1
|
Prindl MI, Westwood MT, Goodfellow AS, McKay AP, Cordes DB, Bühl M, Smith AD. Isoselenourea-Catalyzed Enantioselective Pyrazolo-Heterocycle Synthesis Enabled by Self-Correcting Amide and Ester Acylation. Angew Chem Int Ed Engl 2025; 64:e202425305. [PMID: 40032622 PMCID: PMC12051791 DOI: 10.1002/anie.202425305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 03/05/2025]
Abstract
Pyrazole heterocycles are prevalent in a wide range of medicinal and agrochemical compounds, and as such, the development of methods for their enantioselective incorporation into molecular scaffolds is highly desirable. This manuscript describes the effective formation of fused pyrazolo-pyridones and -pyranones in high enantioselectivity (up to >99:1 er) via an isoselenourea (HyperSe) catalyzed enantioselective [3 + 3]-Michael addition-cyclization process using readily available pyrazolylsulfonamides or pyrazolones as pronucleophiles and α,β-unsaturated anhydrides as starting materials. Mechanistic analysis indicates an unusual self-correcting reaction pathway involving preferential [1,2]-addition of the pronucleophile to initially generate an intermediate amide or ester that can be intercepted by isoselenourea acylation, leading to productive formation of the fused heterocyclic products with high enantiocontrol. The scope and limitations of this process are developed across a range of examples, with insight into the factors leading to the observed enantioselectivity provided by density functional theory (DFT) analysis.
Collapse
Affiliation(s)
- Martha I. Prindl
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| | | | | | - Aidan P. McKay
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| | - David B. Cordes
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| | - Michael Bühl
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| | - Andrew D. Smith
- EaStCHEMSchool of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| |
Collapse
|
2
|
Yuan H, Wu R, Hu Y, Zhang J, Zhang Y, Wang Z, Huo J, Tang L, Zhao B, Fan Z. Fungicidal Activity of Carboxamides Containing Spiropiperidinyl-α-methylene-γ-butyrolactones Targeting Oxysterol Binding Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8852-8864. [PMID: 40170001 DOI: 10.1021/acs.jafc.5c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Oxysterol binding protein (OSBP) is a new target for oomycide development. To find more fungicidal active compounds targeting OSBP, a series of carboxamides containing spiropiperidinyl-α-methylene-γ-butyrolactone and heterocyclic carboxylic acids were rationally designed and synthesized by using a computer-aided pesticide design method. The in vitro fungicidal bioassay found that compound 5o showed broad-spectrum activity with EC50 values falling between 0.50 and 20.85 μg/mL against Phytophthora capsici and Fusarium verticillioides, respectively, which was more potent than 7c and natural lead xanthatin. Compound 5o also showed 44% in vivo efficacy against Pseudoperonospora cubensis, even at a concentration of 0.5 μg/mL. Fluorescence quenching and microscale thermophoresis determination suggested that compound 5o bound to Osh4p and showed stronger interactions than oxathiapiprolin. RNA sequencing analysis discovered that the ergosterol (ERG) gene cluster and ribosome biogenesis in eukaryotes were downregulated. Compound 5o was discovered as a good fungicidal candidate targeting OSBP deserving further studies.
Collapse
Affiliation(s)
- Haolin Yuan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Rongzhang Wu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yangxiaochun Hu
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Jin Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yue Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhihong Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jianfei Huo
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300384, P. R. China
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Bin Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
3
|
Fan W, Huang X, Yu S, Bian Q, Wang B. Synthesis and Fungicidal Activity Evaluation of Novel Triazole Thione/Thioether Derivatives Containing a Pyridylpyrazole Moiety. Chem Biodivers 2025; 22:e202402388. [PMID: 39536334 DOI: 10.1002/cbdv.202402388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Compounds containing N-pyridylpyrazole motif have aroused interest and brought about research hotspots due to their highly-efficient insecticidal activity. The fungicidal potential of N-pyridylpyrazole derivatives has gradually been disclosed in recent years. To discover new agrochemicals with poly-heterocyclic features, a series of novel triazole thione/thioether derivatives containing pyridylpyrazole motif (8-11) was synthesized. The new compounds were identified by melting point, 1H-NMR, 13C NMR, 19F NMR, HRMS, and elemental analysis. The bioassays showed that most of the pyridylpyrazole-containing triazole thione Mannich bases possessed favorable in vitro fungicidal activity toward pathogenic fungi, such as Magnaporthe oryzae, Sclerotinia sclerotiorum, Botrytis cinerea and Fusarium verticillioides, and were comparable with those of the contrast compounds A and triadimefon. Some of them exhibited moderate to good in vivo fungicidal activity against S. sclerotiorum at 0.2 mg/mL (e. g. 8f control efficacy: 60.9±3.2 %). The SEM observation displayed that 8f might cause disruption of cell membrane and wall of S. sclerotiorum. Compounds 8a, 8c, 8f-8h, 8p and 9b can serve as promising new fungicidal agents to make further structural optimization. The findings in this article provide useful clue and guidance for the design and development of new poly-heterocyclic agrochemicals.
Collapse
Affiliation(s)
- Wenqi Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaobing Huang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shujing Yu
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Baolei Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
4
|
Ileke KD, Adeniran CO. Chemical composition and insecticidal efficacy of two animals' horn and hoof crude extracts against lesser grains borer, Rhyzopertha dominica (F.) [Coleoptera: Bostrichidae]. Heliyon 2025; 11:e41778. [PMID: 39882483 PMCID: PMC11774779 DOI: 10.1016/j.heliyon.2025.e41778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
This research evaluated the profiling of bioactive compounds and insecticidal activities of the crude extracts of horns and hoofs of cow and goat against Rhyzoperta dominica on wheat grains. Different concentrations (0.1, 0.2, 0.3, 0.4 and 0.5 ml) of the crude extracts were applied per 20 g of wheat grains to assess the toxicity effect on adult mortality and adult emergence. The different concentrations of the two extracts evoked mortality of R. dominica. However, the most effective concentration was 0.5 ml of the crude extract of goat horn causing 100 % mortality after 5days of application, while extract of cow hoof at the same concentration resulted in 86.67 % mortality of R. dominica after 5 days of exposure. The required lethal concentration needed to control 50 % population of R. dominica by extract of cow horn and goat hoof after 24 h exposure was 0.57 ml and 0.48 ml, respectively. Proximate compositions of the animal hoofs and horns showed that the samples contained fat, crude protein and ash. The number of bioactive compounds detected in cow hoof was 44 and goat horn was 21. The study has shown the insecticidal potential of the understudied animal materials. The use of extracts from the horns of goats should be looked into and explored as an eco-friendly measure in the control of R. dominica.
Collapse
Affiliation(s)
- Kayode David Ileke
- Department of Biology, School Life of Sciences, Federal University of Technology, P. M. B. 704, Akure, Ondo State, Nigeria
| | - Catherine Olukemi Adeniran
- Department of Animal Production and Health, School of Agriculture and Agricultural Technology, Federal University of Technology,P. M. B. 704, Akure, Ondo State, Nigeria
| |
Collapse
|
5
|
Aslam M, Akhtar MS, Lim HN, Seo JH, Lee YR. Recent advances in the transformation of maleimides via annulation. Org Biomol Chem 2025; 23:269-291. [PMID: 39545834 DOI: 10.1039/d4ob01632g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Over the past five years, maleimide scaffolds have gained considerable attention in organic synthesis for their role in forming cyclized molecules through annulation and C-H activation. As versatile and reactive coupling agents, maleimides have enabled the efficient synthesis of various cyclized products, including annulation, benzannulation, cycloaddition, and spirocyclization, with applications in medicinal chemistry, drug discovery, and materials science. Despite the extensive study of maleimide chemistry, certain reactions-such as cycloaddition-based annulation, photoannulation, and electrochemical transformations-remain underexplored despite their promising potential in the pharmaceutical and chemical industries. Recent advancements, such as photocatalysis and electrochemical methods, have expanded the utility of maleimides, providing more sustainable and selective approaches for synthesizing complex molecules. This review compiles research published between 2019 and 2024, highlighting the substrate scope, reaction diversity, and industrial relevance of maleimide-based annulation strategies. Additionally, we discuss emerging trends and future directions in maleimide chemistry, exploring opportunities for novel reaction pathways and broader applications in synthetic biology and materials science.
Collapse
Affiliation(s)
- Mohammad Aslam
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | | | - Hee Nam Lim
- Department of Chemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jeong Hyun Seo
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
6
|
Westwood MT, Omar Farah A, Wise HB, Sinfield M, Robichon C, Prindl MI, Cordes DB, Ha-Yeong Cheong P, Smith AD. Isothiourea-Catalysed Acylative Kinetic Resolution of Tertiary Pyrazolone Alcohols. Angew Chem Int Ed Engl 2024; 63:e202407983. [PMID: 39177177 DOI: 10.1002/anie.202407983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
The development of methods for the selective acylative kinetic resolution (KR) of tertiary alcohols is a recognised synthetic challenge with relatively few successful substrate classes reported to date. In this manuscript, a highly enantioselective isothiourea-catalysed acylative KR of tertiary pyrazolone alcohols is reported. The scope and limitations of this methodology have been developed, with high selectivity observed across a broad range of substrate derivatives incorporating varying substitution at N(2)-, C(4)- and C(5)-, as well as bicyclic constraints within the pyrazolone scaffold (30 examples, selectivity factors (s) typically >100) at generally low catalyst loadings (1 mol %). The application of this KR method to tertiary alcohols derived directly from a natural product (geraniol), alongside pharmaceutically relevant drug compounds (indomethacin, gemfibrozil and probenecid), with high efficiency (s >100) is also described. The KR process is readily amenable to scale up using bench grade solvents and reagents, with effective resolution on a 50 g (0.22 mol) scale demonstrated. The key structural motif leading to excellent selectivity in this KR process has been probed through computation, with an NC=O⋅⋅⋅isothiouronium interaction from substrate to acylated catalyst observed within the favoured transition state. Similarly, the effect of C(5)-aryl substitution that leads to reduced experimental selectivity is probed, with a competitive π-isothiouronium interaction identified as leading to reduced selectivity.
Collapse
Affiliation(s)
- Matthew T Westwood
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Henry B Wise
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Mike Sinfield
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Camille Robichon
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Martha I Prindl
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Paul Ha-Yeong Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
7
|
Nguyen AL, Zhang J, Huang SH, Wang Q. Copper-Catalyzed 1,3-Aminocyclization of Cyclopropanes as a Rapid Entry to γ-Amino Heterocycles. Org Lett 2024; 26:9508-9512. [PMID: 39442149 DOI: 10.1021/acs.orglett.4c03475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
We herein report a copper-catalyzed 1,3-aminocyclization of cyclopropanes as a direct and versatile entry into important heterocycles. This reaction was initiated by a copper-catalyzed, NFSI-promoted ring opening of cyclopropanes, followed by nucleophilic cyclization. A variety of nucleophiles successfully participate in this transformation, including alcohols, carboxylic acids, sulfonamides, and amides, for the construction of diverse cyclic ethers, pyrrolidines, lactones, and iminolactones.
Collapse
Affiliation(s)
- Andrew L Nguyen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Justin Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sheng-Hao Huang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
8
|
Blay G, Monleón A, Montesinos-Magraner M, Sanz-Marco A, Vila C. Asymmetric electrophilic functionalization of amino-substituted heteroaromatic compounds: a convenient tool for the enantioselective synthesis of nitrogen heterocycles. Chem Commun (Camb) 2024; 60:12270-12286. [PMID: 39351928 DOI: 10.1039/d4cc03680h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The catalytic asymmetric electrophilic functionalization of the less reactive N-heteroaromatic compounds has been reported using the approach of the introduction of an exocyclic amino substituent. This strategy has allowed enantioselective Friedel-Crafts alkylation in pyrazoles, isoxazoles and isothiazoles, as well as in aminoindoles, aminobenzofurans and aminobenzothiophenes. Several stereoselective methods have been used for the 1,4-addition or 1,2-addition of these heteroaromatic compounds to different electrophiles employing organocatalysts or chiral metal complexes. The activating exocyclic amino substituent has also been used as a nucleophile in tandem reactions, including formal cycloadditions ([3+2] and [3+3]), for the synthesis of highly functionalized chiral nitrogen heterocycles.
Collapse
Affiliation(s)
- Gonzalo Blay
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr Moliner 50, 46100 Burjassot, València, Spain.
| | - Alicia Monleón
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr Moliner 50, 46100 Burjassot, València, Spain.
| | - Marc Montesinos-Magraner
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr Moliner 50, 46100 Burjassot, València, Spain.
| | - Amparo Sanz-Marco
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr Moliner 50, 46100 Burjassot, València, Spain.
| | - Carlos Vila
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr Moliner 50, 46100 Burjassot, València, Spain.
| |
Collapse
|
9
|
Adamczewski M, Nisius B, Kausch-Busies N. Derisking Future Agrochemicals before They Are Made: Large-Scale In Vitro Screening for In Silico Modeling of Thyroid Peroxidase Inhibition. Chem Res Toxicol 2024; 37:1698-1711. [PMID: 39303287 DOI: 10.1021/acs.chemrestox.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Inhibition of thyroid peroxidase (TPO) is a known molecular initiating event for thyroid hormone dysregulation and thyroid toxicity. Consequently, TPO is a critical off-target for the design of safer agrochemicals. To date, fewer than 500 structurally characterized TPO inhibitors are known, and the most comprehensive result set generated under identical conditions encompasses approximately 1000 compounds from a subset of the ToxCast compound collection. Here we describe a collaboration between wet lab and data scientists combining a large in vitro screen and the subsequent development of an in silico model for predicting TPO inhibition. The screen encompassed more than 100,000 diverse drug-like agrochemical compounds and yielded more than 6000 structurally novel TPO inhibitors. On this foundation, we applied different machine learning techniques and compared their performance. We discuss use cases for in silico TPO models in agrochemical research and explain that model recall is of particular importance when selecting compounds from large virtual compound collections. Furthermore, we show that due to the higher structural diversity of our training data, our final model allowed better generalization than models trained on the ToxCast data set. We now have a tool to predict TPO inhibition even for molecules that are only available virtually, such as hits from virtual screenings, or compounds under consideration for inclusion in our screening collection. Structures and activity data for 34,524 compounds are provided. This data set includes almost all inhibitors, including more than 3000 proprietary structures, and a large proportion of the inactives.
Collapse
Affiliation(s)
- Martin Adamczewski
- Bayer AG, Division CropScience, Alfred-Nobel-Str 50, Monheim 40789, Germany
| | - Britta Nisius
- Bayer AG, Division CropScience, Alfred-Nobel-Str 50, Monheim 40789, Germany
| | - Nina Kausch-Busies
- Bayer AG, Division CropScience, Alfred-Nobel-Str 50, Monheim 40789, Germany
| |
Collapse
|
10
|
Jampilek J. Heterocycles in Medicinal Chemistry II. Molecules 2024; 29:4810. [PMID: 39459179 PMCID: PMC11510039 DOI: 10.3390/molecules29204810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Carbon has a unique position among the elements, due to the fact that its valence shell has four electrons and is therefore quadrivalent in the excited state [...].
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic;
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
11
|
Zhu CF, Tian Y, Mai JJ, Shi M, Dong X, Shen D, Shen MH, Xu HD. Cobalt-Catalyzed Synthesis of Alkenyl Heterocycles via Regioselective Intramolecular 1,4-Hydrofunctionalization of Dienes. Org Lett 2024; 26:8260-8266. [PMID: 39321353 DOI: 10.1021/acs.orglett.4c02884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
We report a novel cobalt-catalyzed intramolecular 1,4-hydrofunctionalization of dienes. The reaction proceeds under mild conditions and is amenable to N- and O-nucleophiles. The protocol exhibits exclusive regioselectivity, yielding a number of different alkenyl heterocycles, including but not limited to dihydroisobenzofurans, isochromanes, tetrahydrofurans, morpholines, lactones, and isoindolines. Experimental studies were performed to offer some insight into the different mechanistic pathways and to rationalize the regio- and stereoselectivities of the reaction.
Collapse
Affiliation(s)
- Chi-Fan Zhu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yuan Tian
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jun-Ju Mai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Mingyuan Shi
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xiasen Dong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Dongping Shen
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Mei-Hua Shen
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
12
|
Zhu H, Manchado A, Omar Farah A, McKay AP, Cordes DB, Cheong PHY, Kasten K, Smith AD. Isothiourea-Catalysed Acylative Dynamic Kinetic Resolution of Tetra-substituted Morpholinone and Benzoxazinone Lactols. Angew Chem Int Ed Engl 2024; 63:e202402908. [PMID: 38713293 DOI: 10.1002/anie.202402908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
The development of methods to allow the selective acylative dynamic kinetic resolution (DKR) of tetra-substituted lactols is a recognised synthetic challenge. In this manuscript, a highly enantioselective isothiourea-catalysed acylative DKR of tetra-substituted morpholinone and benzoxazinone-derived lactols is reported. The scope and limitations of this methodology have been developed, with high enantioselectivity and good to excellent yields (up to 89 %, 99 : 1 er) observed across a broad range of substrate derivatives incorporating substitution at N(4) and C(2), di- and spirocyclic substitution at C(5) and C(6), as well as benzannulation (>35 examples in total). The DKR process is amenable to scale-up on a 1 g laboratory scale. The factors leading to high selectivity in this DKR process have been probed through computation, with an N-C=O⋅⋅⋅isothiouronium interaction identified as key to producing ester products in highly enantioenriched form.
Collapse
Affiliation(s)
- Haoxiang Zhu
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Alejandro Manchado
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos 1-5, 37008, Salamanca, Spain
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA
| | - Aidan P McKay
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA
| | - Kevin Kasten
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
13
|
Chen Y, Tian J, Tan Y, Liu Y, Wang Q. Design, Synthesis, and Acaricidal Activity of 2,5-Diphenyl-1,3-oxazoline Compounds. Molecules 2024; 29:4149. [PMID: 39274997 PMCID: PMC11396784 DOI: 10.3390/molecules29174149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
By using a scaffold hopping/ring equivalent and intermediate derivatization strategies, a series of compounds of 2,5-diphenyl-1,3-oxazoline with substituent changes at the 5-phenyl position were prepared, and their acaricidal activity was studied. However, the synthesized 2,5-diphenyl-1,3-oxazolines showed lower activity against mite eggs and larvae compared to the 2,4-diphenyl-1,3-oxazolines with the same substituents. We speculate that there is a significant difference in the spatial extension direction of the substituents between the two skeletons of compounds, resulting in differences in their ability to bind to the potential target chitin synthase 1. This work is helpful in inferring the internal structure of chitin synthase binding pockets.
Collapse
Affiliation(s)
- Yuming Chen
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Jiarui Tian
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Yuhao Tan
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Sharma M, Patton ZE, Shoemaker CR, Bacsa J, Biegasiewicz KF. N-Halogenation by Vanadium-Dependent Haloperoxidases Enables 1,2,4-Oxadiazole Synthesis. Angew Chem Int Ed Engl 2024:e202411387. [PMID: 39183368 DOI: 10.1002/anie.202411387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Nitrogen-containing compounds are valuable synthetic intermediates and targets in nearly every chemical industry. While methods for nitrogen-carbon and nitrogen-heteroatom bond formation have primarily relied on nucleophilic nitrogen atom reactivity, molecules containing nitrogen-halogen bonds allow for electrophilic or radical reactivity modes at the nitrogen center. Despite the growing synthetic utility of nitrogen-halogen bond-containing compounds, selective catalytic strategies for their synthesis are largely underexplored. We recently discovered that the vanadium-dependent haloperoxidase (VHPO) class of enzymes are a suitable biocatalyst platform for nitrogen-halogen bond formation. Herein, we show that VHPOs perform selective halogenation of a range of substituted benzamidine hydrochlorides to produce the corresponding N'-halobenzimidamides. This biocatalytic platform is applied to the synthesis of 1,2,4-oxadiazoles from the corresponding N-acylbenzamidines in high yield and with excellent chemoselectivity. Finally, the synthetic applicability of this biotechnology is demonstrated in an extension to nitrogen-nitrogen bond formation and the chemoenzymatic synthesis of the Duchenne muscular dystrophy drug, ataluren.
Collapse
Affiliation(s)
- Manik Sharma
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, GA, 30322
- School of Molecular Sciences, Arizona State University, 551 E University Dr, Tempe, AZ, 85281
| | - Zoe E Patton
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, GA, 30322
| | - Carlie R Shoemaker
- School of Molecular Sciences, Arizona State University, 551 E University Dr, Tempe, AZ, 85281
| | - John Bacsa
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, GA, 30322
| | - Kyle F Biegasiewicz
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, GA, 30322
- School of Molecular Sciences, Arizona State University, 551 E University Dr, Tempe, AZ, 85281
| |
Collapse
|
15
|
Rząd K, Nucia A, Grzelak W, Matysiak J, Kowalczyk K, Okoń S, Matwijczuk A. Investigation of 2,4-Dihydroxylaryl-Substituted Heterocycles as Inhibitors of the Growth and Development of Biotrophic Fungal Pathogens Associated with the Most Common Cereal Diseases. Int J Mol Sci 2024; 25:8262. [PMID: 39125838 PMCID: PMC11312687 DOI: 10.3390/ijms25158262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Climate change forces agriculture to face the rapidly growing virulence of biotrophic fungal pathogens, which in turn drives researchers to seek new ways of combatting or limiting the spread of diseases caused by the same. While the use of agrochemicals may be the most efficient strategy in this context, it is important to ensure that such chemicals are safe for the natural environment. Heterocyclic compounds have enormous biological potential. A series of heterocyclic scaffolds (1,3,4-thiadiazole, 1,3-thiazole, 1,2,4-triazole, benzothiazine, benzothiadiazine, and quinazoline) containing 2,4-dihydroxylaryl substituents were investigated for their ability to inhibit the growth and development of biotrophic fungal pathogens associated with several important cereal diseases. Of the 33 analysed compounds, 3 were identified as having high inhibitory potential against Blumeria and Puccinia fungi. The conducted research indicated that the analysed compounds can be used to reduce the incidence of fungal diseases in cereals; however, further thorough research is required to investigate their effects on plant-pathogen systems, including molecular studies to determine the exact mechanism of their activity.
Collapse
Affiliation(s)
- Klaudia Rząd
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Aleksandra Nucia
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (A.N.); (W.G.); (K.K.)
| | - Weronika Grzelak
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (A.N.); (W.G.); (K.K.)
| | - Joanna Matysiak
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland;
| | - Krzysztof Kowalczyk
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (A.N.); (W.G.); (K.K.)
| | - Sylwia Okoń
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (A.N.); (W.G.); (K.K.)
| | - Arkadiusz Matwijczuk
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
16
|
Savickienė V, Bieliauskas A, Belyakov S, Arbačiauskienė E, Šačkus A. Multicomponent Synthesis of New Fluorescent Boron Complexes Derived from 3-Hydroxy-1-phenyl-1 H-pyrazole-4-carbaldehyde. Molecules 2024; 29:3432. [PMID: 39065010 PMCID: PMC11279739 DOI: 10.3390/molecules29143432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Novel fluorescent pyrazole-containing boron (III) complexes were synthesized employing a one-pot three-component reaction of 3-hydroxy-1-phenyl-1H-pyrazole-4-carbaldehyde, 2-aminobenzenecarboxylic acids, and boronic acids. The structures of the novel heterocyclic compounds were confirmed using 1H-, 13C-, 15N-, 19F-, and 11B-NMR, IR spectroscopy, HRMS, and single-crystal X-ray diffraction data. The photophysical properties of the obtained iminoboronates were investigated using spectroscopic techniques, such as UV-vis and fluorescence spectroscopies. Compounds display main UV-vis absorption maxima in the blue region, and fluorescence emission maxima are observed in the green region of the visible spectrum. It was revealed that compounds exhibit fluorescence quantum yield up to 4.3% in different solvents and demonstrate an aggregation-induced emission enhancement effect in mixed THF-water solutions.
Collapse
Affiliation(s)
- Viktorija Savickienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania;
| | - Aurimas Bieliauskas
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania;
| | - Sergey Belyakov
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia;
| | - Eglė Arbačiauskienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania;
| | - Algirdas Šačkus
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania;
| |
Collapse
|
17
|
Conboy A, Goodfellow AS, Kasten K, Dunne J, Cordes DB, Bühl M, Smith AD. De-epimerizing DyKAT of β-lactones generated by isothiourea-catalysed enantioselective [2 + 2] cycloaddition. Chem Sci 2024; 15:8896-8904. [PMID: 38873072 PMCID: PMC11168096 DOI: 10.1039/d4sc01410c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 06/15/2024] Open
Abstract
An enantioselective isothiourea-catalysed [2 + 2] cycloaddition of C(1)-ammonium enolates with pyrazol-4,5-diones is used to construct spirocyclic β-lactones in good yields, excellent enantioselectivity (99 : 1 er) but with modest diastereocontrol (typically 70 : 30 dr). Upon ring-opening with morpholine or alternative nucleophilic amines and alcohols β-hydroxyamide and β-hydroxyester products are generated with enhanced diastereocontrol (up to >95 : 5 dr). Control experiments show that stereoconvergence is observed in the ring-opening of diastereoisomeric β-lactones, leading to a single product (>95 : 5 dr, >99 : 1 er). Mechanistic studies and DFT analysis indicate a substrate controlled Dynamic Kinetic Asymmetric Transformation (DyKAT) involving epimerisation at C(3) of the β-lactone under the reaction conditions, coupled with a hydrogen bond-assisted nucleophilic addition to the Si-face of the β-lactone and stereodetermining ring-opening. The scope and limitations of a one-pot protocol consisting of isothiourea-catalysed enantio-determining [2 + 2] cycloaddition followed by diastereo-determining ring-opening are subsequently developed. Variation within the anhydride ammonium enolate precursor, as well as N(1) and C(3) within the pyrazol-4,5-dione scaffold is demonstrated, giving a range of functionalised β-hydroxyamides with high diastereo- and enantiocontrol (>20 examples, up to >95 : 5 dr and >99 : 1 er) via this DyKAT.
Collapse
Affiliation(s)
- Aífe Conboy
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Alister S Goodfellow
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Kevin Kasten
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Joanne Dunne
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Michael Bühl
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| |
Collapse
|
18
|
Proos Vedin N, Escayola S, Radenković S, Solà M, Ottosson H. The n,π* States of Heteroaromatics: When are They the Lowest Excited States and in What Way Can They Be Aromatic or Antiaromatic? J Phys Chem A 2024; 128:4493-4506. [PMID: 38787346 PMCID: PMC11163469 DOI: 10.1021/acs.jpca.4c02580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Heteroaromatic molecules are found in areas ranging from biochemistry to photovoltaics. We analyze the n,π* excited states of 6π-electron heteroaromatics with in-plane lone pairs (nσ, herein n) and use qualitative theory and quantum chemical computations, starting at Mandado's 2n + 1 rule for aromaticity of separate spins. After excitation of an electron from n to π*, a (4n + 2)π-electron species has 2n + 2 πα-electrons and 2n + 1 πβ-electrons (or vice versa) and becomes πα-antiaromatic and πβ-aromatic. Yet, the antiaromatic πα- and aromatic πβ-components seldom cancel, leading to residuals with aromatic or antiaromatic character. We explore vertically excited triplet n,π* states (3n,π*), which are most readily analyzed, but also singlet n,π* states (1n,π*), and explain which compounds have n,π* states with aromatic residuals as their lowest excited states (e.g., pyrazine and the phenyl anion). If the πβ-electron population becomes more (less) uniformly distributed upon excitation, the system will have an (anti)aromatic residual. Among isomers, the one that has the most aromatic residual in 3n,π* is often of the lowest energy in this state. Five-membered ring heteroaromatics with one or two N, O, and/or S atoms never have n,π* states as their first excited states (T1 and S1), while this is nearly always the case for six-membered ring heteroaromatics with electropositive heteroatoms and/or highly symmetric (D2h) diheteroaromatics. For the complete compound set, there is a modest correlation between the (anti)aromatic character of the n,π* state and the energy gap between the lowest n,π* and π,π* states (R2 = 0.42), while it is stronger for monosubstituted pyrazines (R2 = 0.84).
Collapse
Affiliation(s)
- Nathalie Proos Vedin
- Department
of Chemistry—Ångström Laboratory, Uppsala University, 751 20 Uppsala, Sweden
| | - Sílvia Escayola
- Institut
de Quìmica Computacional i Catàlisi and Departament
de Química, Universitat de Girona, C/Maria Aurèlia Capmany,
69, 17003 Girona, Catalonia, Spain
- Donostia
International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| | - Slavko Radenković
- Faculty
of Science, University of Kragujevac, P.O. Box 60, 34000 Kragujevac, Serbia
| | - Miquel Solà
- Institut
de Quìmica Computacional i Catàlisi and Departament
de Química, Universitat de Girona, C/Maria Aurèlia Capmany,
69, 17003 Girona, Catalonia, Spain
| | - Henrik Ottosson
- Department
of Chemistry—Ångström Laboratory, Uppsala University, 751 20 Uppsala, Sweden
| |
Collapse
|
19
|
Popov AG, Viviani VR, Skumial P, Jefferson TL, Salman SG, Baxter HH, Hull KL. Copper-Catalyzed Three-Component 1,5-Carboamination of Vinylcyclopropanes. Org Lett 2024. [PMID: 38810616 DOI: 10.1021/acs.orglett.4c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The 1,5-copper-catalyzed carboamination of vinylcyclopropanes is presented. A carbon-centered radical, formed upon reduction of an alkyl halide by Cu(I), adds across the alkene of a vinylcyclopropane, triggering ring opening to generate a benzylic radical, which, finally, undergoes copper-mediated amination to afford a homoallylic amine. The reaction occurs with outstanding regio- and good to very good diastereoselectivities. The scope of the reaction is demonstrated with respect to all three components: alkyl halide, vinylcyclopropane, and amine nucleophile. A total of 38 examples are presented with an average yield of 60%.
Collapse
Affiliation(s)
- Andrei G Popov
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Vincent R Viviani
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Piotr Skumial
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Theodore L Jefferson
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Samer G Salman
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Henry H Baxter
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Kami L Hull
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
20
|
Sun M, Feng L, Lu JY. Breaking the Base Barrier: Cu(II)-Mediated C-H Heteroarylation of o-Carboranes with Base-Sensitive Heteroaryl Halides. Org Lett 2024; 26:3697-3702. [PMID: 38685484 DOI: 10.1021/acs.orglett.4c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
While cage C-arylation reactions using strong bases are among the most frequently used transformations in carborane chemistry, there has been no general solution to allow for the use of weak bases in the reaction. Moreover, base-metal-promoted C-H heteroarylation with base-sensitive heteroaryl halides remained elusive. Herein, copper-mediated cage C-H (hetero)arylation has been achieved without the need for strong bases, leading to the facile synthesis of a wide range of C-(hetero)arylated carboranes in good to excellent yields with a broad substrate scope and good functional group compatibility.
Collapse
Affiliation(s)
- Mengfan Sun
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Leijun Feng
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Ju-You Lu
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
21
|
Lindner H, Amberg WM, Martini T, Fischer DM, Moore E, Carreira EM. Photo- and Cobalt-Catalyzed Synthesis of Heterocycles via Cycloisomerization of Unactivated Olefins. Angew Chem Int Ed Engl 2024; 63:e202319515. [PMID: 38415968 DOI: 10.1002/anie.202319515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
We report a general, intramolecular cycloisomerization of unactivated olefins with pendant nucleophiles. The reaction proceeds under mild conditions and tolerates ethers, esters, protected amines, acetals, pyrazoles, carbamates, and arenes. It is amenable to N-, O-, as well as C-nucleophiles, yielding a number of different heterocycles including, but not limited to, pyrrolidines, piperidines, oxazolidinones, and lactones. Use of both a benzothiazinoquinoxaline as organophotocatalyst and a Co-salen catalyst obviates the need for stoichiometric oxidant or reductant. We showcase the utility of the protocol in late-stage drug diversification and synthesis of several small natural products.
Collapse
Affiliation(s)
- Henry Lindner
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Willi M Amberg
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Tristano Martini
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - David M Fischer
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Eléonore Moore
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Erick M Carreira
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
22
|
Humke JN, Belli RG, Plasek EE, Kargbo SS, Ansel AQ, Roberts CC. Nickel binding enables isolation and reactivity of previously inaccessible 7-aza-2,3-indolynes. Science 2024; 384:408-414. [PMID: 38662814 PMCID: PMC12045518 DOI: 10.1126/science.adi1606] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/21/2024] [Indexed: 05/03/2025]
Abstract
N-Heteroaromatics are key elements of pharmaceuticals, agrochemicals, and materials. N-Heteroarynes provide a scaffold to build these essential molecules but are underused because five-membered N-heteroarynes have been largely inaccessible on account of the strain of a triple bond in that small of a ring. On the basis of principles of metal-ligand interactions that are foundational to organometallic chemistry, in this work we report the stabilization of five-membered N-heteroarynes in the nickel coordination sphere. A series of 1,2-bis(dicyclohexylphosphino)ethane nickel 7-azaindol-2,3-yne complexes were synthesized and characterized crystallographically and spectroscopically. Ambiphilic reactivity of the nickel 7-azaindol-2,3-yne complexes was observed with multiple nucleophilic, electrophilic, and enophilic coupling partners.
Collapse
Affiliation(s)
- Jenna N. Humke
- University of Minnesota, Department of Chemistry; Minneapolis, MN USA
| | - Roman G. Belli
- University of Minnesota, Department of Chemistry; Minneapolis, MN USA
| | - Erin E. Plasek
- University of Minnesota, Department of Chemistry; Minneapolis, MN USA
| | - Sallu S. Kargbo
- University of Minnesota, Department of Chemistry; Minneapolis, MN USA
| | - Annabel Q. Ansel
- University of Minnesota, Department of Chemistry; Minneapolis, MN USA
| | | |
Collapse
|
23
|
Kelleghan AV, Meza AT, Garg NK. Generation and reactivity of unsymmetrical strained heterocyclic allenes. NATURE SYNTHESIS 2024; 3:329-336. [PMID: 38645473 PMCID: PMC11031199 DOI: 10.1038/s44160-023-00432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/04/2023] [Indexed: 04/23/2024]
Abstract
Strained cyclic allenes are short-lived intermediates that confine a functional group with a preferred linear geometry, an allene, into a small ring, inducing strain-driven reactivity. Nitrogen-containing variants, or azacyclic allenes, have proved valuable for the assembly of complex nitrogen-containing compounds. Whereas 3,4-azacyclic allenes, which bear a symmetrical core, have been the focus of multiple studies, their unsymmetrical 2,3-azacyclic counterparts have remained underexplored. In the present study, we report density functional theory studies investigating the structure of such unsymmetrical azacyclic allenes and experimental efforts to access and engage them in strain-promoted cycloadditions under mild conditions. Control experiments support either concerted or stepwise diradical mechanisms for these reactions, depending on the type of cycloaddition examined. Moreover, we generate the corresponding 2,3-oxacyclic allene and demonstrate its reactivity in cycloadditions and a metal-catalysed process. Given the scaffolds accessed, coupled with the observed selectivity trends, these results are expected to encourage the application of unsymmetrical heterocyclic allenes for the synthesis of heterocycles that bear a high fraction of sp3-hybridized atoms.
Collapse
Affiliation(s)
- Andrew V. Kelleghan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Arismel Tena Meza
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Neil K. Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
24
|
Jiang Y, Liu D, Zhang L, Qin C, Li H, Yang H, Walsh PJ, Yang X. Efficient construction of functionalized pyrroloindolines through cascade radical cyclization/intermolecular coupling. Chem Sci 2024; 15:2205-2210. [PMID: 38332810 PMCID: PMC10848758 DOI: 10.1039/d3sc05210a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
Pyrroloindolines are important structural units in nature and the pharmaceutical industry, however, most approaches to such structures involve transition-metal or photoredox catalysts. Herein, we describe the first tandem SET/radical cyclization/intermolecular coupling between 2-azaallyl anions and indole acetamides. This method enables the transition-metal-free synthesis of C3a-substituted pyrroloindolines under mild and convenient conditions. The synthetic utility of this transformation is demonstrated by the construction of an array of C3a-methylamine pyrroloindolines with good functional group tolerance and yields. Gram-scale sequential one-pot synthesis and hydrolysis reactions demonstrate the potential synthetic utility and scalability of this approach.
Collapse
Affiliation(s)
- Yonggang Jiang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University Kunming 650091 P. R. China
| | - Dongxiang Liu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University Kunming 650091 P. R. China
| | - Lening Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University Kunming 650091 P. R. China
| | - Cuirong Qin
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University Kunming 650091 P. R. China
| | - Hui Li
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University Kunming 650091 P. R. China
| | - Haitao Yang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University Kunming 650091 P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104 USA
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University Kunming 650091 P. R. China
| |
Collapse
|
25
|
Sharma YB, Das D, Guru MM. Cu(II)-Catalyzed Aminocyclization of N-Propargyl Hydrazones to Substituted Pyrazolines. J Org Chem 2023; 88:16340-16351. [PMID: 37947756 DOI: 10.1021/acs.joc.3c01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
An efficient route for the copper(II)-catalyzed synthesis of substituted pyrazolines from readily accessible N-propargyl hydrazones has been reported under open flask conditions via intramolecular C-N bond formation. N-acyl and N-tosyl-substituted pyrazolines have been prepared in moderate to excellent yields. Mechanistic investigations using NMR, high-resolution mass spectrometry (HRMS), and Hammett analyses suggest that the Cu(II) catalyst generally acts as a Lewis acid to form an iminium-ion intermediate via cyclization, which afforded the desired pyrazolines upon hydrolysis. One progesterone receptor antagonist has also been synthesized utilizing this reaction methodology.
Collapse
Affiliation(s)
- Yogesh Brijwashi Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Kolkata, Kolkata 700054, India
| | - Debosmita Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Kolkata, Kolkata 700054, India
| | - Murali Mohan Guru
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Kolkata, Kolkata 700054, India
| |
Collapse
|
26
|
Lamberth C. Isosteric Ring Exchange as a Useful Scaffold Hopping Tool in Agrochemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18123-18132. [PMID: 37022306 DOI: 10.1021/acs.jafc.3c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Replacing one ring in a molecule by a different carba- or heterocycle is an important scaffold hopping manipulation, because biologically active compounds and their analogues, which underwent such a transformation, are often similar in size, shape, and physicochemical properties and, therefore, likely in their potency as well. This review will demonstrate, how isosteric ring exchange led to the discovery of highly active agrochemicals and which ring interchanges have proven to be most successful.
Collapse
Affiliation(s)
- Clemens Lamberth
- Chemical Research, Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| |
Collapse
|
27
|
Kong W, Li N, Lai J, Sun S, Li S. Antifungal Function Oriented Scaffold Hopping for the Discovery of Oxazolyl-oxazoline as a Novel Model against Fusarium graminearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18260-18269. [PMID: 37756692 DOI: 10.1021/acs.jafc.3c04725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Discovery of novel structural models is extremely important in agrochemical innovation. Scaffold hopping was conducted, and 16 kinds of novel models were synthesized and biologically evaluated. Oxazolyl-oxazoline 25 showed a promising in vitro potential against Fusarium graminearum with EC50 value of 18.25 μM, which was 2.4 times more potent than that of carbendazim (EC50 = 43.06 μM). The antifungal structure-activity relationship (SAR) revealed that compound 25am had the most promising antifungal activity against F. graminearum, with an EC50 value of 13.46 μM, which was 3.2 more potent than that of carbendazim. Different from carbendazim, the candidate 25am could form five hydrogen bonds with the amino acid residues in β-tubulin in the molecular docking and could effectively inhibit the carbendazim-resistant F. graminearum strain. Scanning electron microscopy (SEM) revealed that compound 25am induced the mycelia of F. graminearum slight collapse. This work suggests that compound 25am should be prioritized for further evaluation for new antifungal agents.
Collapse
Affiliation(s)
- Wenlong Kong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Nannan Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jixing Lai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengxin Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengkun Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
28
|
Lamberth C. Ring Closure and Ring Opening as Useful Scaffold Hopping Tools in Agrochemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18133-18140. [PMID: 37223957 DOI: 10.1021/acs.jafc.3c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Ring closing acyclic parts of a molecular scaffold or the opposite manipulation, opening rings to produce pseudo-ring structures, is an important scaffold hopping manipulation. Analogues derived from biologically active compounds through the utilization of such strategies are often similar in shape and physicochemical properties and, therefore, likely to exhibit similar potency. This review will demonstrate how several different ring closure techniques, such as replacing carboxylic functions by cyclic peptide mimics, incorporating double bonds into aromatic rings, tying back ring substituents to a bicyclic structure, cyclizing adjacent ring substituents to an annulated ring, bridging annulated ring systems to tricyclic scaffolds, and exchanging gem-dimethyl groups by cycloalkyl rings, but also ring opening led to the discovery of highly active agrochemicals.
Collapse
Affiliation(s)
- Clemens Lamberth
- Chemical Research, Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| |
Collapse
|
29
|
Wu X, Yang Z, Bu M, Duan J, Zhang A. Design, Synthesis and Bioactivity Evaluation of Heterocycle-Containing Mono- and Bisphosphonic Acid Compounds. Molecules 2023; 28:7509. [PMID: 38005231 PMCID: PMC10673511 DOI: 10.3390/molecules28227509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Fosmidomycin (FOS) is a naturally occurring compound active against the 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) enzyme in the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, and using it as a template for lead structure design is an effective strategy to develop new active compounds. In this work, by replacing the hydroxamate unit of FOS with pyrazole, isoxazole and the related heterocycles that also have metal ion binding affinity, while retaining the monophosphonic acid in FOS or replacing it with a bisphosphonic acid group, heterocycle-containing mono- and bisphosphonic acid compounds as FOS analogs were designed. The key steps involved in the facile synthesis of these FOS analogs included the Michael addition of diethyl vinylphosphonate or tetraethyl vinylidenebisphosphonate to β-dicarbonyl compounds and the subsequent cyclic condensation with hydrazine or hydroxylamine. Two additional isoxazolinone-bearing FOS analogs were synthesized via the Michaelis-Becker reaction with diethyl phosphite as a key step. The bioactivity evaluation on model plants demonstrated that several compounds have better herbicidal activities compared to FOS, with the most active compound showing a 3.7-fold inhibitory activity on Arabidopsis thaliana, while on the roots and stalks of Brassica napus L. and Echinochloa crus-galli in a pre-emergence inhibitory activity test, the activities of this compound were found to be 3.2- and 14.3-fold and 5.4- and 9.4-fold, respectively, and in a post-emergency activity test on Amaranthus retroflexus and Echinochloa crus-galli, 2.2- and 2.0-fold inhibition activities were displayed. Despite the significant herbicidal activity, this compound exhibited a DXR inhibitory activity lower than that of FOS but comparable to that of other non-hydroxamate DXR inhibitors, and the dimethylallyl pyrophosphate rescue assay gave no statistical significance, suggesting that a different target might be involved in the inhibiting process. This work demonstrates that using bioisosteric replacement can be considered as a valuable strategy to discover new FOS analogs that may have high herbicidal activities.
Collapse
Affiliation(s)
| | | | | | - Jiang Duan
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China; (X.W.); (Z.Y.); (M.B.)
| | - Aidong Zhang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China; (X.W.); (Z.Y.); (M.B.)
| |
Collapse
|
30
|
Tang X, Lei L, Liao A, Sun W, Zhang J, Wu J. Morpholine Derivatives in Agrochemical Discovery and Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13197-13208. [PMID: 37583294 DOI: 10.1021/acs.jafc.3c03818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Derivatives of morpholine are biologically active organic compounds with special structures discovered in multiple drugs. As a result of the terminal pharmacophore of action and extraordinary activity, they attracted fair attention with regard to pesticide innovation and development. Analysis of brief structure-activity relationships and the summarization of the characteristics of pesticides containing morpholine fragments with efficient activity are key steps in the development of novel pesticides. This review primarily overviews morpholine compounds with insecticidal, fungicidal, herbicidal, antiviral, and plant growth regulation properties to provide educational insight for the creation of new morpholine-containing compounds.
Collapse
Affiliation(s)
- Xu Tang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| | - Li Lei
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| | - Anjing Liao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| | - Wei Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| | - Jian Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| | - Jian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
31
|
Xu J, Yan D, Chen Y, Cai D, Huang F, Zhu L, Zhang X, Luan S, Xiao C, Huang Q. Fungicidal activity of novel quinazolin-6-ylcarboxylates and mode of action on Botrytis cinerea. PEST MANAGEMENT SCIENCE 2023; 79:3022-3032. [PMID: 36966485 DOI: 10.1002/ps.7477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/17/2023] [Accepted: 03/26/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Fungal diseases remain important causes of crop failure and economic losses. As the resistance toward current selective fungicides becomes increasingly problematic, it is necessary to develop efficient fungicides with novel chemotypes. RESULTS A series of novel quinazolin-6-ylcarboxylates which combined the structures of pyridine or heterocyclic motif and the N-(3-chloro-4-fluorophenyl)quinazolin-4-amine moiety, a binding group of ATP-binding site of gefitinib, were evaluated for their fungicidal activity on different phytopathogenic fungi. Most of these compounds showed excellent fungicidal activities against Botrytis cinerea and Exserohilum rostratum, especially compound F17 displayed the highest activity with EC50 values as 3.79 μg mL-1 against B. cinerea and 2.90 μg mL-1 against E. rostratum, which was similar to or even better than those of the commercial fungicides, such as pyraclostrobin (EC50 , 3.68, 17.38 μg mL-1 ) and hymexazol (EC50 , 4.56, 2.13 μg mL-1 ). Moreover, compound F17 significantly arrested the lesion expansion of B. cinerea infection on tomato detached leaves and strongly suppressed grey mold disease on tomato seedlings in greenhouse. The abilities of compound F17 to induce cell apoptosis of the non-germinated spores, to limit oxalic acid production, to reduce malate dehydrogenase (MDH) expression, and to block the active pocket of MDH protein were demonstrated in B. cinerea. CONCLUSION The novel quinazolin-6-ylcarboxylates containing ATP-binding site-directed moiety, especially compound F17, could be developed as a potential fungicidal candidate for further study. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jialin Xu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Dongmei Yan
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yongjun Chen
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Danni Cai
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Fengcheng Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lisong Zhu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xianfei Zhang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Shaorong Luan
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Ciying Xiao
- School of Biochemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
32
|
Dong ZB, Gong Z, Dou Q, Cheng B, Wang T. A decade update on the application of β-oxodithioesters in heterocyclic synthesis. Org Biomol Chem 2023; 21:6806-6829. [PMID: 37555699 DOI: 10.1039/d3ob00601h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The diverse synthesis of heterocyclic compounds has always been one of the popular subjects of organic chemistry. To this end, great efforts have been devoted to developing new reagents and establishing new strategies and methods concerning efficiency, selectivity and sustainability. β-Oxodithioesters and their enol tautomers (i.e., α-enolic dithioesters), as a class of simple and readily accessible sulfur-containing synthons, have been widely applied in the construction of various five- and six-membered heterocycles (e.g., thiophenes, thiopyrans, thiazoles, pyridines and quinolines) and other useful open-chain frameworks. Due to their unique chemical structures, β-oxodithioesters bear multiple reaction sites, which enable them to participate in two-component or multicomponent reactions to construct various heterocyclic compounds. In the past decade, the application of β-oxodithioesters in the synthesis of heterocycles has made remarkable progress. Herein, an update on the recent advances in the application of β-oxodithioesters in the synthesis of heterocycles during the period from 2013 to 2023/06 is provided. According to the different types of rings concerning heteroatoms in products, this review is divided into five sections under discussion including (i) synthesis of sulfur-containing heterocycles, (ii) synthesis of sulfur and nitrogen-containing heterocycles, (iii) synthesis of nitrogen-containing heterocycles, (iv) synthesis of nitrogen and oxygen-containing heterocycles, and (v) modification to other open-chain frameworks.
Collapse
Affiliation(s)
- Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Zhiying Gong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Qian Dou
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Bin Cheng
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Taimin Wang
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China.
| |
Collapse
|
33
|
Abstract
N-Heterocyclic alcohols are shown to be excellent substrates for superacid-promoted Friedel-Crafts reactions. The N-heterocyclic alcohols ionize to produce reactive, dicationic intermediates which provide good to excellent yields of arylation products.
Collapse
Affiliation(s)
- Jacob C Hood
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Maksim V Anokhin
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Douglas A Klumpp
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| |
Collapse
|
34
|
Spence KA, Hoffmann M, Garg NK. Total Synthesis of Phenanthroindolizidines Using Strained Azacyclic Alkynes. Org Lett 2023; 25:5044-5048. [PMID: 37379230 PMCID: PMC10460089 DOI: 10.1021/acs.orglett.3c01740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
We report a concise approach to phenanthroindolizidine alkaloids, wherein strained azacyclic alkynes are intercepted in Pd-catalyzed annulations. Two types of strained intermediates were evaluated: a functionalized piperidyne and a new strained intermediate, an indolizidyne. We show that each can be employed, ultimately allowing access to three natural products: tylophorine, tylocrebine, and isotylocrebine. These efforts demonstrate the successful merger of strained azacyclic alkyne chemistry with transition-metal catalysis for the construction of complex heterocycles.
Collapse
Affiliation(s)
- Katie A Spence
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Marie Hoffmann
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
35
|
Liu J, Chao T, Liu Y, Gong C, Zhang Y, Xiong H. Heterocyclic Molecular Targeted Drugs and Nanomedicines for Cancer: Recent Advances and Challenges. Pharmaceutics 2023; 15:1706. [PMID: 37376154 DOI: 10.3390/pharmaceutics15061706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer is a top global public health concern. At present, molecular targeted therapy has emerged as one of the main therapies for cancer, with high efficacy and safety. The medical world continues to struggle with the development of efficient, extremely selective, and low-toxicity anticancer medications. Heterocyclic scaffolds based on the molecular structure of tumor therapeutic targets are widely used in anticancer drug design. In addition, a revolution in medicine has been brought on by the quick advancement of nanotechnology. Many nanomedicines have taken targeted cancer therapy to a new level. In this review, we highlight heterocyclic molecular-targeted drugs as well as heterocyclic-associated nanomedicines in cancer.
Collapse
Affiliation(s)
- Junxia Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Tengfei Chao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yingying Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Chen Gong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200000, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
36
|
Li JL, Yang JF, Zhou LM, Cai M, Huang ZQ, Liu XL, Zhu XL, Yang GF. Design and Synthesis of Novel Oxathiapiprolin Derivatives as Oxysterol Binding Protein Inhibitors and Their Application in Phytopathogenic Oomycetes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37286337 DOI: 10.1021/acs.jafc.3c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Oomycetes, particularly those from the genus Phytophthora, are significant threats to global food security and natural ecosystems. Oxathiapiprolin (OXA) is an effective oomycete fungicide that targets an oxysterol binding protein (OSBP), while the binding mechanism of OXA is still unclear, which limits the pesticide design, induced by the low sequence identity of Phytophthora and template models. Herein, we generated the OSBP model of the well-reported Phytophthora capsici using AlphaFold 2 and studied the binding mechanism of OXA. Based on it, a series of OXA analogues were designed. Then, compound 2l, the most potent candidate, was successfully designed and synthesized, showing a control efficiency comparable to that of OXA. Moreover, field trial experiments showed that 2l exhibited nearly the same activity (72.4%) as OXA against cucumber downy mildew at 25 g/ha. The present work indicated that 2l could be used as a leading compound for the discovery of new OSBP fungicides.
Collapse
Affiliation(s)
- Jian-Long Li
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Jing-Fang Yang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Li-Ming Zhou
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Meng Cai
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zhong-Qiao Huang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xi-Li Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xiao-Lei Zhu
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, People's Republic of China
| |
Collapse
|
37
|
Soro D, Roque JB, Rackl JW, Park B, Payer S, Shi Y, Ruble JC, Kaledin AL, Baik MH, Musaev DG, Sarpong R. Photo- and Metal-Mediated Deconstructive Approaches to Cyclic Aliphatic Amine Diversification. J Am Chem Soc 2023; 145:11245-11257. [PMID: 37171220 PMCID: PMC10214453 DOI: 10.1021/jacs.3c01318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Indexed: 05/13/2023]
Abstract
Described herein are studies toward the core modification of cyclic aliphatic amines using either a riboflavin/photo-irradiation approach or Cu(I) and Ag(I) to mediate the process. Structural remodeling of cyclic amines is explored through oxidative C-N and C-C bond cleavage using peroxydisulfate (persulfate) as an oxidant. Ring-opening reactions to access linear aldehydes or carboxylic acids with flavin-derived photocatalysis or Cu salts, respectively, are demonstrated. A complementary ring-opening process mediated by Ag(I) facilitates decarboxylative Csp3-Csp2 coupling in Minisci-type reactions through a key alkyl radical intermediate. Heterocycle interconversion is demonstrated through the transformation of N-acyl cyclic amines to oxazines using Cu(II) oxidation of the alkyl radical. These transformations are investigated by computation to inform the proposed mechanistic pathways. Computational studies indicate that persulfate mediates oxidation of cyclic amines with concomitant reduction of riboflavin. Persulfate is subsequently reduced by formal hydride transfer from the reduced riboflavin catalyst. Oxidation of the cyclic aliphatic amines with a Cu(I) salt is proposed to be initiated by homolysis of the peroxy bond of persulfate followed by α-HAT from the cyclic amine and radical recombination to form an α-sulfate adduct, which is hydrolyzed to the hemiaminal. Investigation of the pathway to form oxazines indicates a kinetic preference for cyclization over more typical elimination pathways to form olefins through Cu(II) oxidation of alkyl radicals.
Collapse
Affiliation(s)
- David
M. Soro
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jose B. Roque
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jonas W. Rackl
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Bohyun Park
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Korea
- Center
for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Stefan Payer
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yuan Shi
- Discovery
Chemistry Research and Technologies, Eli
Lilly and Company, Indianapolis, Indiana 46285, United States
| | - J. Craig Ruble
- Discovery
Chemistry Research and Technologies, Eli
Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Alexey L. Kaledin
- Cherry
L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Mu-Hyun Baik
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Korea
- Center
for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Djamaladdin G. Musaev
- Cherry
L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Richmond Sarpong
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
38
|
Kumar M, Goswami A. Tunable Regio- and Stereoselective Synthesis of Z-Acrylonitrile Indoles and 3-Cyanoquinolines from 2-Alkynylanilines and Alkynylnitriles. Org Lett 2023; 25:3254-3259. [PMID: 37126068 DOI: 10.1021/acs.orglett.3c00987] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The merger of two bifunctional moieties, 2-alkynylaniline and alkynylnitriles, in the presence of ZnBr2 offers the tunable synthesis of two biologically important motifs: acrylonitrile indoles and 3-cyanoquinolines. The group present on the terminal alkyne of 2-alkynylaniline regulates the reaction pathways, intra- versus intermolecular, which thereby adds stereoselectivity and regioselectivity in this protocol. The conversion of an acrylonitrile indole ring to quinoline is an intriguing synthetic utility of this methodology.
Collapse
Affiliation(s)
- Madan Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Avijit Goswami
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
39
|
Sun X, Yu W, Min L, Han L, Hua X, Shi J, Sun N, Liu X. Synthesis, Structural Determination, and Antifungal Activity of Novel Fluorinated Quinoline Analogs. Molecules 2023; 28:molecules28083373. [PMID: 37110607 PMCID: PMC10145707 DOI: 10.3390/molecules28083373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
A series of new fluorinated quinoline analogs were synthesized using Tebufloquin as the lead compound, 2-fluoroaniline, ethyl 2-methylacetoacetate, and substituted benzoic acid as raw materials. Their structures were confirmed by 1H NMR, 13C NMR, and HRMS. The compound 8-fluoro-2,3-dimethylquinolin-4-yl 4-(tert-butyl)benzoate (2b) was further determined by X-ray single-crystal diffraction. The antifungal activity was tested at 50 μg/mL, and the bioassay results showed that these quinoline derivatives had good antifungal activity. Among them, compounds 2b, 2e, 2f, 2k, and 2n exhibited good activity (>80%) against S. sclerotiorum, and compound 2g displayed good activity (80.8%) against R. solani.
Collapse
Affiliation(s)
- Xinpeng Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Yu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lijing Min
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Liang Han
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xuewen Hua
- College of Agriculture, Liaocheng University, Liaocheng 252000, China
| | - Jianjun Shi
- College of Chemistry and Chemical Engineering, Huangshan University, Huangshan 245041, China
| | - Nabo Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xinghai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
40
|
Recent Advances in Synthetic Routes to Azacycles. Molecules 2023; 28:molecules28062737. [PMID: 36985708 PMCID: PMC10054516 DOI: 10.3390/molecules28062737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
A heterocycle is an important structural scaffold of many organic compounds found in pharmaceuticals, materials, agrochemicals, and biological processes. Azacycles are one of the most common motifs of a heterocycle and have a variety of applications, including in pharmaceuticals. Therefore, azacycles have received significant attention from scientists and a variety of methods of synthesizing azacycles have been developed because their efficient synthesis plays a vital role in the production of many useful compounds. In this review, we summarize recent approaches to preparing azacycles via different methods as well as describe plausible reaction mechanisms.
Collapse
|
41
|
Pinter EN, Sheldon ZS, Modak A, Cook SP. Fluorosulfonamide-Directed Heteroarylation of Aliphatic C(sp 3)-H Bonds. J Org Chem 2023; 88:4757-4760. [PMID: 36912807 DOI: 10.1021/acs.joc.2c02461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Herein, we describe a formal dehydrogenative cross coupling of heterocycles with unactivated aliphatic amines. The resulting transformation enables the direct alkylation of common heterocycles by merging N-F-directed 1,5-HAT with Minisci chemistry, leading to predictable site selectivity. The reaction provides a direct route for the transformation of simple alkyl amines to value-added products under mild reaction conditions, making this an attractive option for C(sp3)-H heteroarylation.
Collapse
Affiliation(s)
- Emily N Pinter
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| | - Zachary S Sheldon
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| | - Atanu Modak
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| | - Silas P Cook
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
42
|
Hommelsheim R, Bausch S, Selvakumar A, Amer MM, Truong KN, Rissanen K, Bolm C. A Copper-Catalyzed Interrupted Domino Reaction for the Synthesis of Fused Triazolyl Benzothiadiazine-1-oxides. Chemistry 2023; 29:e202203729. [PMID: 36453242 DOI: 10.1002/chem.202203729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022]
Abstract
Copper(I)-catalyzed domino reactions of 2-azido sulfoximines with 1-iodoalkynes yield fused triazolyl-containing benzothiadiazine-1-oxides. The protocol features the synthesis of two fused heterocyclic rings in one step with good to excellent yields and a broad functional group tolerance. Detailed mechanistic investigations indicate that a copper π-complex initiates a cycloaddition and oxidative C-N coupling reaction sequence. The results suggest an interrupted domino process involving an iodinated triazole as a key intermediate.
Collapse
Affiliation(s)
- Renè Hommelsheim
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Sandra Bausch
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Arjuna Selvakumar
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Mostafa M Amer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany.,Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Khai-Nghi Truong
- University of Jyvaskyla, Department of Chemistry, P.O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, P.O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
43
|
Reichert EC, Feng K, Sather AC, Buchwald SL. Pd-Catalyzed Amination of Base-Sensitive Five-Membered Heteroaryl Halides with Aliphatic Amines. J Am Chem Soc 2023; 145:3323-3329. [PMID: 36719903 PMCID: PMC9988406 DOI: 10.1021/jacs.2c13520] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We report a versatile and functional-group-tolerant method for the Pd-catalyzed C-N cross-coupling of five-membered heteroaryl halides with primary and secondary amines, an important but underexplored transformation. Coupling reactions of challenging, pharmaceutically relevant heteroarenes, such as 2-H-1,3-azoles, are reported in good-to-excellent yields. High-yielding coupling reactions of a wide set of five-membered heteroaryl halides with sterically demanding α-branched cyclic amines and acyclic secondary amines are reported for the first time. The key to the broad applicability of this method is the synergistic combination of (1) the moderate-strength base NaOTMS, which limits base-mediated decomposition of sensitive five-membered heteroarenes that ultimately leads to catalyst deactivation, and (2) the use of a GPhos-supported Pd catalyst, which effectively resists heteroarene-induced catalyst deactivation while promoting efficient coupling, even for challenging and sterically demanding amines. Cross-coupling reactions between a wide variety of five-membered heteroaryl halides and amines are demonstrated, including eight examples involving densely functionalized medicinal chemistry building blocks.
Collapse
Affiliation(s)
- Elaine C Reichert
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kaibo Feng
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Aaron C Sather
- Process Research and Development, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
44
|
Kaithal A, Sasmal HS, Dutta S, Schäfer F, Schlichter L, Glorius F. cis-Selective Hydrogenation of Aryl Germanes: A Direct Approach to Access Saturated Carbo- and Heterocyclic Germanes. J Am Chem Soc 2023; 145:4109-4118. [PMID: 36781169 PMCID: PMC9951224 DOI: 10.1021/jacs.2c12062] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Indexed: 02/15/2023]
Abstract
A catalytic approach of synthesizing the cis-selective saturated carbo- and heterocyclic germanium compounds (3D framework) is reported via the hydrogenation of readily accessible aromatic germanes (2D framework). Among the numerous catalysts tested, Nishimura's catalyst (Rh2O3/PtO2·H2O) exhibited the best hydrogenation reactivity with an isolated yield of up to 96%. A broad range of substrates including the synthesis of unprecedented saturated heterocyclic germanes was explored. This selective hydrogenation strategy could tolerate several functional groups such as -CF3, -OR, -F, -Bpin, and -SiR3 groups. The synthesized products demonstrated the applications in coupling reactions including the newly developed strategy of aza-Giese-type addition reaction (C-N bond formation) from the saturated cyclic germane product. These versatile motifs can have a substantial value in organic synthesis and medicinal chemistry as they show orthogonal reactivity in coupling reactions while competing with other coupling partners such as boranes or silanes, acquiring a three-dimensional structure with high stability and robustness.
Collapse
Affiliation(s)
- Akash Kaithal
- Westfälische
Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Himadri Sekhar Sasmal
- Westfälische
Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Subhabrata Dutta
- Westfälische
Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Felix Schäfer
- Westfälische
Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Lisa Schlichter
- Westfälische
Wilhelms-Universität Münster, Center for Soft Nanoscience
(SoN) and Organisch-Chemisches Institut, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - Frank Glorius
- Westfälische
Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
45
|
Ardón-Muñoz LG, Bolliger JL. Oxidative cyclization leading to charged sulfur-containing tricyclic heteroarenes. PHOSPHORUS SULFUR 2023. [DOI: 10.1080/10426507.2023.2173757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
46
|
Ardón-Muñoz LG, Bolliger JL. Synthesis of sulfur heterocycles by C–H bond functionalization of disulfide intermediates. PHOSPHORUS SULFUR 2023. [DOI: 10.1080/10426507.2023.2171040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
47
|
Afratis K, Bateman JM, Rahemtulla BF, Hughes O, Milgram BC, Mulhern TA, Talbot EPA. Regioselective Synthesis of Fully Substituted Fused Pyrroles through an Oxidant-Free Multicomponent Reaction. Org Lett 2023; 25:461-465. [PMID: 36638117 DOI: 10.1021/acs.orglett.2c03889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The synthesis of fully substituted fused pyrroles through a multicomponent reaction between a thioamide, an aldehyde, and ammonium acetate is described. This process improves on a route commonly employed in the patent literature by avoiding the use of potentially hazardous oxidants, which cause the formation of side products and require a stringent process of derisking to be utilized on scale. The reaction proceeds under mild conditions, displays excellent functional group tolerance, and facilitates diversification through multiple vectors.
Collapse
Affiliation(s)
- Konstantinos Afratis
- Pharmaron Drug Discovery Services Europe, Pharmaron UK Ltd., Hertford Road, HoddesdonEN11 9FH, United Kingdom
| | - Joseph M Bateman
- Pharmaron Drug Discovery Services Europe, Pharmaron UK Ltd., Hertford Road, HoddesdonEN11 9FH, United Kingdom
| | - Benjamin F Rahemtulla
- Pharmaron Drug Discovery Services Europe, Pharmaron UK Ltd., Hertford Road, HoddesdonEN11 9FH, United Kingdom
| | - Oliver Hughes
- Pharmaron Drug Discovery Services Europe, Pharmaron UK Ltd., Hertford Road, HoddesdonEN11 9FH, United Kingdom
| | - Benjamin C Milgram
- Scorpion Therapeutics Inc., One Winthrop Square, Suite 400, Boston, Massachusetts02110, United States
| | - Thomas A Mulhern
- Vector CMC Consulting LLC, 5155 Trumpeter Dr., Portage, Michigan49024, United States
| | - Eric P A Talbot
- Pharmaron Drug Discovery Services Europe, Pharmaron UK Ltd., Hertford Road, HoddesdonEN11 9FH, United Kingdom
| |
Collapse
|
48
|
Design, Synthesis and Fungicidal Activity of N-(thiophen-2-yl) Nicotinamide Derivatives. Molecules 2022; 27:molecules27248700. [PMID: 36557835 PMCID: PMC9783666 DOI: 10.3390/molecules27248700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Based on the modification of natural products and the active substructure splicing method, a series of new N-(thiophen-2-yl) nicotinamide derivatives were designed and synthesized by splicing the nitrogen-containing heterocycle natural molecule nicotinic acid and the sulfur-containing heterocycle thiophene. The structures of the target compounds were identified through 1H NMR, 13C NMR and HRMS spectra. The in vivo bioassay results of all the compounds against cucumber downy mildew (CDM, Pseudoperonospora cubensis (Berk.et Curt.) Rostov.) in a greenhouse indicated that compounds 4a (EC50 = 4.69 mg/L) and 4f (EC50 = 1.96 mg/L) exhibited excellent fungicidal activities which were higher than both diflumetorim (EC50 = 21.44 mg/L) and flumorph (EC50 = 7.55 mg/L). The bioassay results of the field trial against CDM demonstrated that the 10% EC formulation of compound 4f displayed excellent efficacies (70% and 79% control efficacies, respectively, each at 100 mg/L and 200 mg/L) which were superior to those of the two commercial fungicides flumorph (56% control efficacy at 200 mg/L) and mancozeb (76% control efficacy at 1000 mg/L). N-(thiophen-2-yl) nicotinamide derivatives are significant lead compounds that can be used for further structural optimization, and compound 4f is also a promising fungicide candidate against CDM that can be used for further development.
Collapse
|
49
|
Burešová Z, Jandová V, Klikar M, Grygarová M, Bureš F. Construction of bi(hetero)aryls via dicyanopyrazine-mediated photochemical cross-coupling. Org Biomol Chem 2022; 20:9378-9384. [PMID: 36385305 DOI: 10.1039/d2ob01836e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A photochemical cross-coupling protocol towards bi(hetero)aryls has been developed. The coupling reactions were mediated by dicyanopyrazine photoredox catalyst, while a photoinduced disproportionation process has been identified as an accompanying mechanism, especially for pyrrole derivatives. The developed method allows the cross-coupling of five-membered rings such as pyrrole, imidazole, thiazole and oxazole as well as various diazines (pyridine and pyrimidine) and benzene derivatives. A plausible mechanism of the reaction has also been disclosed. The practical application and relevance of the developed method were demonstrated by constructing an atorvastatin core or by the gradual functionalization of benzo[c][1,2,5]thiadiazole. In total, twenty-one bi(hetero)aryls were prepared in yields ranging from 19 to 95%.
Collapse
Affiliation(s)
- Zuzana Burešová
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 53210, Czech Republic.
| | - Veronika Jandová
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 53210, Czech Republic.
| | - Milan Klikar
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 53210, Czech Republic.
| | - Monika Grygarová
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 53210, Czech Republic.
| | - Filip Bureš
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 53210, Czech Republic.
| |
Collapse
|
50
|
Samuel JG, Malgija B, Ebenezer C, Solomon RV. Insight into designing of 2-pyridone derivatives for COVID-19 drug discovery - A computational study. Struct Chem 2022; 34:1-20. [PMID: 36320317 PMCID: PMC9607770 DOI: 10.1007/s11224-022-02076-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/04/2022] [Indexed: 11/27/2022]
Abstract
Presently, the prime global focus is on SARS-CoV-2, as no fully established, licensed medicine has been found thus far, in spite of the existence of various reports and administration of partially proven certain class of natural products. However, in case of natural products, the extraction and purification limit their application. This situation drives researchers to explore synthetically viable drugs. In the present investigation, twenty-three 2-pyridone synthetic derivatives (P1-P23) have been theoretically tested for their suitability as potential inhibitors for COVID-19 main protease through DFT, molecular docking, and molecular dynamics simulations. DFT calculations offer insights into structure-property relationships, while ADMET studies indicate the pharmacological characteristics of these molecules. Molecular docking studies ascertain the nature and mode of interactions of these entities with COVID-19 main protease. Furthermore, covalent docking has been carried out to verify the feasibility of the formation of a covalent bond with the active site. The top protein-inhibitor complexes, such as P18, P11, and P12, were identified based on their glide score. These molecules, along with the covalent docked complexes, namely P18 and P16, were selected and subjected to molecular dynamics simulations. The 100 ns simulation process exhibited that the covalent docked ones, due to their stable form could serve as lead compounds against SARS-CoV-2. Hence, this study affirms the potential candidature of 2-pyridone-based inhibitors.
Collapse
Affiliation(s)
- Joseph George Samuel
- Department of Chemistry, Madras Christian College (Autonomous), University of Madras), Chennai, 600 059 India
| | - Beutline Malgija
- MCC-MRF Innovation Park, Madras Christian College, Chennai, 600 059 India
| | - Cheriyan Ebenezer
- Department of Chemistry, Madras Christian College (Autonomous), University of Madras), Chennai, 600 059 India
| | - Rajadurai Vijay Solomon
- Department of Chemistry, Madras Christian College (Autonomous), University of Madras), Chennai, 600 059 India
| |
Collapse
|