1
|
Koeppe S, Kawchuk L, Kalischuk M. RNA Interference Past and Future Applications in Plants. Int J Mol Sci 2023; 24:ijms24119755. [PMID: 37298705 DOI: 10.3390/ijms24119755] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Antisense RNA was observed to elicit plant disease resistance and post-translational gene silencing (PTGS). The universal mechanism of RNA interference (RNAi) was shown to be induced by double-stranded RNA (dsRNA), an intermediate produced during virus replication. Plant viruses with a single-stranded positive-sense RNA genome have been instrumental in the discovery and characterization of systemic RNA silencing and suppression. An increasing number of applications for RNA silencing have emerged involving the exogenous application of dsRNA through spray-induced gene silencing (SIGS) that provides specificity and environmentally friendly options for crop protection and improvement.
Collapse
Affiliation(s)
- Sarah Koeppe
- Department of Plant Agriculture, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada
| | - Lawrence Kawchuk
- Research Centre, Agriculture and Agri-Food Canada, 5403 1 Ave S., Lethbridge, AB T1J 4B1, Canada
| | - Melanie Kalischuk
- Department of Plant Agriculture, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada
| |
Collapse
|
2
|
Zhang L, Wei Y, Wei L, Liu X, Liu N. Effects of transgenic cotton lines expressing dsAgCYP6CY3-P1 on the growth and detoxification ability of Aphis gossypii glover. PEST MANAGEMENT SCIENCE 2023; 79:481-488. [PMID: 36196669 DOI: 10.1002/ps.7220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/05/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The pest Aphis gossypii Glover globally causes considerable economic losses on various crops by its feeding damage and disease transmission. Transgenic plants that produce double-stranded RNA (dsRNA) targeted to insect genes are being developed as a pest control strategy. In this study, we evaluated the effects of transgenic cotton-mediated RNA interference (RNAi) on the growth and detoxification ability of A. gossypii after the transgenic cotton lines expressing dsAgCYP6CY3-P1 (the TG cotton lines) were obtained on the basis of exploring the functions of CYP6CY3 in our previous research. RESULTS The developmental time of third- and fourth-instar nymphs which fed on the TG cotton lines were significantly prolonged. Life table parameters showed that the fitness of cotton aphids from the TG cotton lines decreased. Additionally, the relative expression level of CYP6CY3 in cotton aphids which fed on the TG cotton lines was significantly reduced by 47.3 % at 48 h compared with that from the nontransgenic cotton (the NT cotton). Bioassay showed that silencing of CYP6CY3 increased mortality of the nymphs to imidacloprid by 28.49 % (at 24 h) and to acetamiprid by 73.77 % (at 48 h), respectively. CONCLUSION These results indicated that the TG cotton lines delayed the growth and development of A. gossypii, but also decreased population density and increased its sensitivity to imidacloprid and acetamiprid, respectively. The results provide further support for the development and application of plant-mediated RNAi. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lianjun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yuanjie Wei
- Xinjiang Science and Technology Project Service Center, Urumqi, China
| | - Linyu Wei
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiaoning Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Ning Liu
- Institute of Crop Variety Resources, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
3
|
Finetti L, Benetti L, Leyria J, Civolani S, Bernacchia G. Topical delivery of dsRNA in two hemipteran species: Evaluation of RNAi specificity and non-target effects. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105295. [PMID: 36549821 DOI: 10.1016/j.pestbp.2022.105295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Double-stranded (ds) RNA-based technologies could provide novel and potential tool for pest management with efficiency and specificity of action. However, before applying this technique in the field, it is necessary to identify effective delivery methods and evaluate the non-target effects that may occur. In this article, we evaluated the effectiveness of dsRNA by topical delivery on a species of great agricultural interest, Halyomorpha halys. The specificity of action of the dsRNA was also investigated in Rhodnius prolixus, an insect phylogenetically close to H. halys. Of the three investigated genes (putative ATPase N2B, ATPase, serine/threonine-protein phosphatase PP1-β catalytic subunit, PP1, and IAP repeat-containing protein 7-B-like, IAP), IAP and ATPase were able to induce higher mortality in H. halys nymphs compared to the control, with specific concentrations for each gene targeted. However, when the same RNAs were topically delivered to both R. prolixus 2nd and 3rd instar nymphs, no gene silencing and mortality were observed. For this reason, to assess dsRNA application-mediated non-target effects, we injected both H. halys and R. prolixus specific dsRNA in R. prolixus 5th instar nymphs. When the dsRNA targeting H. halys IAP was microinjected into R. prolixus 5th instar nymphs, no mortality was observed, suggesting a strong RNAi specificity. Together, these data suggest that the topical delivery could be suitable for the dsRNA to control H. halys population. Furthermore, its specificity of action would allow treatments towards single harmful species with limited non-target effects.
Collapse
Affiliation(s)
- Luca Finetti
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Lorenzo Benetti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Stefano Civolani
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Bernacchia
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Lu JB, Wang SN, Ren PP, He F, Li Q, Chen JP, Li JM, Zhang CX. RNAi-mediated silencing of an egg-specific gene Nllet1 results in hatch failure in the brown planthopper. PEST MANAGEMENT SCIENCE 2023; 79:415-427. [PMID: 36177946 DOI: 10.1002/ps.7210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/15/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The brown planthopper (BPH) is one of the most destructive agricultural pests in Asia. RNA interference (RNAi)-mediated pest management has been under development for years, and the selection of appropriate target genes is important for pest-targeted RNAi. C-type lectins (CTLs) are a class of genes that perform a variety of functions, such as the regulation of growth and development. RESULTS A CTL-S protein named Nllet1, containing a single calcium ion (Ca2+ )-dependent carbohydrate-binding domain (CRD) with a conserved triplet motif QPD was identified and functionally characterized in BPH. Expression profiles at both the transcriptional and translational levels show that Nllet1 accumulates during the serosal cuticle (SC) formation period. Immunofluorescence and immunogold labeling further demonstrated that Nllet1 is located in the serosal endocuticle (en-SC). Maternal RNAi-mediated silencing of Nllet1 disrupted the SC structure, accompanied by a loss of the outward barrier and 100% embryo mortality. Injection of 10 ng dsNllet1 or dsNllet1' per female adult BPH resulted in a total failure of egg hatching. CONCLUSION Nllet1 is essential for SC formation and embryonic development in BPH, which helps us understand the important roles of CTL-Ss. Additionally, BPH eggs show high sensitivity to the depletion of Nllet1. This study indicates that Nllet1 is a promising candidate gene that can be used to develop RNAi-based control strategies at the BPH egg stage, and it can also be used as a target for developing novel ovicides. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Sai-Nan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Peng-Peng Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Fang He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Qiao Li
- Animal and Plant Quarantine Service, Technology Center of Wuhan Customs District, Wuhan, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Guo CF, Qiu JH, Hu YW, Xu PP, Deng YQ, Tian L, Wei YY, Sang W, Liu YT, Qiu BL. Silencing of V-ATPase-E gene causes midgut apoptosis of Diaphorina citri and affects its acquisition of Huanglongbing pathogen. INSECT SCIENCE 2022. [PMID: 36346663 DOI: 10.1111/1744-7917.13146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama, is among the most important pests of citrus. It is the main vector of the Huanglongbing (HLB) pathogen Candidatus Liberibacter asiaticus (CLas), which causes severe losses in citrus crops. Control of D. citri is therefore of paramount importance to reduce the spread of HLB. In this regard, using RNA interference (RNAi) to silence target genes is a useful strategy to control psyllids. In this study, using RNAi, we examined the biological functions of the V-ATPase subunit E (V-ATP-E) gene of D. citri, including its effect on acquisition of CLas. The amino acid sequence of V-ATP-E from D. citri had high homology with proteins from other insects. V-ATP-E was expressed at all D. citri life stages analyzed, and the expression level in mature adults was higher than that of teneral adults. Silencing of V-ATP-E resulted in a significant increase in mortality, reduced body weight, and induced cell apoptosis of the D. citri midgut. The reduced expression of V-ATP-E was indicated to inhibit CLas passing through the midgut and into the hemolymph, leading to a majority of CLas being confined to the midgut. In addition, double-stranded RNA of D. citri V-ATP-E was safe to non-target parasitic wasps. These results suggest that V-ATP-E is an effective RNAi target that can be used in D. citri control to block CLas infection.
Collapse
Affiliation(s)
- Chang-Fei Guo
- Engineering Research Center of Biocontrol, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jun-Hong Qiu
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yu-Wei Hu
- Key Laboratory of South China Modern Biological Seed Industry, MARA, National S&T Innovation Center for Modern Agricultural Industry, Guangzhou, China
| | - Pei-Ping Xu
- Engineering Research Center of Biocontrol, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ying-Qi Deng
- Engineering Research Center of Biocontrol, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ling Tian
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yi-Yun Wei
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Wen Sang
- Engineering Research Center of Biocontrol, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yu-Tao Liu
- Key Laboratory of South China Modern Biological Seed Industry, MARA, National S&T Innovation Center for Modern Agricultural Industry, Guangzhou, China
| | - Bao-Li Qiu
- Engineering Research Center of Biocontrol, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|
6
|
Yang S, Zou Z, Xin T, Cai S, Wang X, Zhang H, Zhong L, Xia B. Knockdown of hexokinase in Diaphorina citri Kuwayama (Hemiptera: Liviidae) by RNAi inhibits chitin synthesis and leads to abnormal phenotypes. PEST MANAGEMENT SCIENCE 2022; 78:4303-4313. [PMID: 35731692 DOI: 10.1002/ps.7049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Silencing specific genes in pests using RNA interference (RNAi) technology is a promising new pest-control strategy. The Asian citrus psyllid, Diaphorina citri Kuwayama, is the most important citrus pest because it transmits Candidatus Liberibacter asiaticus, which causes huanglongbing. Chitin is essential for insect development, and enzymes in this pathway are attractive targets for pest control. RESULTS The hexokinase gene DcHK was characterized from D. citri to impair proper growth and chitin synthesis through RNAi. The transcription of DcHK was more highly developed in third-instar nymphs, adults and the Malpighian tube. The RNAi needed for D. citri is dose-dependent, with 600 ng μl-1 dsDcHK sufficient to knockdown endogenous DcHK expression. The messenger RNA (mRNA) level was lowest at 36 h after dosing, and there were significant effects on the relative levels of mRNA in the chitin synthesis pathway (DcTre, DcG6PI, DcGNAT, DcGFAT, DcPGM, DcUAP and DcCHS), leading to mortality, reduced body weight and abnormal or lethal phenotypes. CONCLUSION RNAi can be triggered by orally delivered double-stranded RNA in D. citri. These results can provide support for HK genes as a new potential target for citrus psyllid control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shan Yang
- School of Life Science, Nanchang University, Nanchang, China
| | - Zhiwen Zou
- School of Life Science, Nanchang University, Nanchang, China
| | - Tianrong Xin
- School of Life Science, Nanchang University, Nanchang, China
| | - Shiyu Cai
- School of Life Science, Nanchang University, Nanchang, China
| | - Xi Wang
- School of Life Science, Nanchang University, Nanchang, China
- Administration of Plant Protection and Quarantine of Jiangxi Province, Nanchang, China
| | - Huijie Zhang
- School of Life Science, Nanchang University, Nanchang, China
| | - Ling Zhong
- Administration of Plant Protection and Quarantine of Jiangxi Province, Nanchang, China
| | - Bin Xia
- School of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Liu D, De Schutter K, Chen P, Smagghe G. The N-glycosylation-related genes as potential targets for RNAi-mediated pest control of the Colorado potato beetle (Leptinotarsa decemlineata). PEST MANAGEMENT SCIENCE 2022; 78:3815-3822. [PMID: 34821017 DOI: 10.1002/ps.6732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/09/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND N-glycosylation is one of the most common and important post-translational modifications in the eukaryotic cell. The study of protein N-glycosylation in several model insects confirmed the importance of this process in insect development, immunity, survival and fertility. The Colorado potato beetle (Leptinotarsa decemlineata) (CPB) is a common pest of Solanaceae crops. With the infamous title of champion of insecticide resistance, novel pest control strategies for this insect are needed. Luckily this pest insect is reported as very sensitive for the post-genomic technology of RNA interference (RNAi). RESULTS In this project, we investigated the importance of N-glycosylation in the survival and development of CPB using RNAi-mediated gene silencing of N-glycosylation-related genes (NGRGs) during the different transition steps from the larva, through the pupa to the adult stage. High mortality was observed in the larval stage with the silencing of early NGRGs, as STT3a, DAD1 and GCS1. With dsRNA against middle NGRGs, abnormal phenotypes at the ecdysis process and adult formation were observed, while the silencing of late NGRGs did not cause mortality. CONCLUSION The lethal phenotypes observed on silencing of the genes involved in the early processing steps of the N-glycosylation pathway suggest these genes are good candidates for RNAi-mediated control of CPB. Next to the gene-specific mechanism of RNAi for biosafety and possible implementation in integrated pest management, we believe these early NGRGs provide a possible alternative to the well-known target genes Snf7 and vacuolar ATPases that are now used in the first commercial RNAi-based products and thus they may be useful in the context of proactive resistance management. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongdong Liu
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kristof De Schutter
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Pengyu Chen
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Guo Y, Fan Y, Teng Z, Wang L, Tan X, Wan F, Zhou H. Efficacy of RNA interference using nanocarrier-based transdermal dsRNA delivery system in the woolly apple aphid, Eriosoma lanigerum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21888. [PMID: 35388519 DOI: 10.1002/arch.21888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
RNA interference (RNAi) is an essential approach for studying gene function and has been considered as a promising strategy for pest control. However, RNAi method has not been conducted in Woolly apple aphid (Eriosoma lanigerum Hausmann), one of the most damaging apple pests in the world. In the study, we investigated the efficacy of RNAi of V-ATPase subunit D (ATPD), an efficacious target for RNAi in other insects, in E. lanigerum by a transdermal double-stranded RNA (dsRNA) delivery system with nanocarriers. Our results showed although topical application of dsATPD in E. lanigerum for 24 h produced 40.5% gene silencing, the additional help of nanocarriers extremely improved the interference efficiency with 98.5% gene silencing. Moreover, a 55.75% mortality was observed 5 days after topical application of nanocarriers and dsATPD, relative to the control (topical application of nanocarriers and double-stranded green fluorescent protein [dsGFP]). The nanocarrier-based transdermal dsRNA delivery system will promote the development of functional analysis of vital genes and also provide a potential target for RNAi-based management of E. lanigerum.
Collapse
Affiliation(s)
- Yi Guo
- College of Plant Health & Medicine, Qingdao Agricultural University, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, China-Australia Joint Institute of Agricultural and Environmental Health, Qingdao, Shandong, China
| | - Yinjun Fan
- College of Plant Health & Medicine, Qingdao Agricultural University, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, China-Australia Joint Institute of Agricultural and Environmental Health, Qingdao, Shandong, China
| | - Ziwen Teng
- College of Plant Health & Medicine, Qingdao Agricultural University, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, China-Australia Joint Institute of Agricultural and Environmental Health, Qingdao, Shandong, China
| | - Lingyun Wang
- College of Plant Health & Medicine, Qingdao Agricultural University, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, China-Australia Joint Institute of Agricultural and Environmental Health, Qingdao, Shandong, China
| | - Xiumei Tan
- College of Plant Health & Medicine, Qingdao Agricultural University, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, China-Australia Joint Institute of Agricultural and Environmental Health, Qingdao, Shandong, China
| | - Fanghao Wan
- College of Plant Health & Medicine, Qingdao Agricultural University, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, China-Australia Joint Institute of Agricultural and Environmental Health, Qingdao, Shandong, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Hongxu Zhou
- College of Plant Health & Medicine, Qingdao Agricultural University, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, China-Australia Joint Institute of Agricultural and Environmental Health, Qingdao, Shandong, China
| |
Collapse
|
9
|
Halder K, Chaudhuri A, Abdin MZ, Majee M, Datta A. RNA Interference for Improving Disease Resistance in Plants and Its Relevance in This Clustered Regularly Interspaced Short Palindromic Repeats-Dominated Era in Terms of dsRNA-Based Biopesticides. FRONTIERS IN PLANT SCIENCE 2022; 13:885128. [PMID: 35645997 PMCID: PMC9141053 DOI: 10.3389/fpls.2022.885128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
RNA interference (RNAi) has been exploited by scientists worldwide to make a significant contribution in the arena of sustainable agriculture and integrated pest management. These strategies are of an imperative need to guarantee food security for the teeming millions globally. The already established deleterious effects of chemical pesticides on human and livestock health have led researchers to exploit RNAi as a potential agri-biotechnology tool to solve the burning issue of agricultural wastage caused by pests and pathogens. On the other hand, CRISPR/Cas9, the latest genome-editing tool, also has a notable potential in this domain of biotic stress resistance, and a constant endeavor by various laboratories is in progress for making pathogen-resistant plants using this technique. Considerable outcry regarding the ill effects of genetically modified (GM) crops on the environment paved the way for the research of RNAi-induced double-stranded RNAs (dsRNA) and their application to biotic stresses. Here, we mainly focus on the application of RNAi technology to improve disease resistance in plants and its relevance in today's CRISPR-dominated world in terms of exogenous application of dsRNAs. We also focused on the ongoing research, public awareness, and subsequent commercialization of dsRNA-based biocontrol products.
Collapse
Affiliation(s)
- Koushik Halder
- National Institute of Plant Genome Research, New Delhi, India
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, New Delhi, India
| | - Malik Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Manoj Majee
- National Institute of Plant Genome Research, New Delhi, India
| | - Asis Datta
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
10
|
Zhang Y, Zheng S, Li Y, Jiang X, Gao H, Lin X. The Function of Nilaparvata lugens (Hemiptera: Delphacidae) E74 and Its Interaction With βFtz-F1. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:15. [PMID: 35738261 PMCID: PMC9225820 DOI: 10.1093/jisesa/ieac041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Drosophila E74 is an early gene located in the polytene chromosome 74EF puff position. E74 controls the production of late genes, indicating that it plays a crucial role in this cascade model. Nilaparvata lugens E74 is closely related to Diaphorina citri, Bemisia tabaci, and Laodelphax striatellus. After downregulating E74, molting, and nymphal mortality were increased, and ovarian development was delayed. Moreover, the expression of Vg was reduced at the transcriptional level, as measured by qRT-PCR, and the content of Vg protein was reduced, as detected by Western blotting. After downregulating E74, the expression of hormone-related genes, including Tai, βFtz-F1, Met, Kr-h1, UspA, UspB, E93, and Br, was changed. The expression of E74 was significantly decreased after downregulating hormone-related genes. When the expression of E74 and βFtz-F1 was downregulated together, nymph mortality and molting mortality were higher than those when E74 or βFtz-F1 was downregulated alone. Thus, E74 probably interacts with βFtz-F1 at the genetic level. In summary, this study showed that E74 plays a crucial role in the development, metamorphosis and reproduction of N. lugens, possibly via the interaction with βFtz-F1 at the genetic level. This study provides a basis for the development of new target-based pesticides and new methods for the effective control of N. lugens.
Collapse
Affiliation(s)
| | | | - Yan Li
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Xiaojuan Jiang
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Han Gao
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | | |
Collapse
|
11
|
Hunter WB, Wintermantel WM. Optimizing Efficient RNAi-Mediated Control of Hemipteran Pests (Psyllids, Leafhoppers, Whitefly): Modified Pyrimidines in dsRNA Triggers. PLANTS 2021; 10:plants10091782. [PMID: 34579315 PMCID: PMC8472347 DOI: 10.3390/plants10091782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023]
Abstract
The advantages from exogenously applied RNAi biopesticides have yet to be realized in through commercialization due to inconsistent activity of the dsRNA trigger, and the activity level of RNAi suppression. This has prompted research on improving delivery methods for applying exogenous dsRNA into plants and insects for the management of pests and pathogens. Another aspect to improve RNAi activity is the incorporation of modified 2′-F pyrimidine nucleotides into the dsRNA trigger. Modified dsRNA incorporating 32–55% of the 2′-F- nucleotides produced improved RNAi activity that increased insect mortality by 12–35% greater than non-modified dsRNA triggers of the same sequence. These results were repeatable across multiple Hemiptera: the Asian citrus psyllid (Diaphorina citri, Liviidae); whitefly (Bemisia tabaci, Aleyroididae); and the glassy-winged sharpshooter (Homalodisca vitripennis, Cicadellidae). Studies using siRNA with modified 2′-F- pyrimidines in mammalian cells show they improved resistance to degradation from nucleases, plus result in greater RNAi activity, due to increase concentrations and improved binding affinity to the mRNA target. Successful RNAi biopesticides of the future will be able to increase RNAi repeatability in the field, by incorporating modifications of the dsRNA, such as 2′-F- pyrimidines, that will improve delivery after applied to fruit trees or crop plants, with increased activity after ingestion by insects. Costs of RNA modification have decreased significantly over the past few years such that biopesticides can now compete on pricing with commercial chemical products.
Collapse
Affiliation(s)
- Wayne Brian Hunter
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture, Agriculture Research Service, Subtropical Insects Res., Fort Pierce, FL 34945, USA
- Correspondence:
| | - William M. Wintermantel
- U.S. Department of Agriculture, Agriculture Research Service, Crop Improvement and Protection Research, Salinas, CA 93905, USA;
| |
Collapse
|
12
|
Liu HY, Wadood SA, Xia Y, Liu Y, Guo H, Guo BL, Gan RY. Wheat authentication:An overview on different techniques and chemometric methods. Crit Rev Food Sci Nutr 2021; 63:33-56. [PMID: 34196234 DOI: 10.1080/10408398.2021.1942783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Wheat (Triticum aestivum L.) is one of the most important cereal crops and is consumed as a staple food around the globe. Wheat authentication has become a crucial issue over the last decades. Recently, many techniques have been applied in wheat authentication including the authentication of wheat geographical origin, wheat variety, organic wheat, and wheat flour from other cereals. This paper collected related literature in the last ten years, and attempted to highlight the recent studies on the discrimination and authentication of wheat using different determination techniques and chemometric methods. The stable isotope analysis and elemental profile of wheat are promising tools to obtain information regarding the origin, and variety, and to differentiate organic from conventional farming of wheat. Image analysis, genetic parameters, and omics analysis can provide solutions for wheat variety, organic wheat, and wheat adulteration. Vibrational spectroscopy analyses, such as NIR, FTIR, and HIS, in combination with multivariate data analysis methods, such as PCA, LDA, and PLS-DA, show great potential in wheat authenticity and offer many advantages such as user-friendly, cost-effective, time-saving, and environment friendly. In conclusion, analytical techniques combining with appropriate multivariate analysis are very effective to discriminate geographical origin, cultivar classification, and adulterant detection of wheat.
Collapse
Affiliation(s)
- Hong-Yan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science & Technology Center, Chengdu, China
| | - Syed Abdul Wadood
- Department of Food and Nutrition, University of Home Economics, Lahore, Pakistan
| | - Yu Xia
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science & Technology Center, Chengdu, China
| | - Yi Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science & Technology Center, Chengdu, China
| | - Huan Guo
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science & Technology Center, Chengdu, China
| | - Bo-Li Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science & Technology Center, Chengdu, China.,Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu, China
| |
Collapse
|
13
|
Salvador R, Niz JM, Nakaya PA, Pedarros A, Hopp HE. Midgut Genes Knockdown by Oral dsRNA Administration Produces a Lethal Effect on Cotton Boll Weevil. NEOTROPICAL ENTOMOLOGY 2021; 50:121-128. [PMID: 33025569 DOI: 10.1007/s13744-020-00819-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
The "cotton boll weevil" (Anthonomus grandis Boheman) is a key pest in America whose larval stage develops within the cotton flower bud. During its development, the larva uses the flower bud as food and as a shelter from predators. This behavior limits the effective control through conventional insecticide applications and biocontrol techniques. Increasing genetic information from insects has allowed the development of new control technologies based on the use of RNA interference (RNAi) to design orally delivered double-stranded RNA (dsRNA) strategies. In this study, we evaluated the effect of continuous oral administration of six specific dsRNA in order to identify an effective target gene for RNAi-mediated control of cotton boll weevil. First, six selected A. grandis gene fragments were amplified and cloned to perform in vivo synthesis of the specific dsRNA, and subsequently, larvae and adults were fed with this dsRNA for 2 weeks. Larvae mortality ranged from 40 to 60% depending on the targeted gene sequence. Indeed, α-amylase and cytochrome p450 dsRNAs were the most effective. Oral administration in adults caused smaller but still significant death rates (15-30%). Thus, the results demonstrated RNAi responses depend on life stages and target genes. The dsRNA ingestion was capable of providing knockdown mRNA levels in cotton boll weevil midgut and this effect was significantly higher in the larval stage. In this study, we present a new report of silencing of midgut genes in A. grandis larva induced by continuously feeding with dsRNA. This potential new tool should be further evaluated in cotton boll weevil control strategies.
Collapse
Affiliation(s)
- Ricardo Salvador
- Instituto de Microbiología y Zoología Agrícola (IMyZA), Centro de investigaciones en Ciencias Agronómicas y Veterinarias (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.
| | - José M Niz
- Instituto de Microbiología y Zoología Agrícola (IMyZA), Centro de investigaciones en Ciencias Agronómicas y Veterinarias (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Pablo A Nakaya
- Instituto de Microbiología y Zoología Agrícola (IMyZA), Centro de investigaciones en Ciencias Agronómicas y Veterinarias (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Analía Pedarros
- Instituto de Microbiología y Zoología Agrícola (IMyZA), Centro de investigaciones en Ciencias Agronómicas y Veterinarias (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - H Esteban Hopp
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Lab de Agrobiotecnología DFBMC, Facultad de Ciencias Exactas y Naturales, Univ de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
14
|
Nishide Y, Kageyama D, Tanaka Y, Yokoi K, Jouraku A, Futahashi R, Fukatsu T. Effectiveness of orally-delivered double-stranded RNA on gene silencing in the stinkbug Plautia stali. PLoS One 2021; 16:e0245081. [PMID: 33444324 PMCID: PMC7808618 DOI: 10.1371/journal.pone.0245081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/21/2020] [Indexed: 11/18/2022] Open
Abstract
Development of a reliable method for RNA interference (RNAi) by orally-delivered double-stranded RNA (dsRNA) is potentially promising for crop protection. Considering that RNAi efficiency considerably varies among different insect species, it is important to seek for the practical conditions under which dsRNA-mediated RNAi effectively works against each pest insect. Here we investigated RNAi efficiency in the brown-winged green stinkbug Plautia stali, which is notorious for infesting various fruits and crop plants. Microinjection of dsRNA into P. stali revealed high RNAi efficiency-injection of only 30 ng dsRNA into last-instar nymphs was sufficient to knockdown target genes as manifested by their phenotypes, and injection of 300 ng dsRNA suppressed the gene expression levels by 80% to 99.9%. Knockdown experiments by dsRNA injection showed that multicopper oxidase 2 (MCO2), vacuolar ATPase (vATPase), inhibitor of apoptosis (IAP), and vacuolar-sorting protein Snf7 are essential for survival of P. stali, as has been demonstrated in other insects. By contrast, P. stali exhibited very low RNAi efficiency when dsRNA was orally administered. When 1000 ng/μL of dsRNA solution was orally provided to first-instar nymphs, no obvious phenotypes were observed. Consistent with this, RT-qPCR showed that the gene expression levels were not affected. A higher concentration of dsRNA (5000 ng/μL) induced mortality in some cohorts, and the gene expression levels were reduced to nearly 50%. Simultaneous oral administration of dsRNA against potential RNAi blocker genes did not improve the RNAi efficiency of the target genes. In conclusion, P. stali shows high sensitivity to RNAi with injected dsRNA but, unlike the allied pest stinkbugs Halyomorpha halys and Nezara viridula, very low sensitivity to RNAi with orally-delivered dsRNA, which highlights the varied sensitivity to RNAi across different species and limits the applicability of the molecular tool for controlling this specific insect pest.
Collapse
Affiliation(s)
- Yudai Nishide
- National Agriculture and Food Research Organization (NARO), Institute of Agrobiological Sciences Ohwashi, Tsukuba, Japan
- * E-mail: (YN); (TF)
| | - Daisuke Kageyama
- National Agriculture and Food Research Organization (NARO), Institute of Agrobiological Sciences Ohwashi, Tsukuba, Japan
| | - Yoshiaki Tanaka
- National Agriculture and Food Research Organization (NARO), Institute of Agrobiological Sciences Ohwashi, Tsukuba, Japan
| | - Kakeru Yokoi
- National Agriculture and Food Research Organization (NARO), Institute of Agrobiological Sciences Ohwashi, Tsukuba, Japan
| | - Akiya Jouraku
- National Agriculture and Food Research Organization (NARO), Institute of Agrobiological Sciences Ohwashi, Tsukuba, Japan
| | - Ryo Futahashi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takema Fukatsu
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- * E-mail: (YN); (TF)
| |
Collapse
|
15
|
Chang YW, Wang YC, Zhang XX, Iqbal J, Du YZ. RNA Interference of Genes Encoding the Vacuolar-ATPase in Liriomyza trifolii. INSECTS 2021; 12:insects12010041. [PMID: 33419201 PMCID: PMC7825530 DOI: 10.3390/insects12010041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 11/16/2022]
Abstract
The leafminer fly, Liriomyza trifolii, is an invasive pest of vegetable and horticultural crops in China. In this study, a microinjection method based on dsRNA was developed for RNA interference (RNAi) in L. trifolii using genes encoding vacuolar-ATPase (V-ATPase). Expression analysis indicated that V-ATPase B and V-ATPase D were more highly expressed in L. trifolii adults than in larvae or pupae. Microinjection experiments with dsV-ATPase B and dsV-ATPase D were conducted to evaluate the efficacy of RNAi in L. trifolii adults. Expression analysis indicated that microinjection with 100 ng dsV-ATPase B or dsV-ATPase led to a significant reduction in V-ATPase transcripts as compared to that of the dsGFP control (dsRNA specific to green fluorescent protein). Furthermore, lower dsRNA concentrations were also effective in reducing the expression of target genes when delivered by microinjection. Mortality was significantly higher in dsV-ATPase B- and dsV-ATPase D-treated insects than in controls injected with dsGFP. The successful deployment of RNAi in L. trifolii will facilitate functional analyses of vital genes in this economically-important pest and may ultimately result in new control strategies.
Collapse
Affiliation(s)
- Ya-Wen Chang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; (Y.-W.C.); (Y.-C.W.); (X.-X.Z.); (J.I.)
| | - Yu-Cheng Wang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; (Y.-W.C.); (Y.-C.W.); (X.-X.Z.); (J.I.)
| | - Xiao-Xiang Zhang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; (Y.-W.C.); (Y.-C.W.); (X.-X.Z.); (J.I.)
| | - Junaid Iqbal
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; (Y.-W.C.); (Y.-C.W.); (X.-X.Z.); (J.I.)
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; (Y.-W.C.); (Y.-C.W.); (X.-X.Z.); (J.I.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
16
|
Shen Y, Chen YZ, Zhang CX. RNAi-mediated silencing of ferritin genes in the brown planthopper Nilaparvata lugens affects survival, growth and female fecundity. PEST MANAGEMENT SCIENCE 2021; 77:365-377. [PMID: 32741141 DOI: 10.1002/ps.6026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/24/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The brown planthopper (BPH), Nilaparvata lugens, is the most destructive rice insect pest. To exploit potential target genes for applications in transgenic rice to control this sap-sucking insect pest, three ferritin genes were functionally characterized in this study. RESULTS In this study, three ferritin genes, that is, ferritin 1 Heavy Chain (NlFer1), ferritin 2 Light Chain (NlFer2) and soma ferritin (Nlsoma-Fer), were identified from BPH. Tissue-specific analyses showed that all three genes were highly expressed in the gut. Although double-stranded RNA injection-mediated RNA inference (RNAi) of Nlsoma-Fer expression resulted in only < 14% mortality in BPH, knockdown of NlFer1 or NlFer2 led to retarded growth and 100% mortality in young nymphs, and downregulation of NlFer1 and NlFer2 in newly emerged female adults caused undeveloped ovaries and severely inhibited oocyte growth, resulting in extremely low fecundity and a zero hatching rate. Knockdown of NlFer1 and NlFer2 caused similar phenotypes in BPH, indicating that they function together, as in many other animals. The results demonstrated that NlFer1 and NlFer2 were essential for BPH development and reproduction. BPHs showed high sensitivity to both dsNlFer1 and dsNlFer2, and injection of only 0.625 ng dsNlFer1 per BPH resulted in 100% mortality. Additionally, the effectiveness of feeding dsNlFer1 and dsNlFer2 to BPH nymphs was further proven. CONCLUSION NlFer1 and NlFer2 are essential for BPH development and reproduction, and the insect is highly sensitive to their depletion, suggesting that the two gut-highly-expressed genes are promising candidates for application in RNAi-based control of this destructive pest.
Collapse
Affiliation(s)
- Yan Shen
- Institute of Insect Science, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yuan-Zhi Chen
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Chuan-Xi Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
17
|
Li H, Zhang J, Ma T, Li C, Ma Z, Zhang X. Acting target of toosendanin locates in the midgut epithelium cells of Mythimna separate Walker larvae (lepidoptera: Noctuidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110828. [PMID: 32531576 DOI: 10.1016/j.ecoenv.2020.110828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Toosendanin (TSN), which is extracted from the root bark of Melia toosendan Siebold and Zuccarini, has multiple modes of action against insects. Especially, this compound has a potent stomach poisoning activity against several lepidoptera pests. In this paper, the signs of toxicity, digestive enzymes activity, the histopathological changes and immuno-electron microscopic localization of TSN in the midgut epithelium of Mythimna separate Walker larvae were investigated for better understanding its action mechanism against insects. The bioassay results indicated that TSN has strong stomach poisoning against the fifth-instar larvae of M. separata (LC50 = 252.23 μg/mL). The typical poisoned symptom were regurgitation and paralysis. Activities of digestive enzymes had no obvious changes after treatment with LC80 dose of TSN. The midgut epithelial cells of insect were damaged by TSN, showing the degeneration of microvilli, hyperplasia of smooth endoplasmic reticulum and condensation of chromatin. Immunohistochemical analysis revealed that the gold particles existed on the microvilli of columnar cells and goblet cells, and gradually accumulated with the exacerbation of poisoning symptoms, showing that TSN targets on the microvilli of the midgutcells. Therefore, TSN acts on digestive system and locates in the microvilli of midgutcells of M. separata.
Collapse
Affiliation(s)
- Hai Li
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jing Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou, 571010, China
| | - Ting Ma
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Li
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province, 712100, China.
| | - Xing Zhang
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province, 712100, China
| |
Collapse
|
18
|
Lü J, Guo M, Chen S, Noland JE, Guo W, Sang W, Qi Y, Qiu B, Zhang Y, Yang C, Pan H. Double-stranded RNA targeting vATPase B reveals a potential target for pest management of Henosepilachna vigintioctopunctata. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104555. [PMID: 32359544 DOI: 10.1016/j.pestbp.2020.104555] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
The development of genetic based techniques, specifically RNA interference (RNAi), has emerged as a powerful tool in novel pest management strategies for pestiferous coleoptera. The 28-spotted ladybird beetle, Henosepilachna vigintioctopunctata, is a dynamic foliar pest of solenaceous plants, primarily potato plants, and has quickly become one of the most important pests attacking many crops in Asian countries. In this study, we demonstrate the efficacy of dietary RNAi targeting vATPase B, which led to significant gene silencing. Downstream effects of vATPase B silencing appeared to be both time- and partial dose-dependent. Our results indicate that silencing of vATPase B caused a significant decrease in survival rate, as well as reduced the food stuffs consumption and inhibited the overall development of H. vigintioctopunctata. Furthermore, results demonstrate expression of insect melanism related genes, TH and DDC, was significantly up regulated under the dsvATPase B (RNAi molecule designed against vATPase B) treatment. The impact of oral dsvATPase B delivery on the survival of 1st, 3rd instars, and adults was investigated through bacterially expressed dsRNA. The effectiveness of RNAi-based gene silencing in H. vigintioctopunctata provides a powerful reverse genetic tool for the functional annotation of its genes. This study demonstrates that vATPase B may represent a candidate gene for RNAi-based control of H. vigintioctopunctata.
Collapse
Affiliation(s)
- Jing Lü
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Mujuan Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Shimin Chen
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Jeffrey Edward Noland
- The Andersons, Inc., Ethanol Group, The Andersons Marathon-Holdings, LLC. Logansport, Indiana 46947, USA
| | - Wei Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Wen Sang
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Yixiang Qi
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Baoli Qiu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunxiao Yang
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China.
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
19
|
Scheys F, Van Damme EJM, Pauwels J, Staes A, Gevaert K, Smagghe G. N-glycosylation Site Analysis Reveals Sex-related Differences in Protein N-glycosylation in the Rice Brown Planthopper ( Nilaparvata lugens). Mol Cell Proteomics 2020; 19:529-539. [PMID: 31924694 PMCID: PMC7050106 DOI: 10.1074/mcp.ra119.001823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/08/2020] [Indexed: 01/24/2023] Open
Abstract
Glycosylation is a common modification of proteins and critical for a wide range of biological processes. Differences in protein glycosylation between sexes have already been observed in humans, nematodes and trematodes, and have recently also been reported in the rice pest insect Nilaparvata lugens Although protein N-glycosylation in insects is nowadays of high interest because of its potential for exploitation in pest control strategies, the functionality of differential N-glycosylation between sexes is yet unknown. In this study, therefore, the occurrence and role of sex-related protein N-glycosylation in insects were examined. A comprehensive investigation of the N-glycosylation sites from the adult stages of N. lugens was conducted, allowing a qualitative and quantitative comparison between sexes at the glycopeptide level. N-glycopeptide enrichment via lectin capturing using the high mannose/paucimannose-binding lectin Concanavalin A, or the Rhizoctonia solani agglutinin which interacts with complex N-glycans, resulted in the identification of over 1300 N-glycosylation sites derived from over 600 glycoproteins. Comparison of these N-glycopeptides revealed striking differences in protein N-glycosylation between sexes. Male- and female-specific N-glycosylation sites were identified, and some of these sex-specific N-glycosylation sites were shown to be derived from proteins with a putative role in insect reproduction. In addition, differential glycan composition between males and females was observed for proteins shared across sexes. Both lectin blotting experiments as well as transcript expression analyses with complete insects and insect tissues confirmed the observed differences in N-glycosylation of proteins between sexes. In conclusion, this study provides further evidence for protein N-glycosylation to be sex-related in insects. Furthermore, original data on N-glycosylation sites of N. lugens adults are presented, providing novel insights into planthopper's biology and information for future biological pest control strategies.
Collapse
Affiliation(s)
- Freja Scheys
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium; Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Jarne Pauwels
- VIB-UGent Center for Medical Biotechnology, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - An Staes
- VIB-UGent Center for Medical Biotechnology, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
20
|
Scheys F, De Schutter K, Subramanyam K, Van Damme EJM, Smagghe G. Protection of rice against Nilaparvata lugens by direct toxicity of sodium selenate. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21644. [PMID: 31702082 DOI: 10.1002/arch.21644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Nilaparvata lugens is one of the most notorious pest insects of cultured rice, and outbreaks of N. lugens cause high economic losses each year. While pest control by chemical pesticides is still the standard procedure for treating N. lugens infections, excessive use of these insecticides has led to the emergence of resistant strains and high pesticide residues in plants for human consumption and the environment. Therefore, novel and environment-friendly pest control strategies are needed. In previous studies, selenium was shown to protect selenium-accumulating plants from biotic stress. However, studies on nonaccumulator (crop) plants are lacking. In this study, rice plants (Oryza sativa, Nipponbare) were treated with sodium selenate by seed priming and foliar spray and then infested with N. lugens. Brown planthoppers feeding on these plants showed increased mortality compared to those feeding on control plants. Treatment of the plants with sodium selenate did not affect the enzymes involved in the biosynthesis of the plant stress hormones jasmonic acid and salicylic acid, suggesting that the observed insect mortality cannot be attributed to the activation of these hormonal plant defenses. Feeding assays using an artificial diet supplemented with sodium selenate revealed direct toxicity toward N. lugens. With a low concentration of 6.5 ± 1.5 µM sodium selenate, half of the insects were killed after 3 days. In summary, sodium selenate treatment of plants can be used as a potential alternative pest management strategy to protect rice against N. lugens infestation through direct toxicity.
Collapse
Affiliation(s)
- Freja Scheys
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kristof De Schutter
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kondeti Subramanyam
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Alshukri B, Astarita F, Al‐Esawy M, El Halim HMESA, Pennacchio F, Gatehouse AMR, Edwards MG. Targeting the potassium ion channel genes SK and SH as a novel approach for control of insect pests: efficacy and biosafety. PEST MANAGEMENT SCIENCE 2019; 75:2505-2516. [PMID: 31207012 PMCID: PMC6771844 DOI: 10.1002/ps.5516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Potassium ion channels play a critical role in the generation of electrical signals and thus provide potential targets for control of insect pests by RNA interference. RESULTS Genes encoding the small conductance calcium-activated potassium channel (SK) and the voltage-gated potassium channel (SH) were knocked down in Tribolium castaneum by injection and oral delivery of dsRNA (dsTcSK and dsTcSH, respectively). Irrespective of the delivery mechanism a dose-dependent effect was observed for knockdown (KD) of gene expression and insect mortality for both genes. Larvae fed a 400 ng dsRNA mg-1 diet showed significant gene (P < 0.05) knockdown (98% and 83%) for SK and SH, respectively, with corresponding mortalities of 100% and 98% after 7 days. When injected (248.4 ng larva-1 ), gene KD was 99% and 98% for SK and SH, causing 100% and 73.4% mortality, respectively. All developmental stages tested (larvae, early- and late-stage pupae and adults) showed an RNAi-sensitive response for both genes. LC50 values were lower for SK than SH, irrespective of delivery method, demonstrating that the knockdown of SK had a greater effect on larval mortality. Biosafety studies using adult honeybee Apis mellifera showed that there were no significant differences either in expression levels or mortality of honeybees orally dosed with dsTcSK and dsTcSH compared to control-fed bees. Similarly, there was no significant difference in the titre of deformed wing virus, used as a measure of immune suppression, between experimental and control bees. CONCLUSION This study demonstrates the potential of using RNAi targeting neural receptors as a technology for the control of T. castaneum. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Baida Alshukri
- School of Natural and Environmental Sciences, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Federica Astarita
- School of Natural and Environmental Sciences, Newcastle UniversityNewcastle‐upon‐TyneUK
- Department of Agricultural Sciences, Laboratory of Entomology “E. Tremblay”University of Napoli “Federico II”PorticiItaly
| | - Mushtaq Al‐Esawy
- Institute of Neuroscience, Newcastle UniversityNewcastle‐upon‐TyneUK
- Department of Plant ProtectionUniversity of KufaIraq
| | - Hesham Mohamed El Sayed Abd El Halim
- School of Natural and Environmental Sciences, Newcastle UniversityNewcastle‐upon‐TyneUK
- Entomology Department, Faculty of ScienceBenha UniversityBenhaEgypt
| | - Francesco Pennacchio
- Department of Agricultural Sciences, Laboratory of Entomology “E. Tremblay”University of Napoli “Federico II”PorticiItaly
| | | | - Martin Gethin Edwards
- School of Natural and Environmental Sciences, Newcastle UniversityNewcastle‐upon‐TyneUK
| |
Collapse
|
22
|
De Schutter K, Chen P, Shen Y, Van Damme EJM, Smagghe G. The OST-complex as target for RNAi-based pest control in Nilaparvata lugens. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21555. [PMID: 31038785 DOI: 10.1002/arch.21555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
RNAi-based pest control strategies are emerging as environment friendly and species-specific alternatives for the use of conventional pesticides. Because N-glycosylation is important for many biological processes, such as growth and development, the early steps of protein N-glycosylation are promising targets for an RNAi-based pest control strategy. Through injection of dsRNAs, the expression of the catalytic subunits of the oligosaccharyl transferase complex was efficiently silenced in nymphs of the notorious rice pest insect Nilaparvata lugens. Silencing of both STT3 isoforms resulted in a high mortality of the N. lugens nymphs. However, our data reveals the occurrence of a functional redundancy between the two isoforms when silencing only one of the isoforms. These observations confirm the potential to use the early genes in the N-glycosylation pathway as targets for an RNAi-based pest control strategy. In addition, the existence of a functional redundancy between the two STT3 isoforms presents a factor which one must take into account when designing RNAi-based approaches.
Collapse
Affiliation(s)
| | - Pengyu Chen
- Department of Plants and Crops, Ghent University, Ghent, Belgium
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Ying Shen
- Department of Plants and Crops, Ghent University, Ghent, Belgium
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | | | - Guy Smagghe
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Scheys F, De Schutter K, Shen Y, Yu N, Smargiasso N, De Pauw E, Van Damme EJM, Smagghe G. The N-glycome of the hemipteran pest insect Nilaparvata lugens reveals unexpected sex differences. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 107:39-45. [PMID: 30703540 DOI: 10.1016/j.ibmb.2019.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/13/2019] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
The brown planthopper, Nilaparvata lugens, is a model species for hemimetabolous development and the most important pest insect in rice, which is the major staple crop for about half of the world population. Despite its importance, little is known of the N-glycosylation process in this insect. Here we report on the N-glycome for the post-embryonic stages of N. lugens, revealing unique features that are different from the holometabolous insect models, as the fruit fly Drosophila melanogaster and the beetle Tribolium castaneum. Analysis of the N-glycan fingerprint for male and female adults showed sex-specific N-glycosylation in insects. Specifically, the female adults progress towards a unique glycan profile with a striking increase in high mannose N-glycans. The N-glycome of N. lugens contributes to study pathways differentiating between sexes, and the results shed light on the evolution and differences in development between primitive hemimetabolous insects and more advanced holometabolous insects. The data are discussed in relation to potential function(s) in development and sex specificity.
Collapse
Affiliation(s)
- Freja Scheys
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Kristof De Schutter
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Ying Shen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Na Yu
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Nicolas Smargiasso
- Mass Spectrometry Laboratory, Molecular Systems Research Unit, University of Liège, Allée du 6 Août 11, 4000, Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, Molecular Systems Research Unit, University of Liège, Allée du 6 Août 11, 4000, Liège, Belgium
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
24
|
Castellanos NL, Smagghe G, Sharma R, Oliveira EE, Christiaens O. Liposome encapsulation and EDTA formulation of dsRNA targeting essential genes increase oral RNAi-caused mortality in the Neotropical stink bug Euschistus heros. PEST MANAGEMENT SCIENCE 2019; 75:537-548. [PMID: 30094917 DOI: 10.1002/ps.5167] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND The Neotropical stink bug Euschistus heros is a major pest in soybean fields. Development of highly species-specific pesticides based on RNA interference (RNAi) could provide a new sustainable and environmentally friendly control strategy. RESULTS Here, the potential of RNAi as a pest control tool against E. heros was assessed. First, target gene selection using a microinjection approach was performed. Seven of the 15 candidate genes tested exhibited > 95% mortality after hemolymph injection of 27.5 ng dsRNA. Subsequently, dsRNA was administered orally using different formulations: naked dsRNA, liposome-encapsulated-dsRNA and dsRNA formulated with EDTA. Liposome-encapsulated dsRNA targeting vATPase A and muscle actin led to significant mortality after 14 days (45% and 42%, respectively), whereas EDTA-formulated dsRNA did so for only one of the target genes. Ex vivo analysis of the dsRNA stability in collected saliva indicated a strong dsRNA-degrading capacity by E. heros saliva, which could explain the need for dsRNA formulations. CONCLUSION The results demonstrate that continuous ingestion of dsRNA with EDTA or liposome-encapsulated dsRNA can prevent dsRNA from being degraded enzymatically and suggest great potential for using these formulations in dsRNA delivery to use RNAi as a functional genomics tool or for pest management of stink bugs. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nathaly L Castellanos
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Rohit Sharma
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Eugênio E Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Olivier Christiaens
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
25
|
Bally J, Jung H, Mortimer C, Naim F, Philips JG, Hellens R, Bombarely A, Goodin MM, Waterhouse PM. The Rise and Rise of Nicotiana benthamiana: A Plant for All Reasons. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:405-426. [PMID: 30149789 DOI: 10.1146/annurev-phyto-080417-050141] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A decade ago, the value of Nicotiana benthamiana as a tool for plant molecular biologists was beginning to be appreciated. Scientists were using it to study plant-microbe and protein-protein interactions, and it was the species of choice with which to activate plasmid-encoded viruses, screen for gene functions with virus-induced gene silencing (VIGS), and transiently express genes by leaf agroinfiltration. However, little information about the species' origin, diversity, genetics, and genomics was available, and biologists were asking the question of whether N. benthamiana is a second fiddle or virtuoso. In this review, we look at the increased knowledge about the species and its applications over the past decade. Although N. benthamiana may still be the sidekick to Arabidopsis, it shines ever more brightly with realized and yet-to-be-exploited potential.
Collapse
Affiliation(s)
- Julia Bally
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Hyungtaek Jung
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Cara Mortimer
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Fatima Naim
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Joshua G Philips
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Roger Hellens
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| | - Aureliano Bombarely
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0002, USA
| | - Michael M Goodin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA;
| | - Peter M Waterhouse
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, 4001 Brisbane, Queensland, Australia;
| |
Collapse
|
26
|
Bally J, Fishilevich E, Bowling AJ, Pence HE, Narva KE, Waterhouse PM. Improved insect-proofing: expressing double-stranded RNA in chloroplasts. PEST MANAGEMENT SCIENCE 2018; 74:1751-1758. [PMID: 29377554 PMCID: PMC6055657 DOI: 10.1002/ps.4870] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 05/11/2023]
Abstract
RNA interference (RNAi) was discovered almost 20 years ago and has been exploited worldwide to silence genes in plants and animals. A decade later, it was found that transforming plants with an RNAi construct targeting an insect gene could protect the plant against feeding by that insect. Production of double-stranded RNA (dsRNA) in a plant to affect the viability of a herbivorous animal is termed trans-kingdom RNAi (TK-RNAi). Since this pioneering work, there have been many further examples of successful TK-RNAi, but also reports of failed attempts and unrepeatable experiments. Recently, three laboratories have shown that producing dsRNA in a plant's chloroplast, rather than in its cellular cytoplasm, is a very effective way of delivering TK-RNAi. Our review examines this potentially game-changing approach and compares it with other transgenic insect-proofing schemes. © 2018 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Julia Bally
- Centre for Tropical Crops and BiocommoditiesQUT, Brisbane, QLDAustralia
| | | | | | | | | | | |
Collapse
|
27
|
Gosal SS, Wani SH. RNAi for Resistance Against Biotic Stresses in Crop Plants. BIOTECHNOLOGIES OF CROP IMPROVEMENT, VOLUME 2 2018. [PMCID: PMC7123769 DOI: 10.1007/978-3-319-90650-8_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RNA interference (RNAi)-based gene silencing has become one of the most successful strategies in not only identifying gene function but also in improving agronomical traits of crops by silencing genes of different pathogens/pests and also plant genes for improvement of desired trait. The conserved nature of RNAi pathway across different organisms increases its applicability in various basic and applied fields. Here we attempt to summarize the knowledge generated on the fundamental mechanisms of RNAi over the years, with emphasis on insects and plant-parasitic nematodes (PPNs). This chapter also reviews the rich history of RNAi research, gene regulation by small RNAs across different organisms, and application potential of RNAi for generating transgenic plants resistant to major pests. But, there are some limitations too which restrict wider applications of this technology to its full potential. Further refinement of this technology in terms of resolving these shortcomings constitutes one of the thrust areas in present RNAi research. Nevertheless, its application especially in breeding agricultural crops resistant against biotic stresses will certainly offer the possible solutions for some of the breeding objectives which are otherwise unattainable.
Collapse
Affiliation(s)
- Satbir Singh Gosal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir India
| |
Collapse
|
28
|
Wang W, Wan P, Lai F, Zhu T, Fu Q. Double-stranded RNA targeting calmodulin reveals a potential target for pest management of Nilaparvata lugens. PEST MANAGEMENT SCIENCE 2018; 74:1711-1719. [PMID: 29381254 DOI: 10.1002/ps.4865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/03/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
BACKGROUND Calmodulin (CaM) is an essential protein in cellular activity and plays important roles in many processes in insect development. RNA interference (RNAi) has been hypothesized to be a promising method for pest control. CaM is a good candidate for RNAi target. However, the sequence and function of CaM in Nilaparvata lugens are unknown. Furthermore, the double-stranded RNA (dsRNA) target to CaM gene in pest control is still unavailable. RESULTS In the present study, two alternatively spliced variants of CaM transcripts, designated NlCaM1 and NlCaM2, were cloned from N. lugens. The two cDNA sequences exhibited 100% identity to each other in the open reading frame (ORF), and only differed in the 3' untranslated region (UTR). NlCaM including NlCaM1 and NlCaM2 mRNA was detectable in all developmental stages and tissues of N. lugens, with significantly increased expression in the salivary glands. Knockdown of NlCaM expression by RNAi with different dsRNAs led to an inability to molt properly, increased mortality, which ranged from 49.7 to 92.5%, impacted development of the ovaries and led to female infertility. There were no significant reductions in the transcript levels of vitellogenin and its receptor or in the total vitellogenin protein level relative to the control group. However, a significant reduction in vitellogenin protein was detected in ovaries injected with dsNlCaM. In addition, a specific dsRNA of NlCaM for control of N. lugens was designed and tested. CONCLUSION NlCaM plays important roles mainly in nymph development and uptake of vitellogenin by ovaries in vitellogenesis in N. lugens. dsRNA derived from the less conserved 3'-UTR of NlCaM shows great potential for RNAi-based N. lugens management. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weixia Wang
- State Key Lab of Rice Biology, China Rice Research Institute, Hangzhou, Zhejiang, China
| | - Pinjun Wan
- State Key Lab of Rice Biology, China Rice Research Institute, Hangzhou, Zhejiang, China
| | - Fengxiang Lai
- State Key Lab of Rice Biology, China Rice Research Institute, Hangzhou, Zhejiang, China
| | - Tingheng Zhu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Qiang Fu
- State Key Lab of Rice Biology, China Rice Research Institute, Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Jiang J, Xu Y, Lin X. Role of Broad-Complex ( Br) and Krüppel homolog 1 ( Kr-h1) in the Ovary Development of Nilaparvata lugens. Front Physiol 2017; 8:1013. [PMID: 29270133 PMCID: PMC5724046 DOI: 10.3389/fphys.2017.01013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/22/2017] [Indexed: 11/13/2022] Open
Abstract
Ovarian development plays an important role in the life history of insects and is crucial for control of the insect population. The metamorphosis of an insect is precisely regulated by the interaction of the juvenile hormone and ecdysone. To understand the role of NlBr and NlKr-h1 in ovary development, we used RNA interference (RNAi) to down-regulate the expression of Broad-Complex (Br) and Krüppel homolog 1 (Kr-h1), two important down-stream transcription factors of juvenile hormone and ecdysone signaling. We further investigated their effects on metamorphosis and ovary development. The results showed that both NlBr and NlKr-h1 are induced by ecdysone. The down-regulation of NlBr and NlKr-h1 alone or together by RNAi is more effective than the topical application of ecdysone on the number of ovarioles, suggesting the necessity of NlBr and NlKr-h1 in determining the number of ovarioles. The ovarian grade was significantly increased/decreased by the topical application of ecdysone and down-regulation of NlBr and NlKr-h1. The pre-oviposition period was also increased. When NlBr and NlKr-h1 were down-regulated together, the ovary grade was not significantly different compared to the control (dsGFP), indicating that the development of the ovary is under the control of both NlBr and NlKr-h1. The interaction between the NlBr and NlKr-h1 on the number of ovarioles and the development of the ovary indicates cross-talk between both juvenile hormone and ecdysone signaling at the transcription level in the brown planthopper. Both genes are nuclear transcription factors and may regulate signaling via down-stream genes. These results would help to both enhance the current understanding of the regulatory mechanism of the interaction between juvenile hormone and ecdysone signaling pathways during ovarian development and to design chemicals to control pests.
Collapse
Affiliation(s)
- Jianru Jiang
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yili Xu
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xinda Lin
- College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
30
|
Lin YH, Huang JH, Liu Y, Belles X, Lee HJ. Oral delivery of dsRNA lipoplexes to German cockroach protects dsRNA from degradation and induces RNAi response. PEST MANAGEMENT SCIENCE 2017; 73:960-966. [PMID: 27470169 DOI: 10.1002/ps.4407] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 06/09/2016] [Accepted: 07/25/2016] [Indexed: 05/28/2023]
Abstract
BACKGROUND In the past years, the concept of RNAi application for insect pest control has been proposed, considering the disruption of vital genes. However, the efficiency of RNAi is variable between different insect groups, especially by oral delivery of dsRNA. The purpose of this study is to assess the possibilities of RNAi as a tool for pest control using oral delivery of the dsRNAs encapsulated by liposome in the German cockroach Blattella germanica, which is highly sensitive to RNAi by injection of dsRNAs. RESULTS Injecting dsRNA into the abdomen of B. germanica caused dramatic depletion of essential α-tubulin gene and mortality. In contrast, oral delivery of the naked dsRNA resulted in lower RNAi efficiency, accounting for rapid degradation of the dsRNA in the midgut of B. germanica. Notably, we have further demonstrated that continuous ingestion of dsRNA lipoplexes in which dsRNA was encapsulated with a cationic liposome carrier was sufficient to slow down the degradation of dsRNA in the midgut and to increase the mortality of the German cockroach by significantly inhibiting α-tubulin expression in the midgut. CONCLUSION We provide empirical evidence that the formulation of dsRNA lipoplexes could be a plausible approach for insect pest control based on RNAi. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu-Hsien Lin
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Jia-Hsin Huang
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Yun Liu
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Xavier Belles
- CSIC-UPF, Institute of Evolutionary Biology, Barcelona, Spain
| | - How-Jing Lee
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
31
|
Galdeano DM, Breton MC, Lopes JRS, Falk BW, Machado MA. Oral delivery of double-stranded RNAs induces mortality in nymphs and adults of the Asian citrus psyllid, Diaphorina citri. PLoS One 2017; 12:e0171847. [PMID: 28282380 PMCID: PMC5345766 DOI: 10.1371/journal.pone.0171847] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/26/2017] [Indexed: 12/17/2022] Open
Abstract
The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is one of the most important citrus pests. ACP is the vector of the phloem-limited bacteria Candidatus Liberibacter americanus and Candidatus Liberibacter asiaticus, the causal agents of the devastating citrus disease huanglongbing (HLB). The management of HLB is based on the use of healthy young plants, eradication of infected plants and chemical control of the vector. RNA interference (RNAi) has proven to be a promising tool to control pests and explore gene functions. Recently, studies have reported that target mRNA knockdown in many insects can be induced through feeding with double-stranded RNA (dsRNA). In the current study, we targeted the cathepsin D, chitin synthase and inhibitor of apoptosis genes of adult and nymph ACP by feeding artificial diets mixed with dsRNAs and Murraya paniculata leaves placed in dsRNAs solutions, respectively. Adult ACP mortality was positively correlated with the amount of dsRNA used. Both nymphs and adult ACP fed dsRNAs exhibited significantly increased mortality over time compared with that of the controls. Moreover, qRT-PCR analysis confirmed the dsRNA-mediated RNAi effects on target mRNAs. These results showed that RNAi can be a powerful tool for gene function studies in ACP and perhaps for HLB control.
Collapse
Affiliation(s)
- Diogo Manzano Galdeano
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, São Paulo, Brazil
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Michèle Claire Breton
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, São Paulo, Brazil
| | - João Roberto Spotti Lopes
- Escola Superior de Agricultura Luiz de Queiróz, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Bryce W. Falk
- Plant Pathology Department, University of California Davis, Davis, California, United States of America
| | - Marcos Antonio Machado
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, São Paulo, Brazil
| |
Collapse
|
32
|
Ghosh SKB, Hunter WB, Park AL, Gundersen-Rindal DE. Double strand RNA delivery system for plant-sap-feeding insects. PLoS One 2017; 12:e0171861. [PMID: 28182760 PMCID: PMC5300277 DOI: 10.1371/journal.pone.0171861] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/26/2017] [Indexed: 11/19/2022] Open
Abstract
Double-stranded RNA (dsRNA)-mediated gene silencing, also known as RNA interference (RNAi), has been a breakthrough technology for functional genomic studies and represents a potential tool for the management of insect pests. Since the inception of RNAi numerous studies documented successful introduction of exogenously synthesized dsRNA or siRNA into an organism triggering highly efficient gene silencing through the degradation of endogenous RNA homologous to the presented siRNA. Managing hemipteran insect pests, especially Halyomorpha halys (Stål) (Heteroptera: Pentatomidae), the brown marmorated stink bug (BMSB), is critical to food productivity. BMSB was recently introduced into North America where it is both an invasive agricultural pest of high value specialty, row, and staple crops, as well as an indoor nuisance pest. RNAi technology may serve as a viable tool to manage this voracious pest, but delivery of dsRNA to piercing-sucking insects has posed a tremendous challenge. Effective and practical use of RNAi as molecular biopesticides for biocontrol of insects like BMSB in the environment requires that dsRNAs be delivered in vivo through ingestion. Therefore, the key challenge for molecular biologists in developing insect-specific molecular biopesticides is to find effective and reliable methods for practical delivery of stable dsRNAs such as through oral ingestion. Here demonstrated is a reliable delivery system of effective insect-specific dsRNAs through oral feeding through a new delivery system to induce a significant decrease in expression of targeted genes such as JHAMT and Vg. This state-of-the-art delivery method overcomes environmental delivery challenges so that RNAi is induced through insect-specific dsRNAs orally delivered to hemipteran and other insect pests.
Collapse
Affiliation(s)
- Saikat Kumar B. Ghosh
- United States Department of Agriculture, Agricultural Research Service, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, Maryland, United States of America
| | - Wayne B. Hunter
- United States Department of Agriculture, Agricultural Research Service, Horticultural Research Laboratory, Fort Pierce, Florida, United States of America
| | - Alexis L. Park
- United States Department of Agriculture, Agricultural Research Service, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, Maryland, United States of America
| | - Dawn E. Gundersen-Rindal
- United States Department of Agriculture, Agricultural Research Service, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, Maryland, United States of America
| |
Collapse
|
33
|
Bilgi V, Fosu-Nyarko J, Jones MGK. Using Vital Dyes to Trace Uptake of dsRNA by Green Peach Aphid Allows Effective Assessment of Target Gene Knockdown. Int J Mol Sci 2017; 18:E80. [PMID: 28054949 PMCID: PMC5297714 DOI: 10.3390/ijms18010080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/21/2016] [Accepted: 12/19/2016] [Indexed: 11/29/2022] Open
Abstract
RNA interference (RNAi) is an effective tool to study gene function. For in vitro studies of RNAi in insects, microinjection of double-stranded (ds)RNA may cause stress. Non-persuasive oral delivery of dsRNA to trigger RNAi is a better mode of delivery for delicate insects such as aphids because it mimics natural feeding. However, when insects feed ad libitum, some individuals may not feed. For accurate measurement of gene knockdown, analysis should only include insects that have ingested dsRNA. The suitability of eleven dyes was assessed to trace ingestion of dsRNA in an artificial feeding system for green peach aphids (GPA, Myzus persicae). Non-toxic levels of neutral red and acridine orange were suitable tracers: they were visible in the stylet and gut after feeding for 24 h, and may also attract aphids to feed. Nymphs stained with neutral red (0.02%) were analysed for target gene expression after feeding on sucrose with dsRNA (V-ATPase, vha-8). There was a greater reduction in vha-8 expression and reproduction compared to nymphs fed the diet without dye. The results confirm the importance of identifying aphids that have ingested dsRNA, and also provide evidence that the vha-8 gene is a potential target for control of GPAs.
Collapse
Affiliation(s)
- Vineeta Bilgi
- Plant Biotechnology Research Group, Western Australia State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA 6150, Australia.
| | - John Fosu-Nyarko
- Plant Biotechnology Research Group, Western Australia State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA 6150, Australia.
| | - Michael G K Jones
- Plant Biotechnology Research Group, Western Australia State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, WA 6150, Australia.
| |
Collapse
|
34
|
Camargo RA, Barbosa GO, Possignolo IP, Peres LEP, Lam E, Lima JE, Figueira A, Marques-Souza H. RNA interference as a gene silencing tool to control Tuta absoluta in tomato (Solanum lycopersicum). PeerJ 2016; 4:e2673. [PMID: 27994959 PMCID: PMC5162399 DOI: 10.7717/peerj.2673] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/09/2016] [Indexed: 12/13/2022] Open
Abstract
RNA interference (RNAi), a gene-silencing mechanism that involves providing double-stranded RNA molecules that match a specific target gene sequence, is now widely used in functional genetic studies. The potential application of RNAi-mediated control of agricultural insect pests has rapidly become evident. The production of transgenic plants expressing dsRNA molecules that target essential insect genes could provide a means of specific gene silencing in larvae that feed on these plants, resulting in larval phenotypes that range from loss of appetite to death. In this report, we show that the tomato leafminer ( Tuta absoluta ), a major threat to commercial tomato production, can be targeted by RNAi. We selected two target genes (Vacuolar ATPase-A and Arginine kinase) based on the RNAi response reported for these genes in other pest species. In view of the lack of an artificial diet for T. absoluta, we used two approaches to deliver dsRNA into tomato leaflets. The first approach was based on the uptake of dsRNA by leaflets and the second was based on "in planta-induced transient gene silencing" (PITGS), a well-established method for silencing plant genes, used here for the first time to deliver in planta-transcribed dsRNA to target insect genes. Tuta absoluta larvae that fed on leaves containing dsRNA of the target genes showed an ∼60% reduction in target gene transcript accumulation, an increase in larval mortality and less leaf damage. We then generated transgenic 'Micro-Tom' tomato plants that expressed hairpin sequences for both genes and observed a reduction in foliar damage by T. absoluta in these plants. Our results demonstrate the feasibility of RNAi as an alternative method for controlling this critical tomato pest.
Collapse
Affiliation(s)
- Roberto A Camargo
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, São Paulo, Brazil; Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Guilherme O Barbosa
- Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas , Campinas , São Paulo , Brazil
| | - Isabella Presotto Possignolo
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, São Paulo, Brazil; Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Lazaro E P Peres
- Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo , Piracicaba , São Paulo , Brazil
| | - Eric Lam
- Department of Plant Biology & Pathology, Rutgers, The State University of New Jersey , New Brunswick , NJ , United States
| | - Joni E Lima
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, São Paulo, Brazil; Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo , Piracicaba , São Paulo , Brazil
| | - Henrique Marques-Souza
- Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas , Campinas , São Paulo , Brazil
| |
Collapse
|
35
|
RNA Interference in Insect Vectors for Plant Viruses. Viruses 2016; 8:v8120329. [PMID: 27973446 PMCID: PMC5192390 DOI: 10.3390/v8120329] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 01/09/2023] Open
Abstract
Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.
Collapse
|
36
|
Qiu J, He Y, Zhang J, Kang K, Li T, Zhang W. Discovery and functional identification of fecundity-related genes in the brown planthopper by large-scale RNA interference. INSECT MOLECULAR BIOLOGY 2016; 25:724-733. [PMID: 27472833 DOI: 10.1111/imb.12257] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recently, transcriptome and proteome data have increasingly been used to identify potential novel genes related to insect phenotypes. However, there are few studies reporting the large-scale functional identification of such genes in insects. To identify novel genes related to fecundity in the brown planthopper (BPH), Nilaparvata lugens, 115 genes were selected from the transcriptomic and proteomic data previously obtained from high- and low-fecundity populations in our laboratory. The results of RNA interference (RNAi) feeding experiments showed that 91.21% of the genes were involved in the regulation of vitellogenin (Vg) expression and may influence BPH fecundity. After RNAi injection experiments, 12 annotated genes were confirmed as fecundity-related genes and three novel genes were identified in the BPH. Finally, C-terminal binding protein (CtBP) was shown to play an important role in BPH fecundity. Knockdown of CtBP not only led to lower survival, underdeveloped ovaries and fewer eggs laid but also resulted in a reduction in Vg protein expression. The novel gene resources gained from this study will be useful for constructing a Vg regulation network and may provide potential target genes for RNAi-based pest control.
Collapse
Affiliation(s)
- J Qiu
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Y He
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - J Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - K Kang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - T Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - W Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
37
|
Wan PJ, Tang YH, Yuan SY, Wang WX, Lai FX, Yu XP, Fu Q. ATP phosphoribosyltransferase from symbiont Entomomyces delphacidicola invovled in histidine biosynthesis of Nilaparvata lugens (Stål). Amino Acids 2016; 48:2605-2617. [PMID: 27373692 DOI: 10.1007/s00726-016-2287-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/22/2016] [Indexed: 12/11/2022]
Abstract
Histidine is an essential amino acid assumed to be synthesized by an obligatory yeast-like symbiont (Entomomyces delphacidicola str. NLU) in Nilaparvata lugens, an important rice pest. The adenosine-triphosphate phosphoribosyltransferase (ATP-PRTase) facilities the committed first step of the histidine biosynthesis pathway. In the current study, a putative ATP-PRTase was cloned and verified to be of E. delphacidicola origin (EdePRTase). The expression of the gene was spatial and temporal universal with a profile that matched the distribution of the fungal symbiont. RNA interference aided the knockdown of the EdePRTase-suppressed EdePRTase expression by 32-48 %. Hemolymph histidine level was also reduced followed by significant reduction of adult body weight. However, other performance characters including nymph development, survival, and adult sex ratio were not adversely affected by the knockdown. Furthermore, forced histidine exposure (through injection or feeding) significantly inhibited the EdePRTase mRNA levels at higher concentrations, but significantly increased EdePRTase expression levels at lower concentrations (feeding only). The significance of these findings support that the EdePRTase is from symbiont E. delphacidicola, and its involvement in histidine biosynthesis of N. lugens was discussed. The results provide a better understanding of EdePRTase and the encoded functional ATP-PRTase enzyme regulation in N. lugens and insects in general.
Collapse
Affiliation(s)
- Pin-Jun Wan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yao-Hua Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.,Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - San-Yue Yuan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Wei-Xia Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Feng-Xiang Lai
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
| | - Qiang Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
38
|
Amiri A, Bandani AR, Alizadeh H. MOLECULAR IDENTIFICATION OF CYSTEINE AND TRYPSIN PROTEASE, EFFECT OF DIFFERENT HOSTS ON PROTEASE EXPRESSION, AND RNAI MEDIATED SILENCING OF CYSTEINE PROTEASE GENE IN THE SUNN PEST. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 91:189-209. [PMID: 26609789 DOI: 10.1002/arch.21311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Sunn pest, Eurygaster integriceps, is a serious pest of cereals in the wide area of the globe from Near and Middle East to East and South Europe and North Africa. This study described for the first time, identification of E. integriceps trypsin serine protease and cathepsin-L cysteine, transcripts involved in digestion, which might serve as targets for pest control management. A total of 478 and 500 base pair long putative trypsin and cysteine gene sequences were characterized and named Tryp and Cys, respectively. In addition, the tissue-specific relative gene expression levels of these genes as well as gluten hydrolase (Gl) were determined under different host kernels feeding conditions. Result showed that mRNA expression of Cys, Tryp, and Gl was significantly affected after feeding on various host plant species. Transcript levels of these genes were most abundant in the wheat-fed E. integriceps larvae compared to other hosts. The Cys transcript was detected exclusively in the gut, whereas the Gl and Tryp transcripts were detectable in both salivary glands and gut. Also possibility of Sunn pest gene silencing was studied by topical application of cysteine double-stranded RNA (dsRNA). The results indicated that topically applied dsRNA on fifth nymphal stage can penetrate the cuticle of the insect and induce RNA interference. The Cys gene mRNA transcript in the gut was reduced to 83.8% 2 days posttreatment. Also, it was found that dsRNA of Cys gene affected fifth nymphal stage development suggesting the involvement of this protease in the insect growth, development, and molting.
Collapse
Affiliation(s)
- Azam Amiri
- Plant Protection Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ali Reza Bandani
- Plant Protection Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Houshang Alizadeh
- Department of Agronomy & Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
39
|
Sattar S, Thompson GA. Small RNA Regulators of Plant-Hemipteran Interactions: Micromanagers with Versatile Roles. FRONTIERS IN PLANT SCIENCE 2016; 7:1241. [PMID: 27625654 PMCID: PMC5003895 DOI: 10.3389/fpls.2016.01241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/04/2016] [Indexed: 05/13/2023]
Abstract
Non-coding small RNAs (sRNAs) in plants have important roles in regulating biological processes, including development, reproduction, and stress responses. Recent research indicates significant roles for sRNA-mediated gene silencing during plant-hemipteran interactions that involve all three of these biological processes. Plant responses to hemipteran feeding are determined by changes in the host transcriptome that appear to be fine-tuned by sRNAs. The role of sRNA in plant defense responses is complex. Different forms of sRNAs, with specific modes of action, regulate changes in the host transcriptome primarily through post-transcriptional gene silencing and occasionally through translational repression. Plant genetic resistance against hemipterans provides a model to explore the regulatory roles of sRNAs in plant defense. Aphid-induced sRNA expression in resistance genotypes delivers a new paradigm in understanding the regulation of R gene-mediated resistance in host plants. Unique sRNA profiles, including changes in sRNA biogenesis and expression can also provide insights into susceptibility to insect herbivores. Activation of phytohormone-mediated defense responses against insect herbivory is another hallmark of this interaction, and recent studies have shown that regulation of phytohormone signaling is under the control of sRNAs. Hemipterans feeding on resistant plants also show changes in insect sRNA profiles, possibly influencing insect development and reproduction. Changes in insect traits such as fecundity, host range, and resistance to insecticides are impacted by sRNAs and can directly contribute to the success of certain insect biotypes. In addition to causing direct damage to the host plant, hemipteran insects are often vectors of viral pathogens. Insect anti-viral RNAi machinery is activated to limit virus accumulation, suggesting a role in insect immunity. Virus-derived long sRNAs strongly resemble insect piRNAs, leading to the speculation that the piRNA pathway is induced in response to viral infection. Evidence for robust insect RNAi machinery in several hemipteran species is of immense interest and is being actively pursued as a possible tool for insect control. RNAi-induced gene silencing following uptake of exogenous dsRNA was successfully demonstrated in several hemipterans and the presence of sid-1 like genes support the concept of a systemic response in some species.
Collapse
|
40
|
Rebijith KB, Asokan R, Hande HR, Kumar NKK, Krishna V, Vinutha J, Bakthavatsalam N. RNA Interference of Odorant-Binding Protein 2 (OBP2) of the Cotton Aphid, Aphis gossypii (Glover), Resulted in Altered Electrophysiological Responses. Appl Biochem Biotechnol 2015; 178:251-66. [DOI: 10.1007/s12010-015-1869-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/23/2015] [Indexed: 01/18/2023]
|
41
|
Apterous A modulates wing size, bristle formation and patterning in Nilaparvata lugens. Sci Rep 2015; 5:10526. [PMID: 25995006 PMCID: PMC4440214 DOI: 10.1038/srep10526] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 04/17/2015] [Indexed: 11/24/2022] Open
Abstract
Apterous A (apA), a member of the LIM-homeobox gene family, plays a critical role in the development of wing. The achaete-scute Complex (AS-C) encodes basic helix-loop-helix (bHLH) transcription factors and functions in bristle development. In the present study, we cloned apA (NlapA) and an achaete-scute homologue (NlASH) from N. lugens. Levels of NlapA and NlASH were higher in nymphs than adults, with particularly high expression in the thorax of nymphs. NlapA expressed more highly in nymphs of the macropterous strain (MS) than those of the brachypterous strain (BS) at 2nd and 4th instar. Knockdown of NlapA and NlASH in vivo generated similar phenotypic defects in the wing (loss-of-bristles, twisted or erect wing). Silencing of NlapA in nymphs of MS led to decreased wing size in adults. Moreover, depletion of NlapA suppressed expression of NlDl, Nlsal, Nlser, Nlvg and Nlwg, both in MS and BS, but induced differential responses of Nlubx and Nlnotch expression between MS and BS. Notably, expression of NlASH was regulated by NlapA. These results collectively indicate that NlapA is an upstream modulator of wing size, bristle formation and patterning. Further studies on DNA-protein and protein-protein interactions are required to elucidate NlapA-mediated regulation of wing development.
Collapse
|
42
|
Badillo-Vargas IE, Rotenberg D, Schneweis BA, Whitfield AE. RNA interference tools for the western flower thrips, Frankliniella occidentalis. JOURNAL OF INSECT PHYSIOLOGY 2015; 76:36-46. [PMID: 25796097 DOI: 10.1016/j.jinsphys.2015.03.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 05/12/2023]
Abstract
The insect order Thysanoptera is exclusively comprised of small insects commonly known as thrips. The western flower thrips, Frankliniella occidentalis, is an economically important pest amongst thysanopterans due to extensive feeding damage and tospovirus transmission to hundreds of plant species worldwide. Geographically-distinct populations of F. occidentalis have developed resistance against many types of traditional chemical insecticides, and as such, management of thrips and tospoviruses are a persistent challenge in agriculture. Molecular methods for defining the role(s) of specific genes in thrips-tospovirus interactions and for assessing their potential as gene targets in thrips management strategies is currently lacking. The goal of this work was to develop an RNA interference (RNAi) tool that enables functional genomic assays and to evaluate RNAi for its potential as a biologically-based approach for controlling F. occidentalis. Using a microinjection system, we delivered double-stranded RNA (dsRNA) directly to the hemocoel of female thrips to target the vacuolar ATP synthase subunit B (V-ATPase-B) gene of F. occidentalis. Gene expression analysis using real-time quantitative reverse transcriptase-PCR (qRT-PCR) revealed significant reductions of V-ATPase-B transcripts at 2 and 3 days post-injection (dpi) with dsRNA of V-ATPase-B compared to injection with dsRNA of GFP. Furthermore, the effect of knockdown of the V-ATPase-B gene in females at these two time points was mirrored by the decreased abundance of V-ATPase-B protein as determined by quantitative analysis of Western blots. Reduction in V-ATPase-B expression in thrips resulted in increased female mortality and reduced fertility, i.e., number of viable offspring produced. Survivorship decreased significantly by six dpi compared to the dsRNA-GFP control group, which continued decreasing significantly until the end of the bioassay. Surviving female thrips injected with dsRNA-V-ATPase-B produced significantly fewer offspring compared to those in the dsRNA-GFP control group. Our findings indicate that an RNAi-based strategy to study gene function in thrips is feasible, can result in quantifiable phenotypes, and provides a much-needed tool for investigating the molecular mechanisms of thrips-tospovirus interactions. To our knowledge, this represents the first report of RNAi for any member of the insect order Thysanoptera and demonstrates the potential for translational research in the area of thrips pest control.
Collapse
Affiliation(s)
| | - Dorith Rotenberg
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.
| | - Brandi A Schneweis
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Anna E Whitfield
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
43
|
Jia S, Wan PJ, Zhou LT, Mu LL, Li GQ. RNA interference-mediated silencing of a Halloween gene spookier affects nymph performance in the small brown planthopper Laodelphax striatellus. INSECT SCIENCE 2015; 22:191-202. [PMID: 24282064 DOI: 10.1111/1744-7917.12087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/30/2013] [Indexed: 06/02/2023]
Abstract
Post-embryonic development of insects is highly dependent on ecdysteroid hormone 20-hydroxyecdysone. Halloween gene spookier (spok, cyp307a2) has been documented to be involved in ecdysteroidogenesis in Drosophila melanogaster and Bombyx mori. We describe here the cloning and characterization of Halloween gene spookier (Lsspok, Lscyp307a2) in the small brown planthopper Laodelphax striatellus, a hemipteran insect species. LsSPOK has three insect-conserved P450 motifs, that is, Helix-K, PERF motif and heme-binding domain. Temporal and spatial expression patterns of Lsspok were evaluated by quantitative polymerase chain reaction. Through the fouth-instar and the early fifth-instar stages, Lsspok showed two expression peaks in the second- and fifth-day fourth-instar nymphs, and two troughs in the first-day fourth and fifth instars. On day 5 of the fourth-instar nymphs, Lsspok clearly had a high transcript level in the thorax where prothoracic glands were located. Dietary introduction of double-stranded RNA of Lsspok in the nymph stage successfully knocked down the target gene, decreased expression level of ecdysone receptor (LsEcR) gene, caused nymphal lethality and delayed development. Ingestion of 20-hydroxyecdysone in Lsspok-dsRNA-exposed nymphs did not increase Lsspok expression level, but almost completely rescued the LsEcR mRNA level and relieved the negative effects on survival and development. Thus, our data suggest that the ecdysteroidogenic pathway is conserved in insects and LsSPOK is responsible for specific steps in ecdysteroidogenesis in L. striatellus.
Collapse
Affiliation(s)
- Shuang Jia
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | |
Collapse
|
44
|
Wan PJ, Jia S, Li N, Fan JM, Li GQ. A Halloween gene shadow is a potential target for RNA-interference-based pest management in the small brown planthopper Laodelphax striatellus. PEST MANAGEMENT SCIENCE 2015; 71:199-206. [PMID: 24648012 DOI: 10.1002/ps.3780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 01/05/2014] [Accepted: 03/13/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Laodelphax striatellus is an economically important rice pest in China. Ecdysteroid hormone 20-hydroxyecdysone regulates insect development and reproduction. The cytochrome P450 monooxygenase Shadow (Sad) plays a critical role in ecdysteroidogenesis. Here, tests were conducted to establish whether Lssad was a potential target gene for RNA-interference-based management of L. striatellus. RESULTS Lssad was cloned and characterised. LsSad had Helix-C, Helix-I, Helix-K, PERF and haem-binding motifs. Lssad is expressed at a higher level in the thorax, where prothoracic glands are located, compared with the level in the head or abdomen. It showed two expression peaks in day 2 and day 4-5 fourth-instar nymphs, and two troughs in day 1 fourth and fifth instars. Oral delivery of double-stranded RNA (dsRNA) of Lssad at the nymph stage successfully knocked down the expression of the target gene, reduced the expression level of ecdysone receptor (LsEcR) gene, caused nymphal lethality and delayed development in a dose-dependent manner. Ingestion of 20-hydroxyecdysone in Lssad-dsRNA-exposed nymphs did not increase Lssad expression level, but almost completely rescued the LsEcR mRNA level and relieved the negative effects on survival and development. CONCLUSIONS The ecdysteroidogenic pathway is conserved in L. striatellus. Lssad can serve as a possible target for dsRNA-based pesticides for planthopper control.
Collapse
Affiliation(s)
- Pin-Jun Wan
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | |
Collapse
|
45
|
Asokan R, Rebijith KB, Roopa HK, Kumar NKK. Non-Invasive Delivery of dsGST Is Lethal to the Sweet Potato Whitefly, Bemisia tabaci (G.) (Hemiptera: Aleyrodidae). Appl Biochem Biotechnol 2014; 175:2288-99. [DOI: 10.1007/s12010-014-1437-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 11/28/2014] [Indexed: 11/24/2022]
|
46
|
Swevers L, Kolliopoulou A, Li Z, Daskalaki M, Verret F, Kalantidis K, Smagghe G, Sun J. Transfection of BmCPV genomic dsRNA in silkmoth-derived Bm5 cells: stability and interactions with the core RNAi machinery. JOURNAL OF INSECT PHYSIOLOGY 2014; 64:21-9. [PMID: 24636911 DOI: 10.1016/j.jinsphys.2014.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/03/2014] [Accepted: 03/07/2014] [Indexed: 06/03/2023]
Abstract
While several studies have been conducted to investigate the stability of dsRNA in the extracellular medium (hemolymph, gut content, saliva), little is known regarding the persistence of dsRNA once it has been introduced into the cell. Here, we investigate the stability of Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) genomic dsRNA fragments after transfection into Bombyx-derived Bm5 cells. Using RT-PCR as a detection method, we found that dsRNA could persist for long periods (up to 8 days) in the intracellular environment. While the BmCPV genomic dsRNA was processed by the RNAi machinery, its presence had no effects on other RNAi processes, such as the silencing of a luciferase reporter by dsLuc. We also found that transfection of BmCPV genomic dsRNA could not establish a viral infection in the Bm5 cells, even when co-transfections were carried out with dsRNAs targeting Dicer and Argonaute genes, suggesting that the neutralization by RNAi does not play a role in the establishment of an in vitro culture system. The mechanism of the dsRNA stability in Bm5 cells is discussed, as well as the implications for the establishment for an in vitro culture system for BmCPV.
Collapse
Affiliation(s)
- Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", P. Grigoriou & Neapoleos Str, Aghia Paraskevi Attikis, 153 42 Athens, Greece.
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", P. Grigoriou & Neapoleos Str, Aghia Paraskevi Attikis, 153 42 Athens, Greece
| | - Zheng Li
- Guangdong Engineering Research Center of Subtropical Sericulture and Mulberry Resources Protection and Safety, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Maria Daskalaki
- Department of Biology, University of Crete, Voutes University Campus, 700 13 Heraklion, Crete, Greece
| | - Frederic Verret
- Department of Biology, University of Crete, Voutes University Campus, 700 13 Heraklion, Crete, Greece
| | - Kriton Kalantidis
- Department of Biology, University of Crete, Voutes University Campus, 700 13 Heraklion, Crete, Greece
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jingchen Sun
- Guangdong Engineering Research Center of Subtropical Sericulture and Mulberry Resources Protection and Safety, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| |
Collapse
|
47
|
RNA interference depletion of the Halloween gene disembodied implies its potential application for management of planthopper Sogatella furcifera and Laodelphax striatellus. PLoS One 2014; 9:e86675. [PMID: 24489765 PMCID: PMC3904942 DOI: 10.1371/journal.pone.0086675] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/11/2013] [Indexed: 11/20/2022] Open
Abstract
Sogatella furcifera and Laodelphax striatellus are economically important rice pests in China by acting as vectors of several rice viruses, sucking the phloem sap and blocking the phloem vessels. Ecdysteroid hormone 20-hydroxyecdysone regulates insect development and reproduction. A cytochrome P450 monooxygenase CYP302A1 (22-hydroxylase), encoded by the Halloween gene disembodied (dib), plays a critical role in ecdysteroidogenesis. The objective of this study is to test whether dib genes are potential targets for RNA interference-based management of S. furcifera and L. striatellus. We cloned and characterized Sfdib and Lsdib. The open reading frame regions of dib genes were generated and used for designing and constructing dsRNA fragments. Experiments were conducted using oral delivery of dsdib to investigate the effectiveness of RNAi in S. furcifera and L. striatellus nymphs. Real-time quantitative reverse transcriptase-PCR analysis demonstrated that continuous ingestion of dsdib at the concentration of 0.01, 0.05 and 0.50 mg/ml diminished Sfdib expression levels by 35.9%, 45.1% and 66.2%, and ecdysone receptor (SfEcR) gene mRNA levels by 34.0%, 36.2% and 58.5% respectively in S. furcifera, and decreased Lsdib expression level by 18.8%, 35.8% and 56.7%, and LsEcR mRNA levels by 25.2%, 46.8% and 68.8% respectively in L. striatellus. The reduction in dib and EcR transcript abundance resulted in observable phenotypes. The development of nymphs was impaired and the survival was negatively affected. Our data will enable the development of new insect control strategies and functional analysis of vital genes in S. furcifera and L. striatellus nymphs.
Collapse
|
48
|
Witwer KW, Hirschi KD. Transfer and functional consequences of dietary microRNAs in vertebrates: concepts in search of corroboration: negative results challenge the hypothesis that dietary xenomiRs cross the gut and regulate genes in ingesting vertebrates, but important questions persist. Bioessays 2014; 36:394-406. [PMID: 24436255 PMCID: PMC4109825 DOI: 10.1002/bies.201300150] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
If validated, diet-derived foreign microRNA absorption and function in consuming vertebrates would drastically alter our understanding of nutrition and ecology. RNA interference (RNAi) mechanisms of Caenorhabditis elegans are enhanced by uptake of environmental RNA and amplification and systemic distribution of RNAi effectors. Therapeutic exploitation of RNAi in treating human disease is difficult because these accessory processes are absent or diminished in most animals. A recent report challenged multiple paradigms, suggesting that ingested microRNAs (miRNAs) are transferred to blood, accumulate in tissues, and exert canonical regulation of endogenous transcripts. Independent replication of these findings has been elusive, and multiple disconfirmatory findings have been published. In the face of mounting negative results, any additional positive reports must provide the proverbial “extraordinary proof” to support such claims. In this article, we review the evidence for and against a significant role for dietary miRNAs in influencing gene expression, and make recommendations for future studies.
Collapse
Affiliation(s)
- Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
49
|
Jia S, Wan PJ, Zhou LT, Mu LL, Li GQ. Knockdown of a putative Halloween gene Shade reveals its role in ecdysteroidogenesis in the small brown planthopper Laodelphax striatellus. Gene 2013; 531:168-74. [DOI: 10.1016/j.gene.2013.09.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/03/2013] [Accepted: 09/08/2013] [Indexed: 01/12/2023]
|
50
|
Xu HJ, Chen T, Ma XF, Xue J, Pan PL, Zhang XC, Cheng JA, Zhang CX. Genome-wide screening for components of small interfering RNA (siRNA) and micro-RNA (miRNA) pathways in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). INSECT MOLECULAR BIOLOGY 2013; 22:635-47. [PMID: 23937246 DOI: 10.1111/imb.12051] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The brown planthopper (BPH), Nilaparvata lugens, is a major rice pest in Asia, and accumulated evidence indicates that this species is susceptible to RNA interference (RNAi); however, the mechanism underlying RNAi and parental RNAi has not yet been determined. We comprehensively investigated the repertoire of core genes involved in small interfering RNA (siRNA) and micro-RNA (miRNA) pathways in the BPH by comparing its newly assembled transcriptome and genome with those of Drosophila melanogaster, Tribolium castaneum and Caenorhabditis elegans. Our analysis showed that the BPH possesses one drosha and two Dicer (dcr) genes, three dsRNA-binding motif protein genes, two Argonaute (ago) genes, two Eri-1-like genes (eri-1), and a Sid-1-like gene (sid-1). Additionally, we report for first time that parental RNAi might occur in this species, and siRNA pathway and Sid-1 were required for high efficiency of systemic RNAi triggered by exogenous dsRNA. Furthermore, our results also demonstrated that the miRNA pathway was involved in BPH metamorphosis as depletion of the ago1 or dcr1 gene severely impaired ecdysis. The BPH might be a good model system to study the molecular mechanism of systemic RNAi in hemimetabolous insects, and RNAi has potential to be developed to control this pest in agricultural settings.
Collapse
Affiliation(s)
- H-J Xu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|