1
|
Lu S, Dong Z. Targeting PCNA/AR interaction inhibits AR-mediated signaling in castration resistant prostate cancer cells. Oncotarget 2025; 16:383-395. [PMID: 40391771 DOI: 10.18632/oncotarget.28722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025] Open
Abstract
We previously showed that proliferating cell nuclear antigen (PCNA) interacts with androgen receptor (AR) through a PIP-box (PIP-box4) at the N-terminus of AR and regulates AR activity. In this study, we further investigated PCNA/AR interaction. We identified a second PIP-box (PIP-box592) in the DNA binding domain of AR and found that dihydrotestosterone enhances the binding of full-length AR (AR-FL) but not a constitutively active variant (AR-V7) to PCNA. Treatment with R9-AR-PIP, a PIP-box4-mimicking small peptide, inhibits the PCNA/AR interaction, AR occupancy at the androgen response element (ARE) in PSA and p21 genes, and expression of AR target genes, and induces cytotoxicity in AR-positive castration-resistant prostate cancer (CRPC) cells. R9-AR-PIP also significantly inhibits transcriptional activity of AR-FL upon dihydrotestosterone stimulation and the constitutive activity of AR-V7. Moreover, R9-AR-PIP and PCNA-I1S, a small molecule PCNA inhibitor, inhibit the ARE occupancy by AR-FL and AR-Vs in CCNA2 gene that encodes cyclin A2 and cyclin A2 expression. Finally, we found that cyclin A2 is overexpressed in all CRPC cells examined, suggesting that it may contribute to the development of CRPC. These data indicate that targeting PCNA/AR interaction inhibits both AR-FL- and AR-Vs-mediated signaling and implicates it could be a novel therapeutic strategy against CRPC.
Collapse
Affiliation(s)
- Shan Lu
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zhongyun Dong
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
2
|
Wang T, Wang Z. Targeting the "Undruggable": Small-Molecule Inhibitors of Proliferating Cell Nuclear Antigen (PCNA) in the Spotlight in Cancer Therapy. J Med Chem 2025; 68:2058-2088. [PMID: 39904718 DOI: 10.1021/acs.jmedchem.4c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
PCNA plays multiple roles in cancer development, including cell proliferation regulation, DNA repair, replication, and serving as a widely used biomarker and therapeutic target. Despite its significant role in oncology, PCNA has historically been considered "undruggable" due to the absence of known endogenous small molecule modulators and identifiable ligand binding sites. Unlike other protein-protein interfaces, PCNA lacks explicit binding grooves, featuring a relatively small and shallow surface pocket, which hinders the discovery of traditional small molecule targets. Recent breakthroughs have introduced promising PCNA-targeting candidates, with ATX-101 and AOH1996 entering phase I clinical trials for cancer therapy, garnering academic and industry interest. These achievements provide new evidence for PCNA as a drug target. This article provides insight and perspective on the application of small-molecule PCNA inhibitors in cancer treatment, covering PCNA function, its relationship with cancer, structural modification of small molecule inhibitors, and discovery strategies.
Collapse
Affiliation(s)
- Tiantian Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Zengtao Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China
- Jiangxi Provincial Key Laboratory of TCM Female Reproductive Health and Related Diseases Research and Transformation, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China
| |
Collapse
|
3
|
Lu S, Lamba M, Wang J, Dong Z. Targeting proliferating cell nuclear antigen enhances ionizing radiation-induced cytotoxicity in prostate cancer cells. Prostate 2024; 84:1456-1467. [PMID: 39219052 DOI: 10.1002/pros.24786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Proliferating cell nuclear antigen (PCNA) is essential for DNA replication and repair, cell growth, and survival. PCNA also enhances androgen receptor (AR) signaling in prostate cancer (PC) cells. We identified a PCNA interaction protein (PIP) box at the N-terminal domain of AR and developed a small peptide PCNA inhibitor R9-AR-PIP containing AR PIP-box. We also identified a series of small molecule PCNA inhibitors (PCNA-Is) that bind directly to PCNA and interrupt PCNA functions. The present study investigated the effects of the PCNA inhibitors on the sensitivity of PC cells to X-ray radiation. METHODS The effects of targeting PCNA on radio sensitivity of PC cells were investigated in four lines of castration-resistant PC (CRPC) cells with different AR expression statuses. The cells were treated with the PCNA inhibitors and X-ray radiation alone or in combination. The effects of the treatment on expression of AR target genes, DNA damage response, DNA damage, homologous recombination repair (HRR), and cytotoxicity were evaluated. RESULTS We found that the androgen response element (ARE) occupancy of the DNA damage response gene PARP1 by AR is significantly attenuated by PCNA-I1S or R9-AR-PIP combined with X-ray radiation, while X-ray radiation alone does not enhance the ARE occupancy. PCNA-I1S or R9-AR-PIP alone significantly inhibits occupancy of the AR-occupied regions (AROR) in PRKDC and XRCC2 genes. R9-AR-PIP and PCNA-I1S inhibit expression of AR-Vs target gene cyclin A2 and show the additive effects with radiation in AR-positive CRPC cells. Targeting PCNA by PCNA-I1S and R9-AR-PIP downregulates expression of DNA damage response genes EXO1, Rad54L, Rad51, and/or PARP1 and shows the additive effects with radiation as compared with their respective controls in AR-positive CRPC LNCaP-AI, 22Rv1, and R1-D567 cells, but not in AR-negative PC-3 cells. R9-AR-PIP and PCNA-I1S elevate the levels of phospho-DNA-PKcs(S2056) and γH2AX, indicating DNA damage in response to radiation in AR-positive cells. The HRR is significantly attenuated by PCNA inhibitors PCNA-I1S, R9-AR-PIP, and T2AA in all four CRPC cells examined, and inhibited by Enzalutamide (Enz) only in 22RV1 cells. The cytotoxicity induced by X-ray radiation in androgen-dependent LNCaP cells is enhanced by Enz and a lower concentration of R9-AR-PIP in the colony formation assay. R9-AR-PIP at higher concentration reduces the colony formation and has an additive effect with X-ray radiation in all AR expressing cells, regardless of AR-FL and AR-Vs, but does not significantly alter the colony formation in AR-negative PC-3 cells. PCNA-I1S attenuates colony formation and has an additive effect with ionizing radiation in all four CRPC cells, regardless of AR expression status. CONCLUSION These data provide a strong rationale for the therapy studies using PCNA-I1S or R9-AR-PIP in combination with X-ray radiation against CRPC tumors in preclinical models.
Collapse
Affiliation(s)
- Shan Lu
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Michael Lamba
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jiang Wang
- Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Zhongyun Dong
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
4
|
Kwan A, Mcdermott-Brown I, Muthana M. Proliferating Cell Nuclear Antigen in the Era of Oncolytic Virotherapy. Viruses 2024; 16:1264. [PMID: 39205238 PMCID: PMC11359830 DOI: 10.3390/v16081264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a well-documented accessory protein of DNA repair and replication. It belongs to the sliding clamp family of proteins that encircle DNA and acts as a mobile docking platform for interacting proteins to mount and perform their metabolic tasks. PCNA presence is ubiquitous to all cells, and when located in the nucleus it plays a role in DNA replication and repair, cell cycle control and apoptosis in proliferating cells. It also plays a crucial role in the infectivity of some viruses, such as herpes simplex viruses (HSVs). However, more recently it has been found in the cytoplasm of immune cells such as neutrophils and macrophages where it has been shown to be involved in the development of a pro-inflammatory state. PCNA is also expressed on the surface of certain cancer cells and can play a role in preventing immune cells from killing tumours, as well as being associated with cancer virulence. Given the growing interest in oncolytic viruses (OVs) as a novel cancer therapeutic, this review considers the role of PCNA in healthy, cancerous, and immune cells to gain an understanding of how PCNA targeted therapy and oncolytic virotherapy may interact in the future.
Collapse
Affiliation(s)
| | | | - Munitta Muthana
- Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (A.K.)
| |
Collapse
|
5
|
Félix-Piña P, Franco Molina MA, García Coronado PL, Prado-Garcia H, Zarate-Triviño DG, Castro-Valenzuela BE, Moreno-Amador KA, Uscanga Palomeque AC, Rodríguez Padilla C. β-D-Glucose-Reduced Silver Nanoparticles Remodel the Tumor Microenvironment in a Murine Model of Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:8432. [PMID: 39126001 PMCID: PMC11312981 DOI: 10.3390/ijms25158432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Breast cancer is the most diagnosed type of cancer worldwide and the second cause of death in women. Triple-negative breast cancer (TNBC) is the most aggressive, and due to the lack of specific targets, it is considered the most challenging subtype to treat and the subtype with the worst prognosis. The present study aims to determine the antitumor effect of beta-D-glucose-reduced silver nanoparticles (AgNPs-G) in a murine model of TNBC, as well as to study its effect on the tumor microenvironment. In an airbag model with 4T1 tumor cell implantation, the administration of AgNPs-G or doxorubicin showed antitumoral activity. Using immunohistochemistry it was demonstrated that treatment with AgNPs-G decreased the expression of PCNA, IDO, and GAL-3 and increased the expression of Caspase-3. In the tumor microenvironment, the treatment increased the percentage of memory T cells and innate effector cells and decreased CD4+ cells and regulatory T cells. There was also an increase in the levels of TNF-α, IFN-γ, and IL-6, while TNF-α was increased in serum. In conclusion, we suggest that AgNPs-G treatment has an antitumor effect that is demonstrated by its ability to remodel the tumor microenvironment in mice with TNBC.
Collapse
Affiliation(s)
- Pedro Félix-Piña
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (P.F.-P.); (P.L.G.C.); (D.G.Z.-T.); (B.E.C.-V.); (A.C.U.P.); (C.R.P.)
| | - Moisés Armides Franco Molina
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (P.F.-P.); (P.L.G.C.); (D.G.Z.-T.); (B.E.C.-V.); (A.C.U.P.); (C.R.P.)
| | - Paola Leonor García Coronado
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (P.F.-P.); (P.L.G.C.); (D.G.Z.-T.); (B.E.C.-V.); (A.C.U.P.); (C.R.P.)
| | - Heriberto Prado-Garcia
- Laboratorio de Onco-Inmunobiologia, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico;
| | - Diana Ginette Zarate-Triviño
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (P.F.-P.); (P.L.G.C.); (D.G.Z.-T.); (B.E.C.-V.); (A.C.U.P.); (C.R.P.)
| | - Beatriz Elena Castro-Valenzuela
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (P.F.-P.); (P.L.G.C.); (D.G.Z.-T.); (B.E.C.-V.); (A.C.U.P.); (C.R.P.)
| | - Kenia Arisbe Moreno-Amador
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (P.F.-P.); (P.L.G.C.); (D.G.Z.-T.); (B.E.C.-V.); (A.C.U.P.); (C.R.P.)
| | - Ashanti Concepción Uscanga Palomeque
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (P.F.-P.); (P.L.G.C.); (D.G.Z.-T.); (B.E.C.-V.); (A.C.U.P.); (C.R.P.)
| | - Cristina Rodríguez Padilla
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico; (P.F.-P.); (P.L.G.C.); (D.G.Z.-T.); (B.E.C.-V.); (A.C.U.P.); (C.R.P.)
| |
Collapse
|
6
|
Søgaard CK, Otterlei M. Targeting proliferating cell nuclear antigen (PCNA) for cancer therapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:209-246. [PMID: 39034053 DOI: 10.1016/bs.apha.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Proliferating cell nuclear antigen (PCNA) is an essential scaffold protein in many cellular processes. It is best known for its role as a DNA sliding clamp and processivity factor during DNA replication, which has been extensively reviewed by others. However, the importance of PCNA extends beyond its DNA-associated functions in DNA replication, chromatin remodelling, DNA repair and DNA damage tolerance (DDT), as new non-canonical roles of PCNA in the cytosol have recently been identified. These include roles in the regulation of immune evasion, apoptosis, metabolism, and cellular signalling. The diverse roles of PCNA are largely mediated by its myriad protein interactions, and its centrality to cellular processes makes PCNA a valid therapeutic anticancer target. PCNA is expressed in all cells and plays an essential role in normal cellular homeostasis; therefore, the main challenge in targeting PCNA is to selectively kill cancer cells while avoiding unacceptable toxicity to healthy cells. This chapter focuses on the stress-related roles of PCNA, and how targeting these PCNA roles can be exploited in cancer therapy.
Collapse
Affiliation(s)
- Caroline K Søgaard
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway; APIM Therapeutics A/S, Trondheim, Norway.
| |
Collapse
|
7
|
Packard JE, Williams MR, Fromuth DP, Dembowski JA. Proliferating cell nuclear antigen inhibitors block distinct stages of herpes simplex virus infection. PLoS Pathog 2023; 19:e1011539. [PMID: 37486931 PMCID: PMC10399828 DOI: 10.1371/journal.ppat.1011539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/03/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023] Open
Abstract
Proliferating cell nuclear antigen (PCNA) forms a homotrimer that encircles replicating DNA and is bound by DNA polymerases to add processivity to cellular DNA synthesis. In addition, PCNA acts as a scaffold to recruit DNA repair and chromatin remodeling proteins to replicating DNA via its interdomain connecting loop (IDCL). Despite encoding a DNA polymerase processivity factor UL42, it was previously found that PCNA associates with herpes simplex virus type 1 (HSV-1) replication forks and is necessary for productive HSV-1 infection. To define the role that PCNA plays during viral DNA replication or a replication-coupled process, we investigated the effects that two mechanistically distinct PCNA inhibitors, PCNA-I1 and T2AA, have on the HSV-1 infectious cycle. PCNA-I1 binds at the interface between PCNA monomers, stabilizes the homotrimer, and may interfere with protein-protein interactions. T2AA inhibits select protein-protein interactions within the PCNA IDCL. Here we demonstrate that PCNA-I1 treatment results in reduced HSV-1 DNA replication, late gene expression, and virus production, while T2AA treatment results in reduced late viral gene expression and infectious virus production. To pinpoint the mechanisms by which PCNA inhibitors affect viral processes and protein recruitment to replicated viral DNA, we performed accelerated native isolation of proteins on nascent DNA (aniPOND). Results indicate that T2AA inhibits recruitment of the viral uracil glycosylase UL2 and transcription regulatory factors to viral DNA, likely leading to a defect in viral base excision repair and the observed defect in late viral gene expression and infectious virus production. In addition, PCNA-I1 treatment results in decreased association of the viral DNA polymerase UL30 and known PCNA-interacting proteins with viral DNA, consistent with the observed block in viral DNA replication and subsequent processes. Together, we conclude that inhibitors of cellular PCNA block recruitment of key viral and cellular factors to viral DNA to inhibit viral DNA synthesis and coupled processes.
Collapse
Affiliation(s)
- Jessica E. Packard
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Maya R. Williams
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Daniel P. Fromuth
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Jill A. Dembowski
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
8
|
Wu X, Zhen H, Liu Y, Li L, Luo Y, Liu X, Li S, Hao Z, Li M, Hu L, Qiao L, Wang J. Tissue-Specific Expression of Circ_015343 and Its Inhibitory Effect on Mammary Epithelial Cells in Sheep. Front Vet Sci 2022; 9:919162. [PMID: 35836501 PMCID: PMC9275140 DOI: 10.3389/fvets.2022.919162] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) are a kind of non-coding RNA that have an important molecular function in mammary gland development and lactation of mammals. In our previous study, circ_015343 was found to be highly expressed in the ovine mammary gland tissue at the peak-lactation period by using RNA sequencing (RNA-seq). In the present study, the authenticity of circ_015343 was confirmed by using reverse transcriptase-polymerase chain reaction (RT-PCR) analysis and Sanger sequencing. The circ_015343 was derived from the complete 10 exons of aminoadipic semialdehyde synthase (AASS), ranging from exon 2 to exon 11 and mainly located in cytoplasm of ovine mammary epithelial cells. The circRNA was found to be expressed in eight ovine tissues, with the highest expression level in the mammary gland and the least expression in Longissimus dorsi muscle. The circ_015343 had a lower level of expression in a sheep breed with higher milk yield and milk fat content. The disturbed circ_015343 increased the viability and proliferation of the ovine mammary epithelial cells. The inhibition of circ_015343 also increased the expression levels of three milk fat synthesis marker genes: acetyl-coenzyme A carboxylase alpha (ACACA), fatty acid-binding protein 4 (FABP4), and sterol regulatory element-binding protein 1 (SREBP1), as well as three proliferation-related genes: cyclin dependent kinase 2 (CDK2), cyclin dependent kinase 4 (CDK4) and proliferating cell nuclear antigen (PCNA), but decreased the expression level of its parent gene AASS. A circRNA-miRNA-mRNA interaction network showed that circ_015343 would bind some microRNAs (miRNAs) to regulate the expression of functional genes related to the development of mammary gland and lactation. This study contributes to a better understanding of the roles of circ_015343 in the mammary gland of sheep.
Collapse
|
9
|
Zambalde ÉP, Pavan ICB, Mancini MCS, Severino MB, Scudero OB, Morelli AP, Amorim MR, Bispo-dos-Santos K, Góis MM, Toledo-Teixeira DA, Parise PL, Mauad T, Dolhnikoff M, Saldiva PHN, Marques-Souza H, Proenca-Modena JL, Ventura AM, Simabuco FM. Characterization of the Interaction Between SARS-CoV-2 Membrane Protein (M) and Proliferating Cell Nuclear Antigen (PCNA) as a Potential Therapeutic Target. Front Cell Infect Microbiol 2022; 12:849017. [PMID: 35677658 PMCID: PMC9168989 DOI: 10.3389/fcimb.2022.849017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/25/2022] [Indexed: 12/21/2022] Open
Abstract
SARS-CoV-2 is an emerging virus from the Coronaviridae family and is responsible for the ongoing COVID-19 pandemic. In this work, we explored the previously reported SARS-CoV-2 structural membrane protein (M) interaction with human Proliferating Cell Nuclear Antigen (PCNA). The M protein is responsible for maintaining virion shape, and PCNA is a marker of DNA damage which is essential for DNA replication and repair. We validated the M-PCNA interaction through immunoprecipitation, immunofluorescence co-localization, and PLA (Proximity Ligation Assay). In cells infected with SARS-CoV-2 or transfected with M protein, using immunofluorescence and cell fractioning, we documented a reallocation of PCNA from the nucleus to the cytoplasm and the increase of PCNA and γH2AX (another DNA damage marker) expression. We also observed an increase in PCNA and γH2AX expression in the lung of a COVID-19 patient by immunohistochemistry. In addition, the inhibition of PCNA translocation by PCNA I1 and Verdinexor led to a reduction of plaque formation in an in vitro assay. We, therefore, propose that the transport of PCNA to the cytoplasm and its association with M could be a virus strategy to manipulate cell functions and may be considered a target for COVID-19 therapy.
Collapse
Affiliation(s)
- Érika Pereira Zambalde
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, University of Campinas (Unicamp), Limeira, Brazil
| | - Isadora Carolina Betim Pavan
- Laboratory of Signaling Mechanisms, School of Pharmaceutical Sciences, University of Campinas, (Unicamp), Campinas, Brazil
| | - Mariana Camargo Silva Mancini
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, University of Campinas (Unicamp), Limeira, Brazil
| | - Matheus Brandemarte Severino
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, University of Campinas (Unicamp), Limeira, Brazil
| | - Orlando Bonito Scudero
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, University of Campinas (Unicamp), Limeira, Brazil
| | - Mariene Ribeiro Amorim
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Karina Bispo-dos-Santos
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Mariana Marcela Góis
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, University of Campinas (Unicamp), Limeira, Brazil
| | - Daniel A. Toledo-Teixeira
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Pierina Lorencini Parise
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Thais Mauad
- São Paulo University Medical School, Department of Pathology, University of São Paulo (USP), São Paulo, Brazil
| | - Marisa Dolhnikoff
- São Paulo University Medical School, Department of Pathology, University of São Paulo (USP), São Paulo, Brazil
| | | | | | - José Luiz Proenca-Modena
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, Brazil
- Experimental Medicine Research Cluster, University of Campinas (Unicamp), Campinas, Brazil
- Hub of Global Health (HGH), University of Campinas (Unicamp), Campinas, Brazil
| | - Armando Morais Ventura
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, University of Campinas (Unicamp), Limeira, Brazil
| |
Collapse
|
10
|
Lu S, Dong Z. Proliferating cell nuclear antigen directly interacts with androgen receptor and enhances androgen receptor‑mediated signaling. Int J Oncol 2021; 59:41. [PMID: 33982774 DOI: 10.3892/ijo.2021.5221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Androgen receptor (AR) and/or its constitutively active splicing variants (AR‑Vs), such as AR‑V7 and ARv567es, is required for prostate cancer cell growth and survival, and cancer progression. Proliferating cell nuclear antigen (PCNA) is preferentially overexpressed in all cancers and executes its functions through interaction with numerous partner proteins. The aim of the present study was to investigate the potential role of PCNA in the regulation of AR activity. An identical consensus sequence of the PCNA‑interacting protein‑box (PIP‑box) was identified at the N‑terminus of human, mouse and rat AR proteins. It was found that PCNA complexes with the full‑length AR (AR‑FL) and AR‑V7, which can be attenuated by the small molecule PIP‑box inhibitor, T2AA. PCNA also complexes with ARv567es and recombinant AR protein. The PCNA inhibitors, PCNA‑I1S and T2AA, inhibited AR transcriptional activity and the expression of AR target genes in LNCaP‑AI and 22Rv1 cells, but not in AR‑negative PC‑3 cells. The knockdown of PCNA expression reduced dihydrotestosterone‑stimulated AR transcriptional activity and abolished the inhibitory effect of PCNA‑I1S on AR activity. The PCNA inhibitor, PCNA‑I1, exerted additive growth inhibitory effects with androgen deprivation and enzalutamide in cells expressing AR‑FL or AR‑FL/AR‑V7, but not in AR‑negative PC‑3 cells. Finally, R9‑AR‑PIP, a small peptide mimicking AR PIP‑box, was found to bind to GFP‑PCNA at Kd of 2.73 µM and inhibit the expression of AR target genes, AR transcriptional activity and the growth of AR‑expressing cells. On the whole, these data strongly suggest that AR is a PCNA partner protein and interacts with PCNA via the PIP‑box and that targeting the PCNA‑AR interaction may represent an innovative and selective therapeutic strategy against prostate cancer, particularly castration‑resistant prostate cancers overexpressing constitutively active AR‑Vs.
Collapse
Affiliation(s)
- Shan Lu
- Division of Hematology‑Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zhongyun Dong
- Division of Hematology‑Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
11
|
Patel SM, Dash RC, Hadden MK. Translesion synthesis inhibitors as a new class of cancer chemotherapeutics. Expert Opin Investig Drugs 2021; 30:13-24. [PMID: 33179552 PMCID: PMC7832080 DOI: 10.1080/13543784.2021.1850692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/10/2020] [Indexed: 10/23/2022]
Abstract
Introduction: Translesion synthesis (TLS) is a DNA damage tolerance mechanism that replaces the replicative DNA polymerase with a specialized, low-fidelity TLS DNA polymerase that can copy past DNA lesions during active replication. Recent studies have demonstrated a primary role for TLS in replicating past DNA lesions induced by first-line genotoxic agents, resulting in decreased efficacy and acquired chemoresistance. With this in mind, targeting TLS as a combination strategy with first-line genotoxic agents has emerged as a promising approach to develop a new class of anti-cancer adjuvant agents. Areas covered: In this review, we provide a brief background on TLS and its role in cancer. We also discuss the identification and development of inhibitors that target various TLS DNA polymerases or key protein-protein interactions (PPIs) in the TLS machinery. Expert opinion: TLS inhibitors have demonstrated initial promise; however, their continued study is essential to more fully understand the clinical potential of this emerging class of anti-cancer chemotherapeutics. It will be important to determine whether a specific protein involved in TLS is an optimal target. In addition, an expanded understanding of what current genotoxic chemotherapies synergize with TLS inhibitors will guide the clinical strategies for devising combination therapies.
Collapse
Affiliation(s)
- Seema M Patel
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, CT, United States
| | - Radha Charan Dash
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, CT, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, CT, United States
| |
Collapse
|
12
|
Štampar M, Breznik B, Filipič M, Žegura B. Characterization of In Vitro 3D Cell Model Developed from Human Hepatocellular Carcinoma (HepG2) Cell Line. Cells 2020; 9:E2557. [PMID: 33260628 PMCID: PMC7759933 DOI: 10.3390/cells9122557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
In genetic toxicology, there is a trend against the increased use of in vivo models as highlighted by the 3R strategy, thus encouraging the development and implementation of alternative models. Two-dimensional (2D) hepatic cell models, which are generally used for studying the adverse effects of chemicals and consumer products, are prone to giving misleading results. On the other hand, newly developed hepatic three-dimensional (3D) cell models provide an attractive alternative, which, due to improved cell interactions and a higher level of liver-specific functions, including metabolic enzymes, reflect in vivo conditions more accurately. We developed an in vitro 3D cell model from the human hepatocellular carcinoma (HepG2) cell line. The spheroids were cultured under static conditions and characterised by monitoring their growth, morphology, and cell viability during the time of cultivation. A time-dependent suppression of cell division was observed. Cell cycle analysis showed time-dependent accumulation of cells in the G0/G1 phase. Moreover, time-dependent downregulation of proliferation markers was shown at the mRNA level. Genes encoding hepatic markers, metabolic phase I/II enzymes, were time-dependently deregulated compared to monolayers. New knowledge on the characteristics of the 3D cell model is of great importance for its further development and application in the safety assessment of chemicals, food products, and complex mixtures.
Collapse
Affiliation(s)
- Martina Štampar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.Š.); (B.B.); (M.F.)
- Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.Š.); (B.B.); (M.F.)
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.Š.); (B.B.); (M.F.)
- Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.Š.); (B.B.); (M.F.)
- Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Cardano M, Tribioli C, Prosperi E. Targeting Proliferating Cell Nuclear Antigen (PCNA) as an Effective Strategy to Inhibit Tumor Cell Proliferation. Curr Cancer Drug Targets 2020; 20:240-252. [PMID: 31951183 DOI: 10.2174/1568009620666200115162814] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022]
Abstract
Targeting highly proliferating cells is an important issue for many types of aggressive tumors. Proliferating Cell Nuclear Antigen (PCNA) is an essential protein that participates in a variety of processes of DNA metabolism, including DNA replication and repair, chromatin organization and transcription and sister chromatid cohesion. In addition, PCNA is involved in cell survival, and possibly in pathways of energy metabolism, such as glycolysis. Thus, the possibility of targeting this protein for chemotherapy against highly proliferating malignancies is under active investigation. Currently, approaches to treat cells with agents targeting PCNA rely on the use of small molecules or on peptides that either bind to PCNA, or act as a competitor of interacting partners. Here, we describe the status of the art in the development of agents targeting PCNA and discuss their application in different types of tumor cell lines and in animal model systems.
Collapse
Affiliation(s)
- Miriana Cardano
- Istituto di Genetica Molecolare del C.N.R. "Luca Cavalli-Sforza", Pavia- 27100, Italy
| | - Carla Tribioli
- Istituto di Genetica Molecolare del C.N.R. "Luca Cavalli-Sforza", Pavia- 27100, Italy
| | - Ennio Prosperi
- Istituto di Genetica Molecolare del C.N.R. "Luca Cavalli-Sforza", Pavia- 27100, Italy
| |
Collapse
|
14
|
Lu S, Dong Z. Additive effects of a small molecular PCNA inhibitor PCNA-I1S and DNA damaging agents on growth inhibition and DNA damage in prostate and lung cancer cells. PLoS One 2019; 14:e0223894. [PMID: 31600334 PMCID: PMC6786632 DOI: 10.1371/journal.pone.0223894] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is essential for DNA replication and repair, and cell growth and survival. Previously, we identified a novel class of small molecules that bind directly to PCNA, stabilize PCNA trimer structure, reduce chromatin-associated PCNA, selectively inhibit tumor cell growth, and induce apoptosis. The purpose of this study was to investigate the combinatorial effects of lead compound PCNA-I1S with DNA damaging agents on cell growth, DNA damage, and DNA repair in four lines of human prostate and lung cancer cells. The DNA damage agents used in the study include ionizing radiation source cesium-137 (Cs-137), chemotherapy drug cisplatin (cisPt), ultraviolet-C (UV-C), and oxidative compound H2O2. DNA damage was assessed using immunofluorescent staining of γH2AX and the Comet assay. The homologous recombination repair (HRR) was determined using a plasmid-based HRR reporter assay and the nucleotide excision repair (NER) was indirectly examined by the removal of UV-induced cyclobutane pyrimidine dimers (CPD). We found that PCNA-I1S inhibited cell growth in a dose-dependent manner and significantly enhanced the cell growth inhibition induced by pretreatment with DNA damaging agents Cs-137 irradiation, UV-C, and cisPt. However, the additive growth inhibitory effects were not observed in cells pre-treated with PCNA-I1S, followed by treatment with cisPt. H2O2 enhanced the level of chromatin-bound PCNA in quiescent cells, which was attenuated by PCNA-I1S. DNA damage was induced in cells treated with either PCNA-I1S or cisPt alone and was significantly elevated in cells exposed to the combination of PCNA-I1S and cisPt. Finally, PCNA-I1S attenuated repair of DNA double strand breaks (DSBs) by HRR and the removal of CPD by NER. These data suggest that targeting PCNA with PCNA-I1S may provide a novel approach for enhancing the efficacy of chemotherapy and radiation therapy in treatment of human prostate and lung cancer.
Collapse
Affiliation(s)
- Shan Lu
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Zhongyun Dong
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
15
|
Perumal SK, Xu X, Yan C, Ivanov I, Benkovic SJ. Recognition of a Key Anchor Residue by a Conserved Hydrophobic Pocket Ensures Subunit Interface Integrity in DNA Clamps. J Mol Biol 2019; 431:2493-2510. [PMID: 31051173 DOI: 10.1016/j.jmb.2019.04.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/22/2019] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
Abstract
Sliding clamp proteins encircle duplex DNA and are involved in processive DNA replication and the DNA damage response. Clamp proteins are ring-shaped oligomers (dimers or trimers) and are loaded onto DNA by an ATP-dependent clamp loader complex that ruptures the interface between two adjacent subunits. Here we measured the solution dynamics of the human clamp protein, proliferating cell nuclear antigen, by monitoring the change in the fluorescence of a site-specifically labeled. To unravel the origins of clamp subunit interface stability, we carried out comprehensive comparative analysis of the interfaces of seven sliding clamps. We used computational modeling (molecular dynamic simulations and MM/GBSA binding energy decomposition analyses) to identify conserved networks of hydrophobic residues critical for clamp stability and ring-opening dynamics. The hydrophobic network is shared among clamp proteins and exhibits a "key in a keyhole" pattern where a bulky aromatic residue from one clamp subunit is anchored into a hydrophobic pocket of the opposing subunit. Bioinformatics and dynamic network analyses showed that this oligomeric latch is conserved across DNA sliding clamps from all domains of life and dictates the dynamics of clamp opening and closing.
Collapse
Affiliation(s)
- Senthil K Perumal
- Department of Chemistry, 414 Wartik Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaojun Xu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Chunli Yan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Ivaylo Ivanov
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA.
| | - Stephen J Benkovic
- Department of Chemistry, 414 Wartik Laboratory, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
16
|
Huff SE, Mohammed FA, Yang M, Agrawal P, Pink J, Harris ME, Dealwis CG, Viswanathan R. Structure-Guided Synthesis and Mechanistic Studies Reveal Sweetspots on Naphthyl Salicyl Hydrazone Scaffold as Non-Nucleosidic Competitive, Reversible Inhibitors of Human Ribonucleotide Reductase. J Med Chem 2018; 61:666-680. [PMID: 29253340 PMCID: PMC5808567 DOI: 10.1021/acs.jmedchem.7b00530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribonucleotide reductase (RR), an established cancer target, is usually inhibited by antimetabolites, which display multiple cross-reactive effects. Recently, we discovered a naphthyl salicyl acyl hydrazone-based inhibitor (NSAH or E-3a) of human RR (hRR) binding at the catalytic site (C-site) and inhibiting hRR reversibly. We herein report the synthesis and biochemical characterization of 25 distinct analogs. We designed each analog through docking to the C-site of hRR based on our 2.7 Å X-ray crystal structure (PDB ID: 5TUS). Broad tolerance to minor structural variations preserving inhibitory potency is observed. E-3f (82% yield) displayed an in vitro IC50 of 5.3 ± 1.8 μM against hRR, making it the most potent in this series. Kinetic assays reveal that E-3a, E-3c, E-3t, and E-3w bind and inhibit hRR through a reversible and competitive mode. Target selectivity toward the R1 subunit of hRR is established, providing a novel way of inhibition of this crucial enzyme.
Collapse
Affiliation(s)
- Sarah E. Huff
- Department of Chemistry, Case Western Reserve University, College of Arts and Sciences, Millis Science Center: Rm 216, 2074, Adelbert Road, Cleveland, OH 44106-7078
| | - Faiz Ahmad Mohammed
- Department of Pharmacology, Case Western Reserve University, School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106
| | - Mu Yang
- Department of Chemistry, Case Western Reserve University, College of Arts and Sciences, Millis Science Center: Rm 216, 2074, Adelbert Road, Cleveland, OH 44106-7078
| | - Prashansa Agrawal
- Department of Chemistry, Case Western Reserve University, College of Arts and Sciences, Millis Science Center: Rm 216, 2074, Adelbert Road, Cleveland, OH 44106-7078
| | - John Pink
- Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106
| | - Michael E. Harris
- Department of Chemistry, University of Florida, PO Box 117200, Gainseville, FL 32611
| | - Chris G. Dealwis
- Department of Pharmacology, Case Western Reserve University, School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106
- Center for Proteomics and the Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106
| | - Rajesh Viswanathan
- Frank Hovorka Assistant Professor of Chemistry and Scientific Oversight Board Member – Small Molecule Drug Discovery Core, CWRU, 10900 Euclid Ave, Cleveland, OH 44106
- Department of Chemistry, Case Western Reserve University, College of Arts and Sciences, Millis Science Center: Rm 216, 2074, Adelbert Road, Cleveland, OH 44106-7078
| |
Collapse
|
17
|
Wang XH, Chen ZG, Xu RL, Lv CQ, Liu J, Du B. TGF-β1 signaling pathway serves a role in HepG2 cell regulation by affecting the protein expression of PCNA, gankyrin, p115, XIAP and survivin. Oncol Lett 2017; 13:3239-3246. [PMID: 28529566 DOI: 10.3892/ol.2017.5814] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/11/2016] [Indexed: 02/06/2023] Open
Abstract
The transforming growth factor-β (TGF-β) signaling pathway serves a key role in the pathogenesis of liver cancer. To investigate the association between TGF-β1 and the following proteins: Proliferating cell nuclear antigen (PCNA), gankyrin, general vesicular transport factor p115 (p115), X-linked inhibitor of apoptosis protein (XIAP) and survivin, HepG2 liver cancer cells were transfected with small interfering RNA (siRNA) directed against TGF-β1, or were treated with exogenous TGF-β1. TGF-β1 protein expression levels were assessed at 72 and 96 h using western blotting, cell growth was evaluated using a Cell Counting kit-8 assay, and flow cytometry was used to examine cell cycle distribution and apoptosis. In addition, PCNA, gankyrin, p115, XIAP and survivin protein levels were evaluated using western blotting. TGF-β1 protein expression levels were decreased at 72 and 96 h following siRNA transfection, indicating that the siRNA against TGF-β1 was effective. In the TGF-β1-knockdown group, the HepG2 cells exhibited G1 or S-phase cell cycle arrest; therefore, the number of G2-phase cells was decreased, cell growth was inhibited and apoptotic peaks were observed. By contrast, no significant alteration in cell cycle distribution or apoptosis was observed in the cells treated with exogenous TGF-β1. In the exogenous TGF-β1 group, PCNA and XIAP protein expression levels were increased, whereas gankyrin, p115 and survivin protein expression was observed to be dependent on the duration of treatment. By contrast, PCNA, gankyrin, XIAP and survivin protein expression decreased following TGF-β1 knockdown; however, p115 protein expression increased. In conclusion, the TGF-β1 signaling pathway may affect cell growth, cell cycle distribution and apoptosis through the regulation of PCNA, gankyrin, p115, XIAP and survivin protein expression in liver cancer. The results of the present study may improve the current understanding of the role of the TGF-β signaling pathway during the pathogenesis of liver cancer.
Collapse
Affiliation(s)
- Xin-Hong Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Zhi-Guo Chen
- Center of Educational Technology and Information, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Rui-Ling Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Cheng-Qian Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jing Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Bing Du
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
18
|
Xiong W, Wang X, Hu J, Liu Y, Liu Q, Wang P. Comparative study of two kinds of repeated photodynamic therapy strategies in breast cancer by using a sensitizer, sinoporphyrin sodium. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 160:299-305. [PMID: 27162175 DOI: 10.1016/j.jphotobiol.2016.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 01/10/2023]
Abstract
Sinoporphyrin sodium (DVDMS) is a newly identified photosensitizer that was isolated from Photofrin. Experimental and clinical results have demonstrated that repeated application of PDT greatly improved the therapeutic efficacy. Here, we comparatively studied two kinds of photodynamic therapy (PDT) strategies by using DVDMS (2mg/kg) in murine breast cancer 4T1 xenograft model to provide evidence which strategy exerts a better antitumor effect. Regimen (1): DVDMS was injected one time into tumor-bearing mice, which were then repeatedly exposed to 50J/cm(2) light 24h, 30h and 36h later. Regimen (2): DVDMS was injected 3 times and mice exposed to 50J/cm(2) light 24h after each injection, with 5days intervals between each DVDMS injection. On day 21 after the tumor cell injection, in regimen (1) the tumor volume inhibition ratio was reached to 85.75±7.60%. While at the same day the inhibition ratio was 65.74±8.64% of regimen (2). Additionally, regimen (1) appeared to more effectively initiate tumor tissue destruction and cancer cell apoptosis, inhibit lung metastasis, suppress cancer cell proliferation and angiogenesis. Moreover, no obvious effect on body weight and other side effects were observed in the treated mice. These results suggest that regimen (1) might be a potentially efficient strategy against breast cancer.
Collapse
Affiliation(s)
- Wenli Xiong
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Jianmin Hu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Yichen Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| |
Collapse
|
19
|
Desplancq D, Freund G, Conic S, Sibler AP, Didier P, Stoessel A, Oulad-Abdelghani M, Vigneron M, Wagner J, Mély Y, Chatton B, Tora L, Weiss E. Targeting the replisome with transduced monoclonal antibodies triggers lethal DNA replication stress in cancer cells. Exp Cell Res 2016; 342:145-58. [PMID: 26968636 DOI: 10.1016/j.yexcr.2016.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/29/2016] [Accepted: 03/06/2016] [Indexed: 12/21/2022]
Abstract
Although chemical inhibition of the DNA damage response (DDR) in cancer cells triggers cell death, it is not clear if the fork blockade achieved with inhibitors that neutralise proteins of the replisome is sufficient on its own to overcome the DDR. Monoclonal antibodies to PCNA, which block the DNA elongation process in vitro, have been developed. When these antibodies were transduced into cancer cells, they are able to inhibit the incorporation of nucleoside analogues. When co-delivered with anti-PCNA siRNA, the cells were flattened and the size of their nuclei increased by up to 3-fold, prior to cell death. Analysis of these nuclei by super-resolution microscopy revealed the presence of large numbers of phosphorylated histone H2AX foci. A senescence-like phenotype of the transduced cells was also observed upon delivery of the corresponding Fab molecules or following PCNA gene disruption or when the Fab fragment of an antibody that neutralises DNA polymerase alpha was used. Primary melanoma cells and leukaemia cells that are resistant to chemical inhibitors were similarly affected by these antibody treatments. These results demonstrate that transduced antibodies can trigger a lethal DNA replication stress, which kills cancer cells by abolishing the biological activity of several constituents of the replisome.
Collapse
Affiliation(s)
- Dominique Desplancq
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242, CNRS/Université de Strasbourg, boulevard Sébastien Brant, 67412 Illkirch, France
| | - Guillaume Freund
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242, CNRS/Université de Strasbourg, boulevard Sébastien Brant, 67412 Illkirch, France
| | - Sascha Conic
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, CNRS/Université de Strasbourg, INSERM U964, rue Laurent Fries, 67404 Illkirch, France
| | - Annie-Paule Sibler
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242, CNRS/Université de Strasbourg, boulevard Sébastien Brant, 67412 Illkirch, France
| | - Pascal Didier
- Faculté de Pharmacie, UMR 7213, CNRS/Université de Strasbourg, route du Rhin, 67401 Illkirch, France
| | - Audrey Stoessel
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242, CNRS/Université de Strasbourg, boulevard Sébastien Brant, 67412 Illkirch, France
| | - Mustapha Oulad-Abdelghani
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, CNRS/Université de Strasbourg, INSERM U964, rue Laurent Fries, 67404 Illkirch, France
| | - Marc Vigneron
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242, CNRS/Université de Strasbourg, boulevard Sébastien Brant, 67412 Illkirch, France
| | - Jérôme Wagner
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242, CNRS/Université de Strasbourg, boulevard Sébastien Brant, 67412 Illkirch, France
| | - Yves Mély
- Faculté de Pharmacie, UMR 7213, CNRS/Université de Strasbourg, route du Rhin, 67401 Illkirch, France
| | - Bruno Chatton
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242, CNRS/Université de Strasbourg, boulevard Sébastien Brant, 67412 Illkirch, France
| | - Laszlo Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, CNRS/Université de Strasbourg, INSERM U964, rue Laurent Fries, 67404 Illkirch, France
| | - Etienne Weiss
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242, CNRS/Université de Strasbourg, boulevard Sébastien Brant, 67412 Illkirch, France.
| |
Collapse
|
20
|
Wang X, Hu J, Wang P, Zhang S, Liu Y, Xiong W, Liu Q. Analysis of the in vivo and in vitro effects of photodynamic therapy on breast cancer by using a sensitizer, sinoporphyrin sodium. Theranostics 2015; 5:772-86. [PMID: 25897341 PMCID: PMC4402500 DOI: 10.7150/thno.10853] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 03/06/2015] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy (PDT) is an emerging theranostic modality for various cancers and diseases. Photosensitizers are critical components for PDT. Sinoporphyrin sodium, referred to as DVDMS, is a newly identified photosensitizer that was isolated from Photofrin. Here, we evaluated the effects of DVDMS-mediated PDT (DVDMS-PDT) on tumor cell proliferation and metastasis in the highly metastatic 4T1 cell line and a mouse xenograft model. DVDMS-PDT elicited a potent phototoxic effect in vitro, which was abolished using the reactive oxygen species (ROS) scavenger N-acetylcysteine. In addition, DVDMS-PDT effectively inhibited the migration of 4T1 cells in scratch wound-healing and transwell assays. Using an in vivo mouse model, DVDMS-PDT greatly prolonged the survival time of tumor-bearing mice and inhibited tumor growth and lung metastasis, consistent with in vitro findings. PDT with DVDMS had a greater anti-tumor efficacy than clinically used Photofrin. Moreover, preliminary toxicological results indicate that DVDMS is relatively safe. These results suggest that DVDMS is a promising sensitizer that warrants further development for use in cancer treatment with PDT or other sensitizing agent-based therapies.
Collapse
Affiliation(s)
- Xiaobing Wang
- 1. Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Jianmin Hu
- 1. Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Pan Wang
- 1. Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Shaoliang Zhang
- 2. Qinglong High-Tech Co., Ltd, Yichun, Jiangxi, People's Republic of China
| | - Yichen Liu
- 1. Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Wenli Xiong
- 1. Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Quanhong Liu
- 1. Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|