1
|
Jafari H, Hemmati SA, Habibpour B. Evaluation of artificial diets based on different legume seeds on the nutritional physiology and digestive function of Helicoverpa armigera (Hübner). BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:133-143. [PMID: 36065765 DOI: 10.1017/s0007485322000402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Helicoverpa armigera (Hübner) is considered a serious agricultural pest worldwide. We explored the effects of artificial diets containing ten legumes, including broad beans (Shadan, Feyz, Saraziri, Barekat, and Mahta cultivars), white kidney beans (Dehghan cultivar), red kidney beans (Goli cultivar), common beans (Khomein cultivar), cowpeas (Mashhad and Arabi cultivars) on the feeding responses of H. armigera by quantifying specific primary and secondary metabolites in the studied legumes and determining larval nutritional indices and digestive enzyme activities. The results showed that the highest efficiency of conversion of digested food (ECD) and relative growth rate values (RGR) of whole larval instars were obtained in the Dehghan and Goli cultivars. However, the lowest values of ECD and RGR were observed in the larvae fed on the Khomein and Mahta cultivars. The highest proteolytic and amylolytic activities of larvae were found on the Dehghan and Mashhad cultivars. The highest and lowest values of standardized insect-growth index and index of plant quality were observed in larvae feeding on the Dehghan and Khomein cultivars, respectively. Additionally, significant variations in phytochemical metabolites were recorded among the studied legume cultivars. Significant negative or positive correlations were also found between feeding characteristics and enzymatic activities of H. armigera with the biochemical composition of the studied legumes. The cluster analysis results revealed that artificial diets containing Mahta and Khomein cultivars were unsuitable for H. armigera, and can be used as candidates for integrated pest management programs or for screening insect inhibitors to produce genetically modified pest-resistant plants.
Collapse
Affiliation(s)
- Hasan Jafari
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyed Ali Hemmati
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Behzad Habibpour
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
2
|
Chauhan VK, Dhania NK, Lokya V, Bhuvanachandra B, Padmasree K, Dutta-Gupta A. Midgut aminopeptidase N expression profile in castor semilooper (Achaea janata) during sublethal Cry toxin exposure. J Biosci 2021. [DOI: 10.1007/s12038-021-00148-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Debnath R, Mobarak SH, Mitra P, Barik A. Comparative performance and digestive physiology of Diaphania indica (Lepidoptera: Crambidae) on Trichosanthes anguina (Cucurbitaceae) cultivars. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:756-766. [PMID: 32484147 DOI: 10.1017/s0007485320000255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diaphania indica (Saunders) (Lepidoptera: Crambidae) is an important phytophagous pest of Trichosanthes anguina L. in India. We studied life table parameters by age-stage, two-sex, amylolytic and proteolytic activities, and food utilization parameters of D. indica on the leaves of three T. anguina cultivars (Baruipur Long, Polo No. 1 and MNSR-1). Further, nutrients (total carbohydrates, proteins, lipids, amino acids and nitrogen) and antinutrients (total phenols, flavonols and tannins) in leaves were determined. The development time (egg to adult emergence) was the shortest on MNSR-1 (19.79 d) and the longest on Polo No. 1 (25.72 d). Fecundity was the highest and lowest on MNSR-1 (259 eggs) and Polo No. 1 (151.22 eggs), respectively. The lowest intrinsic rate of increase (rm) and net reproductive rate (R0) of D. indica on Polo No. 1 were 0.1112 d-1 and 27.22 offspring individual-1, respectively. The mean generation time (T) was the shortest on MNSR-1 (23.99 days) and the longest on Polo No. 1 (29.70 d). The larvae of D. indica fed with MNSR-1 had the highest level of amylolytic and proteolytic activities, and the lowest activities were in the larvae fed with Polo No. 1. The fifth-instar larvae fed with Polo No. 1 had the lowest consumption index and growth rate. The higher larval development time and lower fecundity of D. indica on Polo No. 1 were due to the lower level of nutrients and a higher level of antinutrients than other cultivars. Our results concluded that Polo No. 1 cultivar could be suggested for cultivation.
Collapse
Affiliation(s)
- Rahul Debnath
- Ecology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan - 713 104, West Bengal, India
| | - Syed Husne Mobarak
- Ecology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan - 713 104, West Bengal, India
| | - Paroma Mitra
- Ecology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan - 713 104, West Bengal, India
| | - Anandamay Barik
- Ecology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan - 713 104, West Bengal, India
| |
Collapse
|
4
|
Wang M, Zhang S, Shi Y, Yang Y, Wu Y. Global gene expression changes induced by knockout of a protease gene cluster in Helicoverpa armigera with CRISPR/Cas9. JOURNAL OF INSECT PHYSIOLOGY 2020; 122:104023. [PMID: 32061647 DOI: 10.1016/j.jinsphys.2020.104023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Helicoverpa armigera is one of the most serious agricultural insect pests of global importance. It is highly polyphagous and depends on digestive serine proteases to degrade proteins to peptides and to amino acids. H. armigera has evolved adaptive ability to compensate for the inhibition of plant defensive protease inhibitors (PIs) in its diet by overproduction of digestive enzymes. As far as we know, compensation for deletion of serine protease genes has not yet been studied in any herbivorous insect. In this study, we used CRISPR/Cas9 to knock out a cluster of 18 trypsin-like genes in H. armigera. Compared with the wild type SCD strain, activities of the total proteases, trypsins and chymotrypsins were not significantly changed in the gene cluster knockout strain (Tryp-KO). RNA-seq data showed 1492 upregulated and 461 downregulated DEGs in Try-KO. GO function classification and KEGG pathway analyses revealed these differentially expressed genes were enriched for terms related to binding, catalytic activity, metabolic process and signal transduction. In regard to serine protease genes, 35 were upregulated and 12 downregulated in Tryp-KO strain. Our study indicated that H. armigera can compensate for the deleted protease genes by overexpression of other trypsin and chymotrypsin genes in order to maintain its genetic and metabolic robustness. It also suggests that genetic perturbations created by genome editing tools can induce global gene expression changes.
Collapse
Affiliation(s)
- Meng Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shuangshuang Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yu Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Mendonça EG, de Almeida Barros R, Cordeiro G, da Silva CR, Campos WG, de Oliveira JA, de Almeida Oliveira MG. Larval development and proteolytic activity of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae) exposed to different soybean protease inhibitors. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21637. [PMID: 31625209 DOI: 10.1002/arch.21637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/16/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Anticarsia gemmatalis represents a relevant factor for lowering soybean and other legume crop productivities. Protease inhibitors affect protein degradation and reduce the availability of amino acids, impairing the development and survival of insect pests. To evaluate the possible use of proteinaceous protease inhibitors in the management of this pest, the activities of midgut proteases and the growth and development of A. gemmatalis larvae exposed to soybean Bowman-Birk trypsin-chymotrypsin inhibitor (SBBI) and soybean Kunitz trypsin inhibitor (SKTI) were determined. The survival curves obtained using Kaplan-Meier estimators indicated that SKTI and SBBI stimulated larval survival. However, the development of A. gemmatalis was delayed, and prepupal weight decreased in the presence of both inhibitors. The results showed that SKTI and SBBI inhibited the trypsin-like and total proteolytic activities of larvae on the 12th day after eclosion. On the 15th day after eclosion, larvae exposed to SKTI increased the activities of trypsin and total proteases. Although SKTI and SBBI did not affect the survival of the insect, they had effects on midgut proteases in a stage wherein A. gemmatalis fed voraciously, increased the larval cycle, and decreased prepupal weight. These findings provide baseline information about the potential of proteinaceous protease inhibitors to manage the velvetbean caterpillar, avoiding chemical pesticides.
Collapse
Affiliation(s)
- Eduardo G Mendonça
- Departamento de Bioquímica e Biologia Molecular, Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Brazil
| | - Rafael de Almeida Barros
- Departamento de Bioquímica e Biologia Molecular, Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Brazil
| | - Gláucia Cordeiro
- Departamento de Bioquímica e Biologia Molecular, Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Brazil
| | - Carolina R da Silva
- Departamento de Bioquímica e Biologia Molecular, Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Brazil
| | - Welligton G Campos
- Departamento de Engenharia de Biossistemas, Campus Dom Bosco, Universidade Federal de São João Del-Rei, São João Del-Rei, Brazil
| | | | - Maria G de Almeida Oliveira
- Departamento de Bioquímica e Biologia Molecular, Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
6
|
Golla SK, Rajasekhar P, Akbar SMD, Sharma HC. Proteolytic Activity in the Midgut of Helicoverpa armigera (Noctuidae: Lepidoptera) Larvae Fed on Wild Relatives of Chickpea, Cicer arietinum. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2409-2415. [PMID: 29924350 DOI: 10.1093/jee/toy160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Indexed: 06/08/2023]
Abstract
Wild relatives of crops are an important source of resistance genes against insect pests. However, it is important to identify the accessions of wild relatives with different mechanisms of resistance to broaden the basis and increase the levels of resistance to insect pests. Therefore, we evaluated 15 accessions of wild relatives of chickpea belonging to seven species and five genotypes of cultivated chickpea for their resistance to pod borer, Helicoverpa armigera, which is the most damaging pest of chickpea. The test genotypes were evaluated for resistance to H. armigera using detached pod assay. Data were also recorded on activity of the digestive enzymes in the midgut of the larvae fed on different wild relatives of chickpea. All the wild chickpea genotypes suffered lower pod damage and weight gained by the third-instar larvae of H. armigera was lower when fed on them compared with the cultivated chickpea. The accessions, IG 69979 (Cicer cuneatum), PI 599066, IG 70006, IG 70018, IG 70022 (Cicer bijugum), IG 599076 (Cicer chrossanicum), and IG 72933, IG 72953 (Cicer reticulatum), showed high levels of resistance to H. armigera. There were significant differences in protease activity in larval gut of H. armigera fed on different wild relatives of chickpea. Total protease, trypsin, and chymotrypsin activities were lowest in larva fed on PI 599066 (C. bijugum) compared with that in the larvae fed IG 69979 (C. cuneatum) and IG 70022 (C. bijugum). Aminopeptidase activity was highest in the larvae fed on IG 70022 (C. bijugum) and IG 599076 (C. chrossanicum), whereas lowest activity was recorded in the larvae fed on ICC 3137 and KAK 2 (susceptible checks). The variation in protease activities may be due to the presence of protease inhibitors in the wild relatives or hyperproduction of enzymes by the larvae as result of protease inhibitor activity of the wild relatives, resulting in low weight gain by larvae. The results suggested that wild relatives of chickpea with diverse mechanisms of resistance can be exploited to increase the levels and diversify the basis of resistance to H. armigera in cultivated chickpea.
Collapse
Affiliation(s)
- Siva Kumar Golla
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
- Department of Entomology Acharya N. G. Ranga Agricultural University, Guntur, Andhra Pradesh, India
| | - P Rajasekhar
- Department of Entomology Acharya N. G. Ranga Agricultural University, Guntur, Andhra Pradesh, India
| | - S M D Akbar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
- Department of Biochemistry, Agricultural Research Station University of Agricultural Sciences, Dharwad, Karnataka, India
| | - H C Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
- Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India
| |
Collapse
|
7
|
Bhide AJ, Channale SM, Patil SS, Gupta VS, Ramasamy S, Giri AP. Biochemical, structural and functional diversity between two digestive α-amylases from Helicoverpa armigera. Biochim Biophys Acta Gen Subj 2015; 1850:1719-28. [DOI: 10.1016/j.bbagen.2015.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/20/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
|
8
|
Kuwar SS, Pauchet Y, Vogel H, Heckel DG. Adaptive regulation of digestive serine proteases in the larval midgut of Helicoverpa armigera in response to a plant protease inhibitor. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 59:18-29. [PMID: 25662099 DOI: 10.1016/j.ibmb.2015.01.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/07/2015] [Accepted: 01/09/2015] [Indexed: 05/13/2023]
Abstract
Protease inhibitors (PIs) are direct defenses induced by plants in response to herbivory. PIs reduce herbivore digestive efficiency by inhibiting insects' digestive proteases; in turn insects can adapt to PIs by generally increasing protease levels and/or by inducing the expression of PI-insensitive proteases. Helicoverpa armigera, a highly polyphagous lepidopteran insect pest, is known for its ability to adapt to PIs. To advance our molecular and functional understanding of the regulation of digestive proteases, we performed a comprehensive gene expression experiment of H. armigera exposed to soybean Kunitz trypsin inhibitor (SKTI) using a custom-designed microarray. We observed poor larval growth on the SKTI diet until 24 h, however after 48 h larvae attained comparable weight to that of control diet. Although initially the expression of several trypsins and chymotrypsins increased, eventually the expression of some trypsins decreased, while the number of chymotrypsins and their expression increased in response to SKTI. Some of the diverged serine proteases were also differentially expressed. The expression of serine proteases observed using microarrays were further validated by qRT-PCR at different time points (12, 24, 48, 72 and 96 h) after the start of SKTI ingestion. There were also large changes in transcriptional patterns over time in the control diet. Carbohydrate metabolism and immune defense genes were affected in response to SKTI ingestion. Enzyme assays revealed reduced trypsin-specific activity and increased chymotrypsin-specific activity in response to SKTI. The differential regulation of trypsins and chymotrypsins at the transcript and protein levels accompanying a rebound in growth rate indicates that induction of SKTI-insensitive proteases is an effective strategy of H. armigera in coping with this protease inhibitor in its diet.
Collapse
Affiliation(s)
- Suyog S Kuwar
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany.
| |
Collapse
|
9
|
Hosseininejad AS, Naseri B, Razmjou J. Comparative feeding performance and digestive physiology of Helicoverpa armigera (Lepidoptera: Noctuidae) larvae-fed 11 corn hybrids. JOURNAL OF INSECT SCIENCE (ONLINE) 2015; 15:179. [PMID: 25688090 PMCID: PMC4535127 DOI: 10.1093/jisesa/ieu179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/10/2014] [Indexed: 06/04/2023]
Abstract
This study aimed to evaluate the feeding responses and digestive proteolytic and amylolytic activity of Helicoverpa armigera (Hübner) on 11 corn (Zea mays L.) hybrids at 25 ± 1°C, 65 ± 5% relative humidity (RH), and a photoperiod of 16:8 (L:D) h. The fourth- and fifth-instar larvae fed on hybrid K47*K19 had the highest weight of food consumption and those reared on hybrid KSC705 had the lowest value of food consumption. The highest weight gain of the larvae was observed when H. armigera were fed hybrid KLM78*MO17 and lowest when they were fed hybrids K36 * MO17, KSC705, and K35 * K36. Pupal weight of H. armigera was heaviest when larvae were fed hybrid K47*K19 and lightest when they were fed hybrid KSC705. The highest proteolytic activity of the fourth-instar larvae was observed when they were fed hybrid KSC705, and the lowest activity was observed when they were fed hybrid K47*A67. Fifth-instar larvae that fed on hybrid K47*K19 showed the highest proteolytic activity. Fourth-instar larvae that fed on hybrid K36*MO17 showed the highest amylase activity. The fifth-instar larvae fed on hybrid K47*A67 showed the maximum amylase activity and those reared on the K48*K18 showed the minimum activity. Our results indicated that K36 * MO17, KSC705, and K48 * K18 were the most unsuitable hybrids for feeding H. armigera.
Collapse
Affiliation(s)
- A S Hosseininejad
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - B Naseri
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - J Razmjou
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
10
|
Namin FR, Naseri B, Razmjou J. Nutritional performance and activity of some digestive enzymes of the cotton bollworm, Helicoverpa armigera, in response to seven tested bean cultivars. JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:93. [PMID: 0 PMCID: PMC4212854 DOI: 10.1093/jis/14.1.93] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nutritional performance and activity of some digestive enzymes (protease and α-amylase) of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) in response to feeding on bean (Phaseolus vulgaris L. (Fabales: Fabaceae)) cultivars (Shokufa, Akhtar, Sayyad, Naz, Pak, Daneshkadeh, and Talash) were evaluated under laboratory conditions (25 ± 1°C, 65 ± 5% RH, and a 16:8 L:D photoperiod). The highest and lowest respective values of approximate digestibility were observed when fourth, fifth, and sixth larval instar H. armigera were fed red kidney bean Akhtar and white kidney bean Daneshkadeh. The efficiency of conversion of ingested and digested food was highest when H. armigera was fed red kidney beans Akhtar and Naz and lowest when they were fed white kidney bean Pak. The highest protease activity of fifth instars was observed when they were fed red kidney bean Naz, and the highest amylase activity of fifth instars was observed when they were fed red kidney bean Sayyad. Sixth instar larvae that fed on red kidney bean Sayyad showed the highest protease activity. Larvae reared on common bean Talash and white kidney bean Pak showed the highest amylase activity. Among bean cultivars tested, red kidney bean Sayyad was the most unsuitable host for feeding H. armigera.
Collapse
Affiliation(s)
- Foroogh Rahimi Namin
- Department of Plant Protection, Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Bahram Naseri
- Department of Plant Protection, Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Jabraeil Razmjou
- Department of Plant Protection, Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
11
|
Hemati SA, Naseri B, Ganbalani GN, Dastjerdi HR, Golizadeh A. Digestive proteolytic and amylolytic activities and feeding responses of Helicoverpa armigera (Lepidoptera: Noctuidae) on different host plants. JOURNAL OF ECONOMIC ENTOMOLOGY 2012; 105:1439-1446. [PMID: 22928327 DOI: 10.1603/ec11345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Digestive proteolytic and amylolytic activities and feeding responses of fifth instar larvae of Helicoverpa armigera (Hübner) on different host plants including chickpea (cultivars Arman, Hashem, Azad, and Binivich), common bean (cultivar Khomein), white kidney bean (cultivar Dehghan), red kidney bean (cultivar Goli), cowpea (cultivar Mashhad), tomato (cultivar Meshkin), and potato (cultivars Agria and Satina) were studied under laboratory conditions (25 +/- 1 degrees C, 65 +/- 5% RH and a photoperiod of 16:8 [L:D] h). Our results showed that the highest protease activity in optimal pH was on cultivar Dehghan (8.717 U/mg) and lowest one was on Meshkin (3.338 U/mg). In addition, the highest amylase activity in optimal pH was on cultivar Dehghan (0.340 mU/mg) and lowest was on Meshkin (0.088 mU/mg). The larval weight of fifth instar H. armigera showed significant difference, being heaviest on Binivich (125.290 +/- 5.050 mg) and lightest on Meshkin (22.773 +/- 0.575 mg). Furthermore, the highest and lowest values of food consumed were on Goli (362.800 +/- 27.500 mg) and Satina (51.280 +/- 4.500 mg), respectively. In addition, the lowest values of prepupal and pupal weight were on Meshkin (32.413 +/- 0.980 and 41.820 +/- 1.270 mg, respectively). The results indicated that tomato (Meshkin) was unsuitable host for feeding fifth instar larvae of H. armigera.
Collapse
Affiliation(s)
- S A Hemati
- Department of Plant Protection, Faculty of Agriculture, University of Mohaghegh Ardabili, P.O. Box 56199-11367, Ardabil, Iran
| | | | | | | | | |
Collapse
|
12
|
Kotkar HM, Bhide AJ, Gupta VS, Giri AP. Amylase gene expression patterns in Helicoverpa armigera upon feeding on a range of host plants. Gene 2012; 501:1-7. [DOI: 10.1016/j.gene.2012.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/23/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
|
13
|
Upadhyay SK, Chandrashekar K. Interaction of salivary and midgut proteins of Helicoverpa armigera with soybean trypsin inhibitor. Protein J 2012; 31:259-264. [PMID: 22415700 DOI: 10.1007/s10930-012-9402-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Feeding of Helicoverpa armigera larvae on semi-synthetic diet containing Soybean trypsin inhibitor (STI) resulted in disappearance of STI sensitive protease in salivary and midgut protease extract. This might be due to in situ inhibition by dietary STI. STI was largely degraded within 1 h of incubation with total salivary protease (1:1). Degradation was relatively low in midgut proteases. STI interacting proteins were isolated from saliva and midgut extracts of larvae fed on STI supplemented diet using affinity column. Most of the isolated proteins showed caseinolytic activity in zymogram. Denovo sequencing data of seven different peptides selected from trypsin digested total protein showed similarity to chymotrypsinogen, serine protease, aminopeptidase N, peroxidase, hypothetical protein and muscle specific protein.
Collapse
Affiliation(s)
- Santosh Kumar Upadhyay
- National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow, 226001 UP, India
| | | |
Collapse
|