1
|
Block CJ, Miles LS, Lewis CD, Schal C, Vargo EL, Booth W. First evidence of the A302S Rdl insecticide resistance mutation in populations of the bed bug, Cimex lectularius (Hemiptera: Cimicidae) in North America. JOURNAL OF MEDICAL ENTOMOLOGY 2025; 62:740-744. [PMID: 40084570 DOI: 10.1093/jme/tjaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 02/12/2025] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
The common bed bug, Cimex lectularius (L.) (Hemiptera: Cimicidae), is a pervasive indoor pest with prominent medical, veterinary, and economic impacts. Bed bug infestations are controlled by a wide range of insecticides, including pyrethroids, neonicotinoids, pyrroles, and phenylpyrazoles; however, bed bugs have evolved resistance mechanisms to most of these insecticides. Mutations in the Rdl (resistance to dieldrin) gene, located in a subunit of the γ-amino butyric acid (GABA)-gated chloride channel, have been identified in several pest insects, including the German cockroach. These have been found to confer resistance to fipronil, a phenylpyrazole insecticide commonly used in urban environments, in addition to cyclodienes (eg dieldrin), a class of insecticides banned in most countries since the 1990s. While resistance to dieldrin and fipronil has been reported in bed bugs, both C. lectularius and the tropical bed bug, C. hemipterus, the occurrence of mutations in the Rdl gene has yet to be thoroughly investigated. In this study, we sequence a fragment of the Rdl gene commonly found to harbor cyclodiene and phenylpyrazole conferring mutations from 134 unique populations collected across the United States and Canada spanning a 14-yr period. Homozygous genotypes for the A302S mutation were found in 2 geographically distinct populations. This finding represents the first record of a non-synonymous Rdl mutation in bed bugs and identifies another mechanism by which insecticide resistance may be conferred in this species.
Collapse
Affiliation(s)
- Camille J Block
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Lindsay S Miles
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Cari D Lewis
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Edward L Vargo
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Warren Booth
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
2
|
Kruaysawat P, Chen ME, Lee SH, Lee CY, Neoh KB. Characterization of insecticide resistance and their mechanisms in field populations of the German cockroach (Blattodea: Ectobiidae) in Taiwan under different treatment regimes. JOURNAL OF ECONOMIC ENTOMOLOGY 2025; 118:307-319. [PMID: 39484984 DOI: 10.1093/jee/toae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 11/03/2024]
Abstract
This study investigated how management strategies influence resistance profiles in German cockroach (Blattella germanica (L.)) populations and their impact on the performance of commercial gel baits containing fipronil, imidacloprid, and indoxacarb. Field populations from premises managed under 3 different strategies: Baiting, random insecticide (RI) used, and insecticide rotation (IR) were tested. Almost all populations under RI and IR were resistant to deltamethrin, but low to moderate resistance was observed under the Baiting approach. Cytochrome P450 monooxygenases (P450) were involved in deltamethrin resistance in these resistant populations. All individuals under Baiting and RI were homozygous for the L993F mutation, but the populations under IR lacked homozygous-resistant individuals. Eighty-three percent of field populations with complete homozygosity for the Rdl mutation displayed low mortality upon exposure to 3× LD95 fipronil. The effect of P450 and the Rdl mutation conferred high fipronil resistance in populations under the Baiting approach, recording moderate performance indices (PI) of 44-67 in fipronil bait. By contrast, those populations under RI and IR, in which involve glutathione S-transferases in fipronil resistance, had high PIs of 78-93. Almost 80% of populations exhibited over 90% mortality at 3× LD95 indoxacarb treatment, accompanied by high PIs of 90-100 in indoxacarb bait. Partial mortality from 1× LD95 imidacloprid occurred across all field populations due to the involvement of P450. PIs of imidacloprid bait ranged 5-57 and 20-94 in populations under RI and IR, respectively. Field populations demonstrate different resistance profiles depending on the treatment regimes, and the resistance mechanisms involved influenced gel bait's effectiveness.
Collapse
Affiliation(s)
- Panida Kruaysawat
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Mei-Er Chen
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Shao-Hung Lee
- Department of Entomology, University of California, Riverside, CA, USA
| | - Chow-Yang Lee
- Department of Entomology, University of California, Riverside, CA, USA
| | - Kok-Boon Neoh
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
3
|
Booth W. Population genetics as a tool to understand invasion dynamics and insecticide resistance in indoor urban pest insects. CURRENT OPINION IN INSECT SCIENCE 2024; 62:101166. [PMID: 38253200 DOI: 10.1016/j.cois.2024.101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Many indoor urban pest insects now show a near-global distribution. The reasons for this may be linked to their cryptic behaviors, which make unintentional transport likely, tied to their reliance on human-mediated dispersal that can result in spread over potentially long-distances. Additionally, numerous species exhibit an array of mechanisms that confer insecticide resistance. Using population genetics, it is possible to elucidate the genetic characteristics that define globally successful indoor urban pest insect species. Furthermore, this approach may be used to determine the frequency and distribution of insecticide resistance. Here, I review the recent literature that utilizes population genetic analyses in an effort to identify the characteristics that help explain the success of indoor urban pests.
Collapse
Affiliation(s)
- Warren Booth
- Department of Entomology, Virginia Polytechnic Institute and State University, 1015 Life Science Circle, 215C Steger Hall, Blacksburg, VA, USA.
| |
Collapse
|
4
|
Mermans C, Dermauw W, Geibel S, Van Leeuwen T. Activity, selection response and molecular mode of action of the isoxazoline afoxolaner in Tetranychus urticae. PEST MANAGEMENT SCIENCE 2023; 79:183-193. [PMID: 36116012 DOI: 10.1002/ps.7187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Afoxolaner is a novel representative of the isoxazolines, a class of ectoparasiticides which has been commercialized for the control of tick and flea infestations in dogs. In this study, the biological efficacy of afoxolaner against the two-spotted spider mite Tetranychus urticae was evaluated. Furthermore, as isoxazolines are known inhibitors of γ-aminobutyric acid-gated chloride channels (GABACls), the molecular mode of action of afoxolaner on T. urticae GABACls (TuRdls) was studied using functional expression in Xenopus oocytes followed by two-electrode voltage-clamp (TEVC) electrophysiology, and results were compared with inhibition by fluralaner, fipronil and endosulfan. To examine the influence of known GABACl resistance mutations, H301A, I305T and A350T substitutions in TuRdl1 and a S301A substitution in TuRdl2 were introduced. RESULTS Bioasassays revealed excellent efficacy of afoxolaner against all developmental stages and no cross-resistance was found in a panel of strains resistant to most currently used acaricides. Laboratory selection over a period of 3 years did not result in resistance. TEVC revealed clear antagonistic activity of afoxolaner and fluralaner for all homomeric TuRdl1/2/3 channels. The introduction of single, double or triple mutations to TuRdl1 and TuRdl2 did not lower channel sensitivity. By contrast, both endosulfan and fipronil had minimal antagonistic activities against TuRdl1/2/3, and channels carrying single mutations, whereas the sensitivity of double and triple TuRdl1 mutants was significantly increased. CONCLUSIONS Our results demonstrate that afoxolaner is a potent antagonist of GABACls of T. urticae and has a powerful mode of action to control spider mites. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Catherine Mermans
- Department of Plants and Crops | Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Wannes Dermauw
- Department of Plants and Crops | Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Sven Geibel
- CropScience Division, Bayer AG, Monheim, Germany
| | - Thomas Van Leeuwen
- Department of Plants and Crops | Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
González-Morales MA, DeVries ZC, Santangelo RG, Kakumanu ML, Schal C. Multiple Mechanisms Confer Fipronil Resistance in the German Cockroach: Enhanced Detoxification and Rdl Mutation. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1721-1731. [PMID: 35943144 PMCID: PMC12102607 DOI: 10.1093/jme/tjac100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Populations of Blattella germanica (L.) (German cockroach) have been documented worldwide to be resistant to a wide variety of insecticides with multiple modes of action. The phenylpyrazole insecticide fipronil has been used extensively to control German cockroach populations, exclusively in baits, yet the highest reported fipronil resistance is 38-fold in a single population. We evaluated five populations of German cockroaches, collected in 2018-2019 in apartments in North Carolina and assayed in 2019, to determine the status of fipronil resistance in the state. Resistance ratios in field-collected strains ranged from 22.4 to 37.2, indicating little change in fipronil resistance over the past 20 yr. In contrast, resistance to pyrethroids continues to escalate. We also assessed the roles of detoxification enzymes in fipronil resistance with four synergists previously shown to diminish metabolic resistance to various insecticides in German cockroaches-piperonyl butoxide, S,S,S-tributyl phosphorotrithioate, diethyl maleate, and triphenyl phosphate. These enzymes appear to play a variable role in fipronil resistance. We also sequenced a fragment of the Rdl (resistant to dieldrin) gene that encodes a subunit of the GABA receptor. Our findings showed that all field-collected strains are homozygous for a mutation that substitutes serine for an alanine (A302S) in Rdl, and confers low resistance to fipronil. Understanding why cockroaches rapidly evolve high levels of resistance to some insecticides and not others, despite intensive selection pressure, will contribute to more efficacious pest management.
Collapse
Affiliation(s)
| | - Zachary C DeVries
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Richard G Santangelo
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Madhavi L Kakumanu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
6
|
Lee SH, Choe DH, Scharf ME, Rust MK, Lee CY. Combined metabolic and target-site resistance mechanisms confer fipronil and deltamethrin resistance in field-collected German cockroaches (Blattodea: Ectobiidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105123. [PMID: 35715061 DOI: 10.1016/j.pestbp.2022.105123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Despite insecticide resistance issues, pyrethroids and fipronil have continued to be used extensively to control the German cockroach, Blattella germanica (L.) (Blattodea: Ectobiidae) for more than two decades. We evaluated the physiological insecticide resistance in five German cockroach populations collected from 2018 to 2020 and measured the extent of metabolic detoxification and target-site insensitivity resistance mechanisms. Topically applied doses of the 3 x LD95 of deltamethrin, fipronil, DDT, or dieldrin of a susceptible strain (UCR, Diagnostic Dose) failed to cause >23% mortality, and the 10 x LD95 of deltamethrin or fipronil failed to cause >53% mortality. All field-collected strains possessed a combination of metabolic and target-site insensitivity mechanisms that cause reduced susceptibility. Elevated activities of esterase and glutathione S-transferase were measured, and the synergists piperonyl butoxide or S,S,S-tributyl phosphorotrithioate increased topical mortality up to 100% for deltamethrin and 93% for fipronil 10 x LD95. The target-site mutations L993F of the para-homologous sodium channel and A302S of the GABA-gated chloride channel associated with pyrethroid and fipronil resistance, respectively, were found at ~80-100% frequency in field populations. Pyrethroid and fipronil spray formulations also were ineffective in a choice box assay against field-collected strains suggesting that these treatments would fail to control cockroaches under field conditions.
Collapse
Affiliation(s)
- Shao-Hung Lee
- Department of Entomology, University of California, Riverside, CA 92521, United States of America.
| | - Dong-Hwan Choe
- Department of Entomology, University of California, Riverside, CA 92521, United States of America
| | - Michael E Scharf
- Department of Entomology, University of Florida, Gainesville, FL 32611, United States of America
| | - Michael K Rust
- Department of Entomology, University of California, Riverside, CA 92521, United States of America
| | - Chow-Yang Lee
- Department of Entomology, University of California, Riverside, CA 92521, United States of America.
| |
Collapse
|
7
|
Li BJ, Wang KK, Chen DP, Yan Y, Cai XL, Chen HM, Dong K, Lin F, Xu HH. Distinct roles of two RDL GABA receptors in fipronil action in the diamondback moth (Plutella xylostella). INSECT SCIENCE 2021; 28:1721-1733. [PMID: 33442958 DOI: 10.1111/1744-7917.12892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/21/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
The phenylpyrazole insecticide fipronil blocks resistance to dieldrin (RDL) γ-aminobutyric acid (GABA) receptors in insects, thereby impairing inhibitory neurotransmission. Some insect species, such as the diamondback moth (Plutella xylostella), possess more than one Rdl gene. The involvement of multiple Rdls in fipronil toxicity and resistance remains largely unknown. In this study, we investigated the roles of two Rdl genes, PxRdl1 and PxRdl2, in P. xylostella fipronil action. In Xenopus oocytes, PxRDL2 receptors were 40 times less sensitive to fipronil than PxRDL1. PxRDL2 receptors were also less sensitive to GABA compared with PxRDL1. Knockout of the fipronil-sensitive PxRdl1 reduced the fipronil potency 10-fold, whereas knockout of the fipronil-resistant PxRdl2 enhanced the fipronil potency 4.4-fold. Furthermore, in two fipronil-resistant diamondback moth field populations, PxRdl2 expression was elevated 3.7- and 4.1-fold compared with a susceptible strain, whereas PxRdl1 expression was comparable among the resistant and susceptible strains. Collectively, our results indicate antagonistic effects of PxRDL1 and PxRDL2 on fipronil action in vivo and suggest that enhanced expression of fipronil-resistant PxRdl2 is potentially a new mechanism of fipronil resistance in insects.
Collapse
Affiliation(s)
- Ben-Jie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South, China Agricultural University, Guangzhou, 510642, China
| | - Kun-Kun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South, China Agricultural University, Guangzhou, 510642, China
| | - Dong-Ping Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South, China Agricultural University, Guangzhou, 510642, China
| | - Ying Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South, China Agricultural University, Guangzhou, 510642, China
| | - Xu-Ling Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South, China Agricultural University, Guangzhou, 510642, China
| | - Hui-Min Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South, China Agricultural University, Guangzhou, 510642, China
| | - Ke Dong
- Department of Entomology, Genetics Program and Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Fei Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South, China Agricultural University, Guangzhou, 510642, China
| | - Han-Hong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South, China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
8
|
González-Morales MA, DeVries Z, Sierras A, Santangelo RG, Kakumanu ML, Schal C. Resistance to Fipronil in the Common Bed Bug (Hemiptera: Cimicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1798-1807. [PMID: 33822102 PMCID: PMC12102608 DOI: 10.1093/jme/tjab040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Cimex lectularius L. populations have been documented worldwide to be resistant to pyrethroids and neonicotinoids, insecticides that have been widely used to control bed bugs. There is an urgent need to discover new active ingredients with different modes of action to control bed bug populations. Fipronil, a phenylpyrazole that targets the GABA receptor, has been shown to be highly effective on bed bugs. However, because fipronil shares the same target site with dieldrin, we investigated the potential of fipronil resistance in bed bugs. Resistance ratios in eight North American populations and one European population ranged from 1.4- to >985-fold, with highly resistant populations on both continents. We evaluated metabolic resistance mechanisms mediated by cytochrome P450s, esterases, carboxylesterases, and glutathione S-transferases using synergists and a combination of synergists. All four detoxification enzyme classes play significant but variable roles in bed bug resistance to fipronil. Suppression of P450s and esterases with synergists eliminated resistance to fipronil in highly resistant bed bugs. Target-site insensitivity was evaluated by sequencing a fragment of the Rdl gene to detect the A302S mutation, known to confer resistance to dieldrin and fipronil in other species. All nine populations were homozygous for the wild-type genotype (susceptible phenotype). Highly resistant populations were also highly resistant to deltamethrin, suggesting that metabolic enzymes that are responsible for pyrethroid detoxification might also metabolize fipronil. It is imperative to understand the origins of fipronil resistance in the development or adoption of new active ingredients and implementation of integrated pest management programs.
Collapse
Affiliation(s)
| | - Zachary DeVries
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Angela Sierras
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Richard G Santangelo
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Madhavi L Kakumanu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
9
|
Meinke LJ, Souza D, Siegfried BD. The Use of Insecticides to Manage the Western Corn Rootworm, Diabrotica virgifera virgifera, LeConte: History, Field-Evolved Resistance, and Associated Mechanisms. INSECTS 2021; 12:112. [PMID: 33525337 PMCID: PMC7911631 DOI: 10.3390/insects12020112] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/27/2022]
Abstract
The western corn rootworm, Diabrotica virgifera virgifera LeConte (Dvv) is a significant insect pest of maize in the United States (U.S.). This paper reviews the history of insecticide use in Dvv management programs, Dvv adaptation to insecticides, i.e., field-evolved resistance and associated mechanisms of resistance, plus the current role of insecticides in the transgenic era. In the western U.S. Corn Belt where continuous maize is commonly grown in large irrigated monocultures, broadcast-applied soil or foliar insecticides have been extensively used over time to manage annual densities of Dvv and other secondary insect pests. This has contributed to the sequential occurrence of Dvv resistance evolution to cyclodiene, organophosphate, carbamate, and pyrethroid insecticides since the 1950s. Mechanisms of resistance are complex, but both oxidative and hydrolytic metabolism contribute to organophosphate, carbamate, and pyrethroid resistance facilitating cross-resistance between insecticide classes. History shows that Dvv insecticide resistance can evolve quickly and may persist in field populations even in the absence of selection. This suggests minimal fitness costs associated with Dvv resistance. In the transgenic era, insecticides function primarily as complementary tools with other Dvv management tactics to manage annual Dvv densities/crop injury and resistance over time.
Collapse
Affiliation(s)
- Lance J. Meinke
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA
| | - Dariane Souza
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA; (D.S.); (B.D.S.)
| | - Blair D. Siegfried
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA; (D.S.); (B.D.S.)
| |
Collapse
|
10
|
Guest M, Goodchild JA, Bristow JA, Flemming AJ. RDL A301S alone does not confer high levels of resistance to cyclodiene organochlorine or phenyl pyrazole insecticides in Plutella xylostella. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 158:32-39. [PMID: 31378358 DOI: 10.1016/j.pestbp.2019.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/01/2019] [Accepted: 04/12/2019] [Indexed: 06/10/2023]
Abstract
Mutations in the GABA-gated chloride channel are associated with resistance to cyclodiene organochlorine and phenyl pyrazole insecticides. The best characterised of these is A301S, which was initially identified in a Dieldrin resistant strain of Drosophila melanogaster. The orthologous mutation has been found in a variety of different crop pests including the diamond back moth Plutella xylostella. However, the contribution of this mutation to resistance in this species remains unclear. We have used the CRISPR/Cas9 system in order to edit Plutella xylostella PxGABARalpha1 to Serine at the 301 orthologous position (282 in PxGABARalpha1) in an insecticide sensitive strain isolated from Vero Beach (VB) USA. In this edited line, no high level of resistance is conferred to Dieldrin, Endosulfan or Fipronil, rather only a subtle shift in sensitivity which could not confer commercially important resistance. We conclude that the high level of commercial resistance to cyclodiene organochlorine and phenyl pyrazole insecticides observed in some field isolates of Plutella xylostella cannot arise from A282S in PxGABARalpha1 alone.
Collapse
Affiliation(s)
- M Guest
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK.
| | - J A Goodchild
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - J A Bristow
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - A J Flemming
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| |
Collapse
|
11
|
Nakao T. Mechanisms of resistance to insecticides targeting RDL GABA receptors in planthoppers. Neurotoxicology 2017; 60:293-298. [DOI: 10.1016/j.neuro.2016.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/11/2016] [Accepted: 03/17/2016] [Indexed: 11/17/2022]
|
12
|
Taylor-Wells J, Jones AK. Variations in the Insect GABA Receptor, RDL, and Their Impact on Receptor Pharmacology. ACS SYMPOSIUM SERIES 2017. [DOI: 10.1021/bk-2017-1265.ch001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jennina Taylor-Wells
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 8NZ, United Kingdom
| | - Andrew K. Jones
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 8NZ, United Kingdom
| |
Collapse
|
13
|
Abbas N, Ijaz M, Shad SA, Binyameen M. Assessment of resistance risk to fipronil and cross resistance to other insecticides in the Musca domestica L. (Diptera: Muscidae). Vet Parasitol 2016; 223:71-6. [DOI: 10.1016/j.vetpar.2016.04.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/18/2016] [Indexed: 02/05/2023]
|
14
|
Feyereisen R, Dermauw W, Van Leeuwen T. Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 121:61-77. [PMID: 26047113 DOI: 10.1016/j.pestbp.2015.01.004] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 05/13/2023]
Abstract
The recent accumulation of molecular studies on mutations in insects, ticks and mites conferring resistance to insecticides, acaricides and biopesticides is reviewed. Resistance is traditionally classified by physiological and biochemical criteria, such as target-site insensitivity and metabolic resistance. However, mutations are discrete molecular changes that differ in their intrinsic frequency, effects on gene dosage and fitness consequences. These attributes in turn impact the population genetics of resistance and resistance management strategies, thus calling for a molecular genetic classification. Mutations in structural genes remain the most abundantly described, mostly in genes coding for target proteins. These provide the most compelling examples of parallel mutations in response to selection. Mutations causing upregulation and downregulation of genes, both in cis (in the gene itself) and in trans (in regulatory processes) remain difficult to characterize precisely. Gene duplications and gene disruption are increasingly reported. Gene disruption appears prevalent in the case of multiple, hetero-oligomeric or redundant targets.
Collapse
Affiliation(s)
- René Feyereisen
- INRA, Institut Sophia Agrobiotech, Sophia Antipolis, France.
| | - Wannes Dermauw
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Thomas Van Leeuwen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
15
|
Wei Q, Wu SF, Niu CD, Yu HY, Dong YX, Gao CF. Knockdown of the ionotropic γ-aminobutyric acid receptor (GABAR) RDL gene decreases fipronil susceptibility of the small brown planthopper, Laodelphax striatellus (Hemiptera: Delphacidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 88:249-261. [PMID: 25808850 DOI: 10.1002/arch.21232] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Insect γ-aminobutyric acid receptors (GABARs) are important molecular targets of cyclodiene and phenylpyrazole insecticides. Previously GABARs encoding rdl (resistant to dieldrin) genes responsible for dieldrin and fipronil resistance were identified in various economically important insect pests. In this study, we cloned the open reading frame cDNA sequence of rdl gene from fipronil-susceptible and fipronil-resistant strains of Laodelphax striatellus (Lsrdl). Sequence analysis confirmed the presence of a previously identified resistance-conferring mutation. Different alternative splicing variants of Lsrdl were noted. Injection of dsLsrdl reduced the mRNA abundance of Lsrdl by 27-82%, and greatly decreased fipronil-induced mortality of individuals from both susceptible and resistant strains. These data indicate that Lsrdl encodes a functional RDL subunit that mediates susceptibility to fipronil. Additionally, temporal and spatial expression analysis showed that Lsrdl was expressed at higher levels in eggs, fifth-instar nymphs, and female adults than in third-instar and fourth-instar nymphs. Lsrdl was predominantly expressed in the heads of 2-day-old female adults. All these results provide useful background knowledge for better understanding of fipronil resistance related ionotropic GABA receptor rdl gene expressed variants and potential functional differences in insects.
Collapse
Affiliation(s)
- Qi Wei
- State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Pesticide Sciences, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
16
|
Kavi LAK, Kaufman PE, Scott JG. Genetics and mechanisms of imidacloprid resistance in house flies. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 109:64-69. [PMID: 24581385 DOI: 10.1016/j.pestbp.2014.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/25/2014] [Accepted: 01/28/2014] [Indexed: 06/03/2023]
Abstract
Imidacloprid is the most widely used neonicotinoid insecticide against house flies, which are major pests at animal production facilities worldwide. However, cases of both physiological and behavior resistance have been reported. Recently, physiological resistance to imidacloprid was found in the United States (California and Florida). However, no studies have been undertaken to characterize this resistance in house flies from the United States. Three imidacloprid selections of a strain originally collected from Florida increased the level of resistance, ultimately resulting in a strain that had 2300-fold resistance in females and 130-fold in males. Imidacloprid resistance was not overcome with piperonyl butoxide (PBO) suggesting that resistance is not due to detoxification by cytochrome P450s. Resistance was mapped to autosomes 3 and 4. There was⩾100-fold cross-resistance to acetamiprid and dinotefuran, but no cross-resistance to spinosad. The resistance in this imidacloprid selected population was unstable and declined over a period of several months. The significance of these results to management of imidacloprid resistance in the field, and potential mechanisms of resistance involved, are discussed.
Collapse
Affiliation(s)
- Lucy A K Kavi
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY 14853-0901, USA
| | - Phillip E Kaufman
- Entomology and Nematology Department, PO Box 110620, University of Florida, Gainesville, FL 32611, USA
| | - Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY 14853-0901, USA.
| |
Collapse
|
17
|
Discovery of the Rdl mutation in association with a cyclodiene resistant population of horn flies, Haematobia irritans (Diptera: Muscidae). Vet Parasitol 2013; 198:172-9. [DOI: 10.1016/j.vetpar.2013.08.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 11/22/2022]
|
18
|
Wang H, Coates BS, Chen H, Sappington TW, Guillemaud T, Siegfried BD. Role of a γ-aminobutryic acid (GABA) receptor mutation in the evolution and spread of Diabrotica virgifera virgifera resistance to cyclodiene insecticides. INSECT MOLECULAR BIOLOGY 2013; 22:473-484. [PMID: 23841833 DOI: 10.1111/imb.12037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The western corn rootworm, Diabrotica virgifera virgifera, is a damaging pest of cultivated corn that was controlled by applications of cyclodiene insecticides from the late 1940s until resistance evolved ∼10 years later. Range expansion from the western plains into eastern USA coincides with resistance development. An alanine to serine amino acid substitution within the Rdl subunit of the gamma-aminobutyric acid (GABA) receptor confers resistance to cyclodiene insecticides in many species. We found that the non-synonymous single nucleotide polymorphism (SNP) G/T at the GABA receptor cDNA position 838 (G/T(838)) of D. v. virgifera resulted in the alanine to serine change, and the codominant SNP allele T(838) was genetically linked to survival of beetles in aldrin bioassays. A phenotypic gradient of decreasing susceptibility from west to east was correlated with higher frequencies of the resistance-conferring T(838) allele in the eastern-most populations. This pattern exists in opposition to perceived selective pressures since the more eastern and most resistant populations probably experienced reduced exposure. The reasons for the observed distribution are uncertain, but historical records of the range expansion combined with the distribution of susceptible and resistant phenotypes and genotypes provide an opportunity to better understand factors affecting the species' range expansion.
Collapse
MESH Headings
- Aldrin/toxicity
- Animals
- Biological Assay/methods
- Chromosomes, Artificial, Bacterial/drug effects
- Chromosomes, Artificial, Bacterial/genetics
- Coleoptera/genetics
- Coleoptera/metabolism
- Evolution, Molecular
- Hydrocarbons, Chlorinated/toxicity
- Insecticide Resistance/genetics
- Insecticide Resistance/physiology
- Insecticides/toxicity
- Mutation
- North America
- Polymorphism, Single Nucleotide/drug effects
- Receptors, GABA/genetics
- Receptors, GABA/physiology
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- H Wang
- University of Nebraska, Department of Entomology, Lincoln, NE, USA
| | | | | | | | | | | |
Collapse
|
19
|
Dermauw W, Ilias A, Riga M, Tsagkarakou A, Grbić M, Tirry L, Van Leeuwen T, Vontas J. The cys-loop ligand-gated ion channel gene family of Tetranychus urticae: implications for acaricide toxicology and a novel mutation associated with abamectin resistance. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:455-465. [PMID: 22465149 DOI: 10.1016/j.ibmb.2012.03.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 05/27/2023]
Abstract
The cys-loop ligand-gated ion channel (cysLGIC) super family of Tetranychus urticae, the two-spotted spider mite, represents the largest arthropod cysLGIC super family described to date and the first characterised one within the group of chelicerates. Genome annotation, phylogenetic analysis and comparison of the cysLGIC subunits with their counterparts in insects reveals that the T. urticae genome encodes for a high number of glutamate- and histamine-gated chloride channel genes (GluCl and HisCl) compared to insects. Three orthologues of the insect γ-aminobutyric acid (GABA)-gated chloride channel gene Rdl were detected. Other cysLGIC groups, such as the nAChR subunits, are more conserved and have clear insect orthologues. Members of cysLGIC family mediate endogenous chemical neurotransmission and they are prime targets of insecticides. Implications for toxicology associated with the identity and specific features of T. urticae family members are discussed. We further reveal the accumulation of known and novel mutations in different GluCl channel subunits (Tu_GluCl1 and Tu_GluCl3) associated with abamectin resistance in T. urticae, and provide genetic evidence for their causality. Our study provides useful toxicological insights for the exploration of the T. urticae cysLGIC subunits as putative molecular targets for current and future chemical control strategies.
Collapse
Affiliation(s)
- W Dermauw
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Agricultural and Applied, Biological Sciences, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Gondhalekar AD, Scharf ME. Mechanisms underlying fipronil resistance in a multiresistant field strain of the German cockroach (Blattodea: Blattellidae). JOURNAL OF MEDICAL ENTOMOLOGY 2012; 49:122-131. [PMID: 22308780 DOI: 10.1603/me11106] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
German cockroaches (Blattella germanica L.) have significant impacts on human health, most notably they are implicated as causes of childhood asthma. Gel bait formulations of fipronil, a phenylpyrazole insecticide, have been in use for German cockroach control in the United States since 1998. Previously, dieldrin resistant German cockroach strains were shown to have 7- to 17-fold cross-resistance to fipronil. More recently, a field-collected strain (GNV-R) displayed approximately 36-fold resistance to topically applied fipronil at the LD50 level, which is the highest level of fipronil resistance reported to date in the German cockroach. The aim of the current research was to identify mechanism(s) responsible for high-level fipronil resistance in the GNV-R strain. Synergist bioassays conducted using topical and injection application methods implicated cytochrome P450-mediated detoxification in resistance. Electrophysiological recordings using the suction-electrode technique revealed the nervous system of the GNV-R strain is insensitive to fipronil. In agreement with electrophysiology results, the alanine to serine (A302S) mutation encoded by the gamma-amino butyric acid-gated chloride channel subunit gene resistance to dieldrin, which confers limited cross-resistance to fipronil, was detected in 95% of GNV-R strain individuals. Logistic regression analysis showed that A302S mutation frequency correlates with neurological insensitivity as shown by electrophysiology data. Overall, results of synergism bioassays, electrophysiological recordings, and A302S mutation frequency measurements suggest that fipronil resistance in the GNV-R strain is caused by the combined effects of enhanced metabolism by cytochrome P450s and target-site insensitivity caused by the A302S-encoding mutation in the resistance to dieldrin gene.
Collapse
Affiliation(s)
- Ameya D Gondhalekar
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
21
|
Gondhalekar AD, Song C, Scharf ME. Development of strategies for monitoring indoxacarb and gel bait susceptibility in the German cockroach (Blattodea: Blattellidae). PEST MANAGEMENT SCIENCE 2011; 67:262-270. [PMID: 21308952 DOI: 10.1002/ps.2057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 08/24/2010] [Accepted: 09/01/2010] [Indexed: 05/30/2023]
Abstract
BACKGROUND Advion(®) cockroach gel bait (6 g kg(-1) indoxacarb) is in widespread use for Blattella germanica (L.) control in the United States. However, baseline susceptibility levels to indoxacarb in German cockroach field populations are not known. Hence, this research sought to develop monitoring strategies to estimate the susceptibility of German cockroach populations to indoxacarb. RESULTS Four bioassays were evaluated: topical lethal dose (LD), formulated gel bait lethal time (LT), vial lethal concentration (LC) and gel bait matrix LD. Of these methods, the vial LC and gel bait matrix LD bioassays were the most economical and relevant assessment strategies. For indoxacarb susceptibility monitoring, a two-tiered approach was developed that utilizes diagnostic concentrations and doses in vial LC (30 and 60 µg vial(-1) ) and gel bait matrix LD (1.0, 1.5 and 2.5 µg insect(-1) ) formats. CONCLUSIONS A two-tiered susceptibility monitoring strategy was developed that includes testing field populations at diagnostic concentrations and doses in first-tier vial LC bioassays and second-tier gel bait matrix LD bioassays. The vial method facilitates rapid identification of field strains with reduced susceptibility. The feeding bioassay effectively simulates field exposure to Advion(®) and therefore has utility for secondary confirmation of susceptibility shifts and identification of behavioral resistance (i.e. bait aversion).
Collapse
Affiliation(s)
- Ameya D Gondhalekar
- Insect Toxicology Laboratory, Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
22
|
Black WC, Vontas JG. Affordable assays for genotyping single nucleotide polymorphisms in insects. INSECT MOLECULAR BIOLOGY 2007; 16:377-87. [PMID: 17488301 DOI: 10.1111/j.1365-2583.2007.00736.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Insect genome projects and DNA sequence databases are providing unprecedented amounts of information about variation at specific nucleotides in protein- and RNA-coding genes. Single nucleotide polymorphisms (SNPs) are abundant in all insect species so far examined and are proving useful in population genetics, linkage mapping and marker-assisted selection. A number of studies has already identified SNPs associated with insecticide resistance, especially mutations conferring reduced target site sensitivity. Unfortunately, most modern, high-throughput, automated SNP detection technologies are expensive or require the use of expensive equipment and are therefore not accessible to laboratories on a limited budget or to our colleagues in developing countries. In this review, we provide a chronological and comprehensive list of all SNP methods. We emphasize and explain those techniques in which genotypes can be identified by eye or that only require agarose gel electrophoresis. We provide examples where these techniques have or are currently being applied to insects.
Collapse
Affiliation(s)
- W C Black
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA.
| | | |
Collapse
|
23
|
Hoffmann AA, Daborn PJ. Towards genetic markers in animal populations as biomonitors for human-induced environmental change. Ecol Lett 2006; 10:63-76. [PMID: 17204118 DOI: 10.1111/j.1461-0248.2006.00985.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetic markers provide potentially sensitive indicators of changes in environmental conditions because the genetic constitution of populations is normally altered well before populations become extinct. Genetic indicators in populations include overall genetic diversity, genetic changes in traits measured at the phenotypic level, and evolution at specific loci under selection. While overall genetic diversity has rarely been successfully related to environmental conditions, genetically based changes in traits have now been linked to the presence of toxins and both local and global temperature shifts. Candidate loci for monitoring stressors are emerging from information on how specific genes influence traits, and from screens of random loci across environmental gradients. Drosophila research suggests that chromosomal regions under recent intense selection can be identified from patterns of molecular variation and a high frequency of transposable element insertions. Allele frequency changes at candidate loci have been linked to pesticides, pollutants and climate change. Nevertheless, there are challenges in interpreting allele frequencies in populations, particularly when a large number of loci control a trait and when interactions between alleles influence trait expression. To meet these challenges, population samples should be collected for longitudinal studies, and experimental programmes should be undertaken to link variation at candidate genes to ecological processes.
Collapse
Affiliation(s)
- Ary A Hoffmann
- Department of Genetics, Centre of Environmental Stress and Adaptation Research, The University of Melbourne, Melbourne, Vic. 3010, Australia.
| | | |
Collapse
|