1
|
İlhan İ, Asci H, Ozmen O, Buyukbayram Hİ, Arlıoglu M, Kurtbolat O. The renoprotective effects of cannabidiol on lipopolysaccharide-induced systemic inflammation model of rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1841-1851. [PMID: 39180672 DOI: 10.1007/s00210-024-03391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
Sepsis-induced renal damage poses a significant threat, necessitating effective therapeutic strategies. Cannabidiol (CBD) has beneficial effects on tissues and their functions by exhibiting antioxidant and anti-inflammatory effects. This study investigates the potential protective effects of CBD in mitigating lipopolysaccharide (LPS)-induced renal injury in Wistar Albino rats. Thirty-two Wistar Albino rats were categorized into control, LPS (5 mg/kg i.p.), LPS + CBD, and CBD (5 mg/kg i.p.) groups. After the experiment, samples were collected for biochemical, genetic, histopathological, and immunohistochemical analyses. Oxidative stress markers as total oxidant status (TOS) and total antioxidant status (TAS), oxidative stress index (OSI), superoxide dismutase (SOD), glutathione peroxidase (GPx), malondialdehyde (MDA), immune staining as tumor necrosis factor alpha (TNF-α), interleukin-10 (IL-10), caspase-3, gene expressions as nuclear factor erythroid 2-related factor 2 (NRF2), C/EBP homologous protein (CHOP), caspase-9, glucose-regulating protein 78 (GRP78), B-cell leukemia/lymphoma 2 (Bcl2), and tissue histology have been examined. The LPS-exposed group exhibited significant renal abnormalities, mitigated by CBD intervention in the LPS + CBD group. CBD reduced immunoexpression scores for TNF-α, caspase-3, and IL-10. Biochemically, CBD induced a positive shift in the oxidative balance, increasing TAS, SOD, and GPx, while decreasing TOS, OSI, and MDA levels. Genetic analyses highlighted CBD's regulatory impact on NRF2, CHOP, caspase-9, GRP78, and Bcl2, providing molecular insights into its protective role against LPS-induced renal damage. This study underscores CBD as a promising protective agent against sepsis-induced renal damage. Our findings could provide valuable insights into potential therapeutic avenues for addressing renal complications in sepsis.
Collapse
Affiliation(s)
- İlter İlhan
- Department of Biochemistry, Faculty of Medicine, Suleyman Demirel University, Isparta, 32200, Turkey.
| | - Halil Asci
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Halil İbrahim Buyukbayram
- Department of Biochemistry, Faculty of Medicine, Suleyman Demirel University, Isparta, 32200, Turkey
| | - Melih Arlıoglu
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Okan Kurtbolat
- Department of Pharmacology, Institute of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
2
|
Dong T, Li J, Liang X, Wang W, Chen M, Yang G, Wu D. Cannabidiol Ameliorates Doxorubicin-Induced Myocardial Injury via Activating Hippo Pathway. Drug Des Devel Ther 2025; 19:569-583. [PMID: 39876987 PMCID: PMC11774276 DOI: 10.2147/dddt.s497323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
Background Doxorubicin (DOX) is a chemotherapeutic agent widely used for cancer treatment and has non-negligible cardiotoxicity. Some previous studies have reported that cannabidiol (CBD) has cardioprotective effects. In this study, we evaluated the protective effects of CBD against DOX-induced cardiomyocyte injury, and explored the downstream molecular mechanism. Methods and Materials GSE193861, containing healthy myocardial tissues and myocardial tissues with DOX-induced injury, was analyzed to screen for the involved proteins and pathways. Molecular docking was performed to identify candidate drugs. After H9c2 cells were treated with DOX and CBD, their viability, oxidative stress, and apoptosis were assessed. After YAP depletion, the role of the Hippo pathway in CBD function was investigated. C57BL/6 mice were treated with DOX to establish an in vivo model, and CBD and verteporfin (VP) were used to treat the mice. Histological analyses and immunofluorescence were used to evaluate myocardial tissue injury, and apoptosis and oxidative stress of the myocardial tissues were also analyzed. Western blotting was used to investigate the regulatory effects of CBD on the Hippo and apoptosis-related pathways. Results Bioinformatic analysis suggested that the Hippo pathway was a crucial pathway involved in DOX-induced myocardial injury. Molecular docking showed that CBD targeted multiple regulators of the Hippo pathway. CBD showed cardioprotective effects against DOX-induced myocardial injury both in vitro and in vivo and regulated Hippo pathway activity in cardiomyocytes. After inactivation of the Hippo pathway by YAP knockdown or VP intervention, the protective effects of CBD were reversed. Conclusion For the first time, we revealed that CBD is likely to reduce DOX-induced myocardial injury by regulating the Hippo signaling pathway.
Collapse
Affiliation(s)
- Tianwei Dong
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, 154000, People’s Republic of China
| | - Jinlian Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, 154007, People’s Republic of China
| | - Xinfang Liang
- Department of Cardiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, 154002, People’s Republic of China
| | - Wang Wang
- Department of Cardiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, 154002, People’s Republic of China
| | - Meichi Chen
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, 154000, People’s Republic of China
| | - Guangyuan Yang
- Cardiovascular Medicine, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, 154002, People’s Republic of China
| | - Dongmei Wu
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, 154000, People’s Republic of China
| |
Collapse
|
3
|
Wainwright CL, Walsh SK. Pharmacology of Non-Psychoactive Phytocannabinoids and Their Potential for Treatment of Cardiometabolic Disease. Handb Exp Pharmacol 2025; 287:61-93. [PMID: 39235486 DOI: 10.1007/164_2024_731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The use of Cannabis sativa by humans dates back to the third millennium BC, and it has been utilized in many forms for multiple purposes, including production of fibre and rope, as food and medicine, and (perhaps most notably) for its psychoactive properties for recreational use. The discovery of Δ9-tetrahydrocannabinol (Δ9-THC) as the main psychoactive phytocannabinoid contained in cannabis by Gaoni and Mechoulam in 1964 (J Am Chem Soc 86, 1646-1647), was the first major step in cannabis research; since then the identification of the chemicals (phytocannabinoids) present in cannabis, the classification of the pharmacological targets of these compounds and the discovery that the body has its own endocannabinoid system (ECS) have highlighted the potential value of cannabis-derived compounds in the treatment of many diseases, such as neurological disorders and cancers. Although the use of Δ9-THC as a therapeutic agent is constrained by its psychoactive properties, there is growing evidence that non-psychoactive phytocannabinoids, derived from both Cannabis sativa and other plant species, as well as non-cannabinoid compounds found in Cannabis sativa, have real potential as therapeutics. This chapter will focus on the possibilities for using these compounds in the prevention and treatment of cardiovascular disease and related metabolic disturbances.
Collapse
Affiliation(s)
- Cherry L Wainwright
- Centre for Cardiometabolic Health Research, School of Pharmacy & Life Sciences, Robert Gordon University, Aberdeen, Scotland, UK.
| | - Sarah K Walsh
- Centre for Cardiometabolic Health Research, School of Pharmacy & Life Sciences, Robert Gordon University, Aberdeen, Scotland, UK
| |
Collapse
|
4
|
Mesas C, Moreno J, Doello K, Peña M, López-Romero JM, Prados J, Melguizo C. Cannabidiol effects in stem cells: A systematic review. Biofactors 2025; 51:e2148. [PMID: 39653426 DOI: 10.1002/biof.2148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024]
Abstract
Stem cells play a critical role in human tissue regeneration and repair. In addition, cancer stem cells (CSCs), subpopulations of cancer cells sharing similar characteristics as normal stem cells, are responsible for tumor metastasis and resistance to chemo- and radiotherapy and to tumor relapse. Interestingly, all stem cells have cannabinoid receptors, such as cannabidiol (CBD), that perform biological functions. The aim of this systematic review was to analyze the effect of CBD on both somatic stem cells (SSCs) and CSCs. Of the 276 articles analyzed, 38 were selected according to the inclusion and exclusion criteria. A total of 27 studied the effect of CBD on SSCs, finding that 44% focused on CBD differentiation effect and 56% on its protective activity. On the other hand, 11 articles looked at the effect of CBD on CSCs, including glioblastoma (64%), lung cancer (27%), and breast cancer (only one article). Our results showed that CBD exerted a differentiating and protective effect on SCCs. In addition, this molecule demonstrated an antiproliferative effect on some CSCs, although most of the analyses were performed in vitro. Therefore, although in vivo studies should be necessary to justify its clinical use, CBD and its receptors could be a specific target to act on both SSCs and CSCs.
Collapse
Affiliation(s)
- Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (ibs.GRANADA), Granada, Spain
| | - Javier Moreno
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Kevin Doello
- Instituto de Investigación Biosanitaria de Granada, (ibs.GRANADA), Granada, Spain
- Service of Medical Oncology, Hospital Virgen de las Nieves, Granada, Spain
| | - Mercedes Peña
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (ibs.GRANADA), Granada, Spain
| | - Juan M López-Romero
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Málaga, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (ibs.GRANADA), Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
5
|
Pędzińska-Betiuk A, Gergs U, Weresa J, Remiszewski P, Harasim-Symbor E, Malinowska B. Comparison of Cardioprotective Potential of Cannabidiol and β-Adrenergic Stimulation Against Hypoxia/Reoxygenation Injury in Rat Atria and Ventricular Papillary Muscles. Pharmaceuticals (Basel) 2024; 17:1379. [PMID: 39459019 PMCID: PMC11509923 DOI: 10.3390/ph17101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Hypoxia is one of the most significant pathogenic factors in cardiovascular diseases. Preclinical studies suggest that nonpsychoactive cannabidiol (CBD) and β-adrenoceptor stimulation might possess cardioprotective potential against ischemia-reperfusion injury. The current study evaluates the influence of hypoxia-reoxygenation (H/R) on the function of atria and ventricular papillary muscles in the presence of CBD and the nonselective β-adrenoceptor agonist isoprenaline (ISO). METHODS The concentration curves for ISO were constructed in the presence of CBD (1 µM) before or after H/R. In chronic experiments (CBD 10 mg/kg, 14 days), the left atria isolated from spontaneously hypertensive (SHR) and their normotensive control (WKY) rats were subjected to H/R following ISO administration. RESULTS Hypoxia decreased the rate and force of contractions in all compartments. The right atria were the most resistant to hypoxia regardless of prior β-adrenergic stimulation. Previous β-adrenergic stimulation improved recovery in isolated left atria and right (but not left) papillary muscles. Acute (but not chronic) CBD administration increased the effects of ISO in left atria and right (but not left) papillary muscles. Hypertension accelerates left atrial recovery during reoxygenation. CONCLUSIONS H/R directly modifies the function of particular cardiac compartments in a manner dependent on cardiac region and β-adrenergic prestimulation. The moderate direct cardioprotective potential of CBD and β-adrenergic stimulation against H/R is dependent on the cardiac region, and it is less than in the whole heart with preserved coronary flow. In clinical terms, our research expands the existing knowledge about the impact of cannabidiol on cardiac ischemia, the world's leading cause of death.
Collapse
Affiliation(s)
- Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland; (J.W.); (P.R.); (B.M.)
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany;
| | - Jolanta Weresa
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland; (J.W.); (P.R.); (B.M.)
| | - Patryk Remiszewski
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland; (J.W.); (P.R.); (B.M.)
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland; (J.W.); (P.R.); (B.M.)
| |
Collapse
|
6
|
Ozmen O, Asci H, Uysal D, Ilhan I, Taner R, Arlıoglu M, Milletsever A, Tasan S. The prophylactic and therapeutic effects of cannabidiol on lung injury secondary to cardiac ischemia model in rats via PERK/NRF2/CHOP/BCL2 pathway. Immunopharmacol Immunotoxicol 2024:1-10. [PMID: 39048516 DOI: 10.1080/08923973.2024.2384904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Inflammation and oxidative stress are key players in lung injury stemming from cardiac ischemia (LISCI). Cannabidiol (CBD) demonstrates tissue-protective properties through its antioxidant, anti-inflammatory, and anti-apoptotic characteristics. This study aims to assess the preventive (p-CBD) and therapeutic (t-CBD) effects of CBD on LISCI. METHODS Forty male Wistar Albino rats were divided into four groups: control (CON), LISCI, p-CBD, and t-CBD. The left anterior descending coronary artery was ligated for 30 min of ischemia followed by 30 min of reperfusion. Lung tissues were then extracted for histopathological, immunohistochemical, genetic, and biochemical analyses. RESULTS Histopathologically, marked hyperemia, increased septal tissue thickness, and inflammatory cell infiltrations were observed in the lung tissues of the LISCI group. Spectrophotometrically, total oxidant status and oxidative stress index levels were elevated, while total antioxidant status levels were decreased. Immunohistochemically, expressions of cyclooxygenase-1 (COX1), granulocyte colony-stimulating factor (GCSF), interleukin-6 (IL6) were increased. In genetic analyses, PERK and CHOP expressions were increased, whereas Nuclear factor erythroid 2-related factor 2 (NRF2) and B-cell leukemia/lymphoma 2 protein (BCL2) expressions were decreased. These parameters were alleviated by both prophylactic and therapeutic CBD treatment protocols. CONCLUSION In LISCI-induced damage, both endoplasmic reticulum and mitochondrial stress, along with oxidative and inflammatory markers, were triggered, resulting in lung cell damage. However, both p-CBD and t-CBD treatments effectively reversed these mechanisms, normalizing all histopathological, biochemical, and PCR parameters.
Collapse
Affiliation(s)
- Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Halil Asci
- Department of Medical Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Dincer Uysal
- Department of Cardiovascular Surgery, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Ilter Ilhan
- Department of Biochemistry, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Rumeysa Taner
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta, Turkey
| | - Melih Arlıoglu
- Department of Medical Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Adem Milletsever
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Serife Tasan
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
7
|
Naya NM, Kelly J, Hogwood A, Abbate A, Toldo S. Therapeutic potential of cannabidiol (CBD) in the treatment of cardiovascular diseases. Expert Opin Investig Drugs 2024; 33:699-712. [PMID: 38703078 DOI: 10.1080/13543784.2024.2351513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Cannabidiol (CBD) is the primary non-psychoactive chemical derived from Cannabis Sativa, and its growing popularity is due to its potential therapeutic properties while avoiding the psychotropic effects of other phytocannabinoids, such as tetrahydrocannabinol (THC). Numerous pre-clinical studies in cellular and animal models and human clinical trials have demonstrated a positive impact of CBD on physiological and pathological processes. Recently, the FDA approved its use for the treatment of seizures, and clinical trials to test the efficacy of CBD in myocarditis and pericarditis are ongoing. AREAS COVERED We herein reviewed the current literature on the reported effects of CBD in the cardiovascular system, highlighting the physiological effects and the outcomes of using CBD as a therapeutic tool in pathological conditions to address this significant global health concern. EXPERT OPINION The comprehensive examination of the literature emphasizes the potential of CBD as a therapeutic option for treating cardiovascular diseases through its anti-inflammatory, vasodilatory, anti-fibrotic, and antioxidant properties in different conditions such as diabetic cardiomyopathy, myocarditis, doxorubicin-induced cardiotoxicity, and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Nadia Martinez Naya
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jazmin Kelly
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Austin Hogwood
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Stefano Toldo
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
8
|
Pędzińska-Betiuk A, Schlicker E, Weresa J, Malinowska B. Re-evaluation of the cardioprotective effects of cannabinoids against ischemia-reperfusion injury according to the IMproving Preclinical Assessment of Cardioprotective Therapies (IMPACT) criteria. Front Pharmacol 2024; 15:1382995. [PMID: 38873412 PMCID: PMC11170160 DOI: 10.3389/fphar.2024.1382995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/05/2024] [Indexed: 06/15/2024] Open
Abstract
Ischemic heart disease, associated with high morbidity and mortality, represents a major challenge for the development of drug-based strategies to improve its prognosis. Results of pre-clinical studies suggest that agonists of cannabinoid CB2 receptors and multitarget cannabidiol might be potential cardioprotective strategies against ischemia-reperfusion injury. The aim of our study was to re-evaluate the cardioprotective effects of cannabinoids against ischemia-reperfusion injury according to the IMproving Preclinical Assessment of Cardioprotective Therapies (IMPACT) criteria published recently by the European Union (EU) CARDIOPROTECTION COST ACTION. To meet the minimum criteria of those guidelines, experiments should be performed (i) on healthy small animals subjected to ischemia with reperfusion lasting for at least 2 hours and (ii) confirmed in small animals with comorbidities and co-medications and (iii) in large animals. Our analysis revealed that the publications regarding cardioprotective effects of CB2 receptor agonists and cannabidiol did not meet all three strict steps of IMPACT. Thus, additional experiments are needed to confirm the cardioprotective activities of (endo)cannabinoids mainly on small animals with comorbidities and on large animals. Moreover, our publication underlines the significance of the IMPACT criteria for a proper planning of preclinical experiments regarding cardiac ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Jolanta Weresa
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
9
|
Zhuang Q, Li M, Hu D, Li J. Recent advances in potential targets for myocardial ischemia reperfusion injury: Role of macrophages. Mol Immunol 2024; 169:1-9. [PMID: 38447462 DOI: 10.1016/j.molimm.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a complex process that occurs when blood flow is restored after myocardium infarction (MI) with exacerbated tissue damage. Macrophages, essential cell type of the immune response, play an important role in MIRI. Macrophage subpopulations, namely M1 and M2, are distinguished by distinct phenotypes and functions. In MIRI, macrophages infiltrate in infarcted area, shaping the inflammatory response and influencing tissue healing. Resident cardiac macrophages interact with monocyte-derived macrophages in MIRI, and influence injury progression. Key factors including chemokines, cytokines, and toll-like receptors modulate macrophage behavior in MIRI. This review aims to address recent findings on the classification and the roles of macrophages in the myocardium, spanning from MI to subsequent MIRI, and highlights various signaling pathways implicated in macrophage polarization underlining the complexity of MIRI. This article will shed light on developing advanced therapeutic strategies for MIRI management.
Collapse
Affiliation(s)
- Qigang Zhuang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mingyue Li
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junyi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
10
|
Dogan Unlu M, Uysal D, Karakuyu NF, Asci S, Ozmen O, Tepebasi MY. Investigation of neuroprotective and therapeutic effects of cannabidiol in an acute coronary syndrome model. Neurosci Lett 2024; 825:137689. [PMID: 38401641 DOI: 10.1016/j.neulet.2024.137689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/09/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
PURPOSE The ischemia-reperfusion (I/R) injury seen in the heart can cause severe damage to essential organs such as the brain. Cannabidiol (CBD) obtained from Cannabis sativa is used today to treat various diseases. This study aimed to demonstrate CBD's neuroprotective and therapeutic properties in rats with brain damage caused by I/R in the heart. MATERIALS Rats were divided into four groups; sham, I/R, I/R + Prophylactic CBD, and I/R + Therapeutic CBD. End of the experiment, brain tissues were collected for biochemical, histopathological, and genetic examinations. RESULTS I/R damage increased the number of degenerative neurons, caspase-3 and TNF-α immunoexpression, total oxidant status levels, and oxidative stress index. Both prophylactic and therapeutic CBD administration reduced these increased values. In addition, the relative fold changes of AMPK, PGC-1α, SIRT1, and Bcl 2 decreased in the I/R group, and the relative fold change of Bax increased, which are indicators of ER stress and apoptosis. Both administrations of CBD reversed these genes' relative fold changes. CONCLUSION CBD can be protective against brain injury caused by cardiac I/R damage through antioxidant, anti-inflammatory, and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- M Dogan Unlu
- Department of Neurology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - D Uysal
- Department of Cardiovascular Surgery, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - N F Karakuyu
- Department of Pharmacology, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey.
| | - S Asci
- Department of Neurology, Private MEDDEM Hospital, Isparta, Turkey.
| | - O Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
| | - M Y Tepebasi
- Department of Medical Genetics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| |
Collapse
|
11
|
Martinez Naya N, Kelly J, Corna G, Golino M, Polizio AH, Abbate A, Toldo S, Mezzaroma E. An Overview of Cannabidiol as a Multifunctional Drug: Pharmacokinetics and Cellular Effects. Molecules 2024; 29:473. [PMID: 38257386 PMCID: PMC10818442 DOI: 10.3390/molecules29020473] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Cannabidiol (CBD), a non-psychoactive compound derived from Cannabis Sativa, has garnered increasing attention for its diverse therapeutic potential. This comprehensive review delves into the complex pharmacokinetics of CBD, including factors such as bioavailability, distribution, safety profile, and dosage recommendations, which contribute to the compound's pharmacological profile. CBD's role as a pharmacological inhibitor is explored, encompassing interactions with the endocannabinoid system and ion channels. The compound's anti-inflammatory effects, influencing the Interferon-beta and NF-κB, position it as a versatile candidate for immune system regulation and interventions in inflammatory processes. The historical context of Cannabis Sativa's use for recreational and medicinal purposes adds depth to the discussion, emphasizing CBD's emergence as a pivotal phytocannabinoid. As research continues, CBD's integration into clinical practice holds promise for revolutionizing treatment approaches and enhancing patient outcomes. The evolution in CBD research encourages ongoing exploration, offering the prospect of unlocking new therapeutic utility.
Collapse
Affiliation(s)
- Nadia Martinez Naya
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Jazmin Kelly
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Giuliana Corna
- Interventional Cardiology Department, Hospital Italiano de Buenos Aires, Buenos Aires 1199, Argentina;
| | - Michele Golino
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23220, USA;
- Department of Medicine and Surgery, University of Insubria, 2110 Varese, Italy
| | - Ariel H. Polizio
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23220, USA;
| | - Stefano Toldo
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.H.P.); (A.A.); (S.T.)
| | - Eleonora Mezzaroma
- School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23220, USA
| |
Collapse
|
12
|
Guo Y, Wei R, Deng J, Guo W. Research progress in the management of vascular disease with cannabidiol: a review. J Cardiothorac Surg 2024; 19:6. [PMID: 38172934 PMCID: PMC10765825 DOI: 10.1186/s13019-023-02476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
The morbidity and mortality rates associated with vascular disease (VD) have been gradually increasing. Currently, the most common treatment for VD is surgery, with the progress in drug therapy remaining slow. Cannabidiol (CBD) is a natural extract of Cannabis sativa L. with sedative, analgesic, and nonaddictive properties. CBD binds to 56 cardiovascular-related receptors and exerts extensive regulatory effects on the cardiovascular system, making it a potential pharmacological agent for the management of VD. However, most CBD studies have focused on neurological and cardiac diseases, and research on the management of VD with CBD is still rare. In this review, we summarize the currently available data on CBD in the management of VD, addressing four aspects: the major molecular targets of CBD in VD management, pharmacokinetic properties, therapeutic effects of CBD on common VDs, and side effects. The findings indicate that CBD has anti-anxiety, anti-oxidation, and anti-inflammatory properties and can inhibit abnormal proliferation and apoptosis of vascular smooth muscle and endothelial cells; these effects suggest CBD as a therapeutic agent for atherosclerosis, stress-induced hypertension, diabetes-related vasculopathy, ischemia-reperfusion injury, and vascular damage caused by smoking and alcohol abuse. This study provides a theoretical basis for further research on CBD in the management of VD.
Collapse
Affiliation(s)
- Yilong Guo
- Medical School of Chinese PLA, Beijing, 100037, China
- Department of Vascular and Endovascular Surgery, The First Medical Centre of PLA General Hospital, 28#, Fuxing Road, Beijing, 100037, China
| | - Ren Wei
- Department of Vascular and Endovascular Surgery, The First Medical Centre of PLA General Hospital, 28#, Fuxing Road, Beijing, 100037, China
| | - Jianqing Deng
- Senior Department of Cardiology, The Six Medical Centre of PLA General Hospital, Beijing, 100037, China
| | - Wei Guo
- Medical School of Chinese PLA, Beijing, 100037, China.
- Department of Vascular and Endovascular Surgery, The First Medical Centre of PLA General Hospital, 28#, Fuxing Road, Beijing, 100037, China.
| |
Collapse
|
13
|
Zhang J, Lin C, Jin S, Wang H, Wang Y, Du X, Hutchinson MR, Zhao H, Fang L, Wang X. The pharmacology and therapeutic role of cannabidiol in diabetes. EXPLORATION (BEIJING, CHINA) 2023; 3:20230047. [PMID: 37933286 PMCID: PMC10582612 DOI: 10.1002/exp.20230047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 11/08/2023]
Abstract
In recent years, cannabidiol (CBD), a non-psychotropic cannabinoid, has garnered substantial interest in drug development due to its broad pharmacological activity and multi-target effects. Diabetes is a chronic metabolic disease that can damage multiple organs in the body, leading to the development of complications such as abnormal kidney function, vision loss, neuropathy, and cardiovascular disease. CBD has demonstrated significant therapeutic potential in treating diabetes mellitus and its complications owing to its various pharmacological effects. This work summarizes the role of CBD in diabetes and its impact on complications such as cardiovascular dysfunction, nephropathy, retinopathy, and neuropathy. Strategies for discovering molecular targets for CBD in the treatment of diabetes and its complications are also proposed. Moreover, ways to optimize the structure of CBD based on known targets to generate new CBD analogues are explored.
Collapse
Affiliation(s)
- Jin Zhang
- Department of GeriatricsThe First Hospital of Jilin UniversityChangchunPeople's Republic of China
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingPeople's Republic of China
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Sha Jin
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiPeople's Republic of China
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and EcologyCollege of Life Sciences and OceanographyShenzhen UniversityShenzhenPeople's Republic of China
| | - Mark R. Hutchinson
- Discipline of PhysiologyAdelaide Medical SchoolUniversity of AdelaideThe Commonwealth of AustraliaAdelaideAustralia
- ARC Centre for Nanoscale BioPhotonicsUniversity of AdelaideThe Commonwealth of AustraliaAdelaideAustralia
| | - Huiying Zhao
- Department of GeriatricsThe First Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Le Fang
- Department of NeurologyThe China‐Japan Union Hospital of Jilin UniversityChangchunPeople's Republic of China
| | - Xiaohui Wang
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijingPeople's Republic of China
- Laboratory of Chemical Biology, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople's Republic of China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiPeople's Republic of China
- Beijing National Laboratory for Molecular SciencesBeijingPeople's Republic of China
| |
Collapse
|
14
|
Liu J, Chen B, Lu H, Chen Q, Li JC. Identification of novel candidate biomarkers for acute myocardial infarction by the Olink proteomics platform. Clin Chim Acta 2023; 548:117506. [PMID: 37549822 DOI: 10.1016/j.cca.2023.117506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 07/16/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Both pathological and normal processes depend on proteins. In this study, plasma protein profiles were analyzed by a novel proximity extension assay (PEA) to identify potential pathogenic mechanisms and diagnostic biomarkers in patients diagnosed with acute myocardial infarction (AMI). METHODS In this study, we identified a total of 92 plasma proteins using the Olink Target 96 Cardiovascular III panel in a cohort consisting of 30 healthy controls (HC), 28 patients with unstable angina (UA) and 30 patients with AMI. Subsequently, we conducted a differential expression analysis to identify protein molecules that were specifically expressed in patients with AMI. To gain insights into the potential functional mechanisms of these differentially expressed molecules, we performed Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Following that, the utilization of least absolute shrinkage and selection operator (LASSO) regression facilitated the identification of potential protein biomarkers, enabling the differentiation between AMI and UA. A diagnostic model was subsequently developed through logistic regression, and the effectiveness of these markers was assessed using receiver operating characteristic (ROC) analysis. Ultimately, the diagnostic capabilities of these potential biomarkers were validated in an independent validation cohort consisting of 30 UA cases and 30 AMI cases. RESULTS In this study, a comprehensive analysis of plasma proteins identified a total of 92 proteins. Further analysis using analysis of variance revealed that 25 proteins exhibited specific expression in the AMI group compared to the HC and UA groups. Additionally, KEGG enrichment analysis indicated that these differentially expressed proteins were primarily associated with the activation of cytokine-cytokine receptor interaction, PI3K-Akt signaling pathway, and GnRH signaling pathway. AGRP, TGM2, IL6, GH1, and CA5A were identified through LASSO regression as prospective protein biomarkers for distinguishing between UA and AMI. The diagnostic model comprising these five proteins exhibited exceptional performance in both the discovery and validation datasets, surpassing AUC values of 0.9. CONCLUSION The findings of our study provide additional insights into the involvement of the inflammatory response and AKT cascade response in the development of AMI. Moreover, we have identified potential protein markers that could be utilized for the accurate diagnosis of AMI. These results offer a fresh perspective for clinical decision-making in the context of AMI.
Collapse
Affiliation(s)
- Jun Liu
- Department of Cardiothoracic Surgery and Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China; Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Baofu Chen
- Department of Cardiothoracic Surgery and Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Hongsheng Lu
- Department of Cardiothoracic Surgery and Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Qi Chen
- Department of Cardiothoracic Surgery and Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Ji-Cheng Li
- Department of Cardiothoracic Surgery and Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China; Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Jeon KH, Park SH, Bae WJ, Kim SW, Park HJ, Kim S, Kim TH, Jeon SH, Park I, Park HJ, Kwon Y. Cannabidiol, a Regulator of Intracellular Calcium and Calpain. Cannabis Cannabinoid Res 2023; 8:119-125. [PMID: 35196129 DOI: 10.1089/can.2021.0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cannabidiol (CBD) is one of the most abundant components of Cannabis and has long been used in Cannabis-based preparations. Recently, CBD has become a promising pharmacological agent because of its beneficial properties in the pathophysiology of several diseases. Although CBD is a kind of cannabinoid and acts on cannabinoid receptors (CB1 and CB2), molecular targets involved in diverse therapeutic properties of CBD have not been identified because CBD also interacts with other molecular targets. Considering that CBD alters the intracellular calcium level by which calpain activity is controlled, and both CBD and calpain are associated with various diseases related to calcium signaling, including neurological disorders, this review provides an overview of calpain and calcium signaling as possible molecular targets of CBD. As calpain is known to play an important role in the pathophysiology of neurological disease, a deeper understanding of its relationship with CBD will be meaningful. To understand the role of CBD as a calpain regulator, in silico structural analysis on the binding mode of CBD with calpain was performed.
Collapse
Affiliation(s)
- Kyung-Hwa Jeon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
- Drug Development Research Core Center, Ewha Womans University, Seoul, Republic of Korea
| | - Sang-Hyuck Park
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, Colorado, USA
| | - Woong Jin Bae
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sae Woong Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
- Green Medicine Co., Ltd., Busan, Republic of Korea
| | - Hyo Jung Park
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soomin Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - Seung Hwan Jeon
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ilbum Park
- Yuhan Care Co., Ltd., Yuhan Care R&D Center, Yongin, Republic of Korea
| | - Hyun-Je Park
- Yuhan Care Co., Ltd., Yuhan Natural Product R&D Center, Andong, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
- Drug Development Research Core Center, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Wang F, Li YM, Li RY, Yang YE, Wei M, Ha C. U0126 and BAY11-7082 Inhibit the Progression of Endometriosis in a Rat Model by Suppressing the MEK/ERK/NF-κB Pathway. WOMEN'S HEALTH REPORTS (NEW ROCHELLE, N.Y.) 2023; 4:65-77. [PMID: 36874235 PMCID: PMC9983136 DOI: 10.1089/whr.2021.0151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 04/27/2023]
Abstract
Endometriosis is an aggressive disease. It is the main cause of chronic pelvic pain, dysmenorrhea, and infertility, affecting the well-being of women. This study aimed to explore the role of U0126 and BAY11-7082 in endometriosis (EMs) treatment in rats by targeting the MEK/ERK/NF-κB pathway. The EMs model was generated and the rats were divided into model, dimethyl sulfoxide, U0126, BAY11-708, and control groups (Sham operation group). After 4 weeks of treatment, the rats were sacrificed. Compared with model group, U0126 and BAY11-7082 treatment significantly inhibited ectopic lesion growth, glandular hyperplasia, and interstitial inflammation. Compared to control group, PCNA and MMP9 levels were significantly increased in the eutopic and ectopic endometrial tissues of model group; the levels of MEK/ERK/NF-κB pathway proteins also increased significantly. Compared with model group, MEK, ERK, and NF-κB levels decreased significantly after U0126 treatment and NF-κB protein expression decreased significantly after BAY11-7082 treatment, with no significant difference in MEK and ERK levels. The proliferation and invasion activities of eutopic and ectopic endometrial cells also significantly decreased after U0126 and BAY11-7082 treatment. In summary, our results showed that U0126 and BAY11-7082 inhibited ectopic lesion growth, glandular hyperplasia, and interstitial inflammatory response in EMs rats by inhibiting the MEK/ERK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fang Wang
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Yong Mei Li
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ru Yue Li
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yu E. Yang
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Meng Wei
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Chunfang Ha
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Address correspondence to: Chunfang Ha, MD, Department of Obstetrics and Gynecology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
17
|
Atalay Ekiner S, Gęgotek A, Skrzydlewska E. The molecular activity of cannabidiol in the regulation of Nrf2 system interacting with NF-κB pathway under oxidative stress. Redox Biol 2022; 57:102489. [PMID: 36198205 PMCID: PMC9535304 DOI: 10.1016/j.redox.2022.102489] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cannabidiol (CBD), the major non-psychoactive phytocannabinoid of Cannabis sativa L., is one of the most studied compounds in pharmacotherapeutic approaches to treat oxidative stress-related diseases such as cardiovascular, metabolic, neurodegenerative, and neoplastic diseases. The literature data to date indicate the possibility of both antioxidant and pro-oxidative effects of CBD. Thus, the mechanism of action of this natural compound in the regulation of nuclear factor 2 associated with erythroid 2 (Nrf2), which plays the role of the main cytoprotective regulator of redox balance and inflammation under oxidative stress conditions, seems to be particularly important. Moreover, Nrf2 is strongly correlated with the cellular neoplastic profile and malignancy, which in turn is critical in determining the cellular response induced by CBD under pathophysiological conditions. This paper summarizes the CBD-mediated pathways of regulation of the Nrf2 system by altering the expression and modification of both proteins directly involved in Nrf2 transcriptional activity and proteins involved in the relationship between Nrf2 and the nuclear factor kappa B (NF-κB) which is another redox-sensitive transcription factor.
Collapse
Affiliation(s)
- Sinemyiz Atalay Ekiner
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| |
Collapse
|
18
|
Cannabidiol effect in pentylenetetrazole-induced seizures depends on PI3K. Pharmacol Rep 2022; 74:1099-1106. [DOI: 10.1007/s43440-022-00391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 10/14/2022]
|
19
|
Mińczuk K, Baranowska-Kuczko M, Krzyżewska A, Schlicker E, Malinowska B. Cross-Talk between the (Endo)Cannabinoid and Renin-Angiotensin Systems: Basic Evidence and Potential Therapeutic Significance. Int J Mol Sci 2022; 23:6350. [PMID: 35683028 PMCID: PMC9181166 DOI: 10.3390/ijms23116350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/27/2022] [Accepted: 06/04/2022] [Indexed: 01/27/2023] Open
Abstract
This review is dedicated to the cross-talk between the (endo)cannabinoid and renin angiotensin systems (RAS). Activation of AT1 receptors (AT1Rs) by angiotensin II (Ang II) can release endocannabinoids that, by acting at cannabinoid CB1 receptors (CB1Rs), modify the response to AT1R stimulation. CB1R blockade may enhance AT1R-mediated responses (mainly vasoconstrictor effects) or reduce them (mainly central nervous system-mediated effects). The final effects depend on whether stimulation of CB1Rs and AT1Rs induces opposite or the same effects. Second, CB1R blockade may diminish AT1R levels. Third, phytocannabinoids modulate angiotensin-converting enzyme-2. Additional studies are required to clarify (1) the existence of a cross-talk between the protective axis of the RAS (Ang II-AT2 receptor system or angiotensin 1-7-Mas receptor system) with components of the endocannabinoid system, (2) the influence of Ang II on constituents of the endocannabinoid system and (3) the (patho)physiological significance of AT1R-CB1R heteromerization. As a therapeutic consequence, CB1R antagonists may influence effects elicited by the activation or blockade of the RAS; phytocannabinoids may be useful as adjuvant therapy against COVID-19; single drugs acting on the (endo)cannabinoid system (cannabidiol) and the RAS (telmisartan) may show pharmacokinetic interactions since they are substrates of the same metabolizing enzyme of the transport mechanism.
Collapse
Affiliation(s)
- Krzysztof Mińczuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (K.M.); (M.B.-K.); (A.K.)
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (K.M.); (M.B.-K.); (A.K.)
| | - Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (K.M.); (M.B.-K.); (A.K.)
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; (K.M.); (M.B.-K.); (A.K.)
| |
Collapse
|