whole-genome sequencing-based mapping method, termed 'Needle in the K-Stack', to identify the causal lesions. All three mutations were single base pair changes and occurred in the same gene, NON-YELLOW COLORING1 (NYC1), a chlorophyll b reductase of the short-chain dehydrogenase/reductase (SDR) superfamily. This was consistent with the mutants preferentially retaining chlorophyll b, although substantial amounts of chlorophyll b were still lost. The single base pair mutations disrupted NYC1 function by three distinct mechanisms, one by producing a termination codon, the second by interfering with correct intron splicing and the third by replacing a highly conserved proline with a non-equivalent serine residue. This non-synonymous amino acid change, which occurred in the NADPH binding domain of NYC1, is the first example of such a mutation in an SDR protein inhibiting a physiological response in plants.
Collapse
Affiliation(s)
- Rubina Jibran
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Kerry L Sullivan
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Ross Crowhurst
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Zoe A Erridge
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Andrew R G McLachlan
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - David A Brummell
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Paul P Dijkwel
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Donald A Hunter
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| |
Collapse
|